DIFFERENTIAL GEOMETRY

A Useful Characterization of Some Real Hypersurfaces in a Nonflat Complex Space Form

by

Takehiro ITOH and Sadahiro MAEDA

Presented by Czesław BESSAGA

Summary. We characterize totally η -umbilic real hypersurfaces in a nonflat complex space form $\widetilde{M}_n(c) (= \mathbb{C}P^n(c) \text{ or } \mathbb{C}H^n(c))$ and a real hypersurface of type (A_2) of radius $\pi/(2\sqrt{c})$ in $\mathbb{C}P^n(c)$ by observing the shape of *some* geodesics on those real hypersurfaces as curves in the ambient manifolds (Theorems 1 and 2).

1. Introduction. A curve $\gamma = \gamma(s)$ (parametrized by its arclength s) on a Riemannian manifold M is called a *plane curve* if it is locally contained in some real 2-dimensional totally geodesic submanifold of M.

In some cases, it is possible to deduce the geometric properties of a submanifold by observing the shape of geodesics on it (for example, see [FS, M, MO, S]). It is known that a hypersurface M^n isometrically immersed into Euclidean space \mathbb{R}^{n+1} is locally a standard sphere if and only if every geodesic of M is mapped to a plane curve of positive curvature in \mathbb{R}^{n+1} . Such a characterization is quite natural, but it requires a very large amount of information because of the condition on every geodesic of M (cf. [OT]). In this context, we are interested in a useful criterion for a hypersurface M^n of \mathbb{R}^{n+1} to be a standard sphere. For example, we can see that a hypersurface M^n in \mathbb{R}^{n+1} is a standard sphere if and only if at each point xof M^n there exists an orthonormal basis v_1, \ldots, v_n of $T_x(M^n)$ such that all geodesics of M through x in direction $v_i + v_j$ $(1 \le i \le j \le n)$ are mapped to

²⁰⁰⁰ Mathematics Subject Classification: Primary 53B25; Secondary 53C40.

Key words and phrases: geodesics, plane curves of positive curvature, Frenet curves of proper order 2, totally η -umbilic real hypersurfaces, real hypersurfaces of type A_2 , nonflat complex space forms, ruled real hypersurfaces.

The first author is partially supported by Grant-in-Aid for Scientific Research (C) (No 17530653), Ministry of Education, Culture, Sports, Science and Technology.

plane curves of positive curvature in the ambient space \mathbb{R}^{n+1} (see Proposition 1).

On the other hand, in a nonflat complex space form $\widetilde{M}_n(c)$, $c \neq 0$, which is either a complex projective space $\mathbb{C}P^n(c)$ of constant holomorphic sectional curvature c > 0 or a complex hyperbolic space $\mathbb{C}H^n(c)$ of constant holomorphic sectional curvature c < 0, there does not exist a real hypersurface all of whose geodesics are mapped to plane curves in the ambient space. This comes from the fact that a nonflat complex space form does not admit totally umbilic real hypersurfaces. However, there exist real hypersurfaces M^{2n-1} 's all of whose geodesics orthogonal to the characteristic vector field ξ of M are mapped to plane curves in $\widetilde{M}_n(c)$. In fact, every totally η -umbilic real hypersurface has this property (see Section 2 for the definition of totally η -umbilic real hypersurfaces).

The main purpose of this paper is to provide a useful characterization of totally η -umbilic real hypersurfaces of $\widetilde{M}_n(c)$, $c \neq 0$, in the above sense (Theorem 1).

The authors would like to express their hearty thanks to the referee for his advice.

2. Preliminaries. Let M^{2n-1} be a real hypersurface (with unit normal vector field \mathcal{N}) of a nonflat *n*-dimensional complex space form $\widetilde{M}_n(c)$ $(= \mathbb{C}P^n(c) \text{ or } \mathbb{C}H^n(c))$ of constant holomorphic sectional curvature c. The Riemannian connections $\widetilde{\nabla}$ of $\widetilde{M}_n(c)$ and ∇ of M are related by

(2.1)
$$\widetilde{\nabla}_X Y = \nabla_X Y + \langle AX, Y \rangle \mathcal{N} \text{ and } \widetilde{\nabla}_X \mathcal{N} = -AX,$$

for vector fields X and Y tangent to M, where \langle , \rangle denotes the standard Riemannian metric of $\widetilde{M}_n(c)$ and A is the shape operator of M in $\widetilde{M}_n(c)$. It is known that M admits an almost contact metric structure $(\phi, \xi, \eta, \langle , \rangle)$ induced from the Kähler structure J of $\widetilde{M}_n(c)$. The characteristic vector field ξ of M is defined as $\xi = -JN$ and this structure satisfies

$$\phi^2 = -I + \eta \otimes \xi, \; \eta(\xi) = 1 \quad ext{and} \quad \langle \phi X, \phi Y
angle = \langle X, Y
angle - \eta(X) \eta(Y),$$

where I denotes the identity map of the tangent bundle TM of M. It follows from (2.1) that

(2.2)
$$\nabla_X \xi = \phi A X.$$

The eigenvalues and eigenvectors of the shape operator A are called *principal* curvatures and *principal curvature vectors*, respectively. In the following, we denote by V_{λ} the eigenspace associated to the principal curvature λ , that is, $V_{\lambda} = \{v \in TM \mid Av = \lambda v\}.$

We usually call M a *Hopf hypersurface* if the characteristic vector ξ is a principal curvature vector. The following is useful ([NR]):

LEMMA 1. For a Hopf hypersurface M with $A\xi = \delta\xi$ in a nonflat complex space form $\widetilde{M}_n(c)$ the following hold.

- (1) δ is locally constant.
- (2) If $Av = \lambda v$ for $v \perp \xi$, then $(2\lambda \delta)A\phi v = (\delta\lambda + c/2)\phi v$. In particular,

$$A\phi v = \frac{\delta\lambda + c/2}{2\lambda - \delta}\phi v \quad \text{when } c > 0.$$

It is known that every tube (of sufficiently small constant radius) around each Kähler submanifold of $\widetilde{M}_n(c)$, $c \neq 0$, is a Hopf hypersurface. This fact tells us that the notion of Hopf hypersurface is natural in the theory of real hypersurfaces in a nonflat complex space form (see [NR]).

In the following, we consider Hopf hypersurfaces with constant principal curvatures. These hypersurfaces are completely classified ([NR]). A Hopf hypersurface in $\mathbb{C}P^n(c)$ $(n \geq 2)$ with constant principal curvatures is locally congruent to one of the following:

- (A₁) a geodesic sphere of radius r, where $0 < r < \pi/\sqrt{c}$;
- (A₂) a tube of radius r around a totally geodesic $\mathbb{C}P^k(c)$ $(1 \le k \le n-2)$, where $0 < r < \pi/\sqrt{c}$;
- (B) a tube of radius r around a complex hyperquadric $\mathbb{C}Q^{n-1}$, where $0 < r < \pi/(2\sqrt{c})$,
- (C) a tube of radius r around $\mathbb{C}P^1(c) \times \mathbb{C}P^{(n-1)/2}(c)$, where $0 < r < \pi/(2\sqrt{c})$ and $n \ge 5$ is odd;
- (D) a tube of radius r around a complex Grassmannian $\mathbb{C}G_{2,5}$, where $0 < r < \pi/(2\sqrt{c})$ and n = 9;
- (E) a tube of radius r around the Hermitian symmetric space SO(10)/U(5), where $0 < r < \pi/(2\sqrt{c})$ and n = 15.

These real hypersurfaces are said to be of type (A₁), (A₂), (B), (C), (D) and (E). Real hypersurfaces of type (A₁) or (A₂) are jointly called real hypersurfaces of type (A). The numbers of distinct principal curvatures of these real hypersurfaces are 2, 3, 3, 5, 5, 5, respectively. One should notice that a geodesic sphere of radius r ($0 < r < \pi/\sqrt{c}$) in $\mathbb{C}P^n(c)$ is congruent to a tube of radius $\pi/\sqrt{c} - r$ over a totally geodesic hyperplane $\mathbb{C}P^{n-1}(c)$.

A Hopf hypersurface M in $\mathbb{C}H^n(c)$ $(n \ge 2)$ with constant principal curvatures is locally congruent to one of the following ([NR]):

- (A₀) a horosphere in $\mathbb{C}H^n(c)$;
- (A_{1,0}) a geodesic sphere of radius $r (0 < r < \infty)$;
- (A_{1,1}) a tube of radius r around a totally geodesic $\mathbb{C}H^{n-1}(c)$, where $0 < r < \infty$;
- (A₂) a tube of radius r around a totally geodesic $\mathbb{C}H^k$ $(1 \le k \le n-2)$, where $0 < r < \infty$;

(B) a tube of radius r around a totally real totally geodesic $\mathbb{R}H^n(c/4)$, where $0 < r < \infty$.

These real hypersurfaces are said to be of type (A_0) , (A_1) , (A_2) and (B). Here, type (A_1) means either $(A_{1,0})$ or $(A_{1,1})$, and real hypersurfaces of type (A_0) , (A_1) or (A_2) are jointly called real hypersurfaces of type (A). A real hypersurface of type (B) with radius $r = (1/\sqrt{|c|}) \ln(2+\sqrt{3})$ has two distinct constant principal curvatures. Except this real hypersurface of type (B) with radius $r = (1/\sqrt{|c|}) \ln(2+\sqrt{3})$ has two distinct of these real hypersurfaces are 2, 2, 2, 3, 3, respectively.

A real hypersurface M of $M_n(c)$ $(n \ge 2)$ is called *totally* η -umbilic if its shape operator A is of the form $A = \alpha I + \beta \eta \otimes \xi$ for some smooth functions α and β on M. This definition can be easily rewritten as AX = kX for each vector X on M which is orthogonal to the characteristic vector ξ of M, where k is a smooth function on M. It is known that every totally η -umbilic hypersurface is a Hopf hypersurface with constant principal curvatures. The following classification theorem of totally η -umbilic real hypersurfaces Mshows that these two functions α and β are automatically constant on M(see [NR]):

THEOREM A. Let M^{2n-1} be a totally η -umbilic real hypersurface of a nonflat complex space form $\widetilde{M}_n(c)$ $(n \geq 2)$ (with shape operator $A = \alpha I + \beta \eta \otimes \xi$). Then M is locally congruent to one of the following:

- (P) a geodesic sphere of radius r $(0 < r < \pi/\sqrt{c})$ in $\mathbb{C}P^n(c)$, where $\alpha = (\sqrt{c}/2) \cot(\sqrt{cr}/2)$ and $\beta = -1/\alpha$;
- (H) (i) a horosphere in $\mathbb{C}H^n(c)$, where $\alpha = \beta = \sqrt{|c|/2}$;
 - (ii) a geodesic sphere of radius $r \ (0 < r < \infty)$ in $\mathbb{C}H^n(c)$, where $\alpha = (\sqrt{|c|}/2) \coth(\sqrt{|c|}r/2)$ and $\beta = 1/\alpha$;
 - (iii) a tube of radius r (0 < r < ∞) around a totally geodesic complex hyperplane $\mathbb{C}H^{n-1}(c)$ in $\mathbb{C}H^n(c)$, where $\alpha = (\sqrt{|c|}/2) \cdot \tanh(\sqrt{|c|}r/2)$ and $\beta = 1/\alpha$.

It is known that every totally η -umbilic real hypersurface M has two distinct constant principal curvatures. For later use we prepare the following lemma (see [NR]).

LEMMA 2. Let M be a real hypersurface in a nonflat complex space form $\widetilde{M}_n(c)$ $(n \geq 2)$. Then the following are equivalent.

- (1) M is of type (A).
- (2) $\phi A = A\phi$.
- (3) $\langle (\nabla_X A)Y, Z \rangle = (c/4)(-\eta(Y)\langle \phi X, Z \rangle \eta(Z)\langle \phi X, Y \rangle)$ for arbitrary vectors X, Y and Z on M.

Next we recall ruled real hypersurfaces in a nonflat complex space form, which are typical examples of non-Hopf hypersurfaces. A real hypersurface M is called a *ruled real hypersurface* in a nonflat complex space form $\widetilde{M}_n(c)$ $(n \geq 2)$ if the holomorphic distribution T^0 defined by $T^0(x) = \{X \in T_x M \mid X \perp \xi\}$ for $x \in M$ is integrable and each of its integral manifolds is a totally geodesic complex hypersurface $M_{n-1}(c)$ of $\widetilde{M}_n(c)$. A ruled real hypersurface is constructed in the following manner. Given an arbitrary regular curve γ defined on an interval I in $\widetilde{M}_n(c)$ we have at each point $\gamma(t)$ $(t \in I)$ a totally geodesic complex hypersurface $M_{n-1}^{(t)}(c)$ that is orthogonal to the plane spanned by $\{\dot{\gamma}(t), J\dot{\gamma}(t)\}$. Then we see that $M = \bigcup_{t \in I} M_{n-1}^{(t)}(c)$ is a ruled real hypersurface in $\widetilde{M}_n(c)$. The following gives a characterization of ruled real hypersurfaces in terms of the shape operator A (see [NR]).

LEMMA 3. For a real hypersurface M in a nonflat complex space form $\widetilde{M}_n(c)$ $(n \geq 2)$, the following conditions are equivalent.

- (1) M is a ruled real hypersurface.
- (2) The shape operator A of M satisfies the following equalities on the open dense subset $M_1 = \{x \in M \mid \nu(x) \neq 0\}$ with a unit vector field U orthogonal to ξ :

 $A\xi = \mu\xi + \nu U, \quad AU = \nu\xi, \quad AX = 0$

for an arbitrary tangent vector X orthogonal to ξ and U. Here μ, ν are differentiable functions on M defined by $\mu = \langle A\xi, \xi \rangle$ and $\nu = ||A\xi - \mu\xi||$.

(3) The shape operator A of M satisfies $\langle Av, w \rangle = 0$ for arbitrary tangent vectors $v, w \in T_x M$ orthogonal to ξ_x at each point $x \in M$.

We treat ruled real hypersurfaces locally, because generally such hypersurfaces have self-intersections and singularities. When we study ruled real hypersurfaces, we usually omit points where ξ is principal and suppose that ν does not vanish everywhere, that is, a ruled hypersurface M is usually supposed to have $M_1 = M$.

We review the notion of Frenet curves of order 2. A smooth curve $\gamma = \gamma(s)$ in a Riemannian manifold M parametrized by its arclength s is called a *Frenet curve of proper order* 2 if there exist a field of orthonormal frames $\{\dot{\gamma}(s), Y_s\}$ along γ and a positive smooth function $\kappa(s)$ satisfying the following system of ordinary differential equations:

(2.3)
$$\nabla_{\dot{\gamma}}\dot{\gamma} = \kappa(s)Y_s \text{ and } \nabla_{\dot{\gamma}}Y_s = -\kappa(s)\dot{\gamma}.$$

The function κ is called the *curvature* of the Frenet curve γ of proper order 2. Here we note that we do *not* allow the curvature $\kappa(s)$ to vanish at any point. Therefore curves with inflection points, such as $y = x^3$ on a Euclidean xyplane, are not Frenet curves of proper order 2. A curve is called a Frenet curve of order 2 if it is either a Frenet curve of proper order 2 or a geodesic. When the curvature κ is a constant function along γ , say k, the curve satisfying (2.3) is called a *circle* of curvature k on M. Needless to say, a geodesic is regarded as a circle of null curvature.

For a Frenet curve γ of proper order 2 in a Kähler manifold M_n (with Riemannian connection ∇ and complex structure J), we define a *complex* torsion τ_{γ} by $\tau_{\gamma} = \langle \dot{\gamma}(s), JY_s \rangle$. Of course we have $-1 \leq \tau_{\gamma} \leq 1$. Note that the complex torsion τ_{γ} is automatically constant. In fact, we can see that

$$\begin{aligned} \nabla_{\dot{\gamma}} \langle \dot{\gamma}(s), JY_s \rangle &= \langle \nabla_{\dot{\gamma}} \dot{\gamma}(s), JY_s \rangle + \langle \dot{\gamma}(s), J\nabla_{\dot{\gamma}} Y_s \rangle \\ &= \kappa \langle Y_s, JY_s \rangle - \kappa \langle \dot{\gamma}(s), J\dot{\gamma}(s) \rangle = 0. \end{aligned}$$

We know that a Frenet curve γ of proper order 2 in a nonflat complex space form $\widetilde{M}_n(c)$ $(n \geq 2)$ is a plane curve (with positive curvature function) if and only if $\tau_{\gamma} = \pm 1, 0$. When $\tau_{\gamma} = \pm 1$, this curve γ lies on $\mathbb{C}P^1(c)$ or $\mathbb{C}H^1(c)$, which are complex lines of $\widetilde{M}_n(c)$. Also, when $\tau = 0$, this curve γ lies on $\mathbb{R}P^2(c/4)$ or $\mathbb{R}H^2(c/4)$, which are real parts of totally geodesic Kähler surfaces $M_2(c)$ in the ambient spaces $\widetilde{M}_n(c)$.

3. Results. The main purpose of this paper is to prove the following:

THEOREM 1. Let M be a connected real hypersurface of a nonflat complex space form $\widetilde{M}_n(c)$ $(n \ge 2)$. Then the following are equivalent.

- (1) M is totally η -umbilic in $M_n(c)$.
- (2) At each x ∈ M there exist orthonormal vectors v₁,..., v_{2n-2} orthogonal to ξ such that all geodesics of M through x in direction v_i + v_j (1 ≤ i ≤ j ≤ 2n 2) are mapped to Frenet curves of proper order 2 in M̃_n(c).
- (3) At each $x \in M$ there exist orthonormal vectors v_1, \ldots, v_{2n-2} orthogonal to ξ such that all geodesics of M through x in direction $v_i + v_j$ $(1 \le i \le j \le 2n 2)$ are mapped to plane curves of positive curvature in $\widetilde{M}_n(c)$.
- (4) At each x ∈ M there exist orthonormal vectors v₁,..., v_{2n-2} orthogonal to ξ such that all geodesics of M through x in direction v_i + v_j (1 ≤ i ≤ j ≤ 2n − 2) are mapped to circles of positive curvature in M_n(c).

Proof. $(1) \Rightarrow (2), (3), (4)$. Let M be a totally η -umbilic real hypersurface in $\widetilde{M}_n(c)$. We take an arbitrary point x of M and any unit vector $v \in T_x(M)$ which is orthogonal to the characteristic vector ξ_x . Let $\gamma = \gamma(s)$ be a geodesic on M with $\gamma(0) = x$ and $\dot{\gamma}(0) = v$. Note that $Av = \alpha v$ (see Theorem A). Then, from (2.2) and Lemma 2(2) we have

$$\nabla_{\dot{\gamma}}\langle\dot{\gamma},\xi\rangle = \langle\dot{\gamma},\nabla_{\dot{\gamma}}\xi\rangle = \langle\dot{\gamma},\phi A\dot{\gamma}\rangle = \langle\dot{\gamma},A\phi\dot{\gamma}\rangle = -\langle\phi A\dot{\gamma},\dot{\gamma}\rangle = 0.$$

This, together with $\langle \dot{\gamma}(0), \xi \rangle = \langle v, \xi \rangle = 0$, shows that $\dot{\gamma}(s)$ is perpendicular to $\xi_{\gamma(s)}$, so that

(3.1)
$$A\dot{\gamma}(s) = \alpha\dot{\gamma}(s)$$
 for each s.

Therefore, we see from (2.1) and (3.1) that

$$\widetilde{\nabla}_{\dot{\gamma}}\dot{\gamma} = \langle A\dot{\gamma},\dot{\gamma}\rangle\mathcal{N} = \alpha\mathcal{N} \quad \text{and} \quad \widetilde{\nabla}_{\dot{\gamma}}\mathcal{N} = -A\dot{\gamma} = -\alpha\dot{\gamma}.$$

Moreover, $\tau_{\gamma} = \langle \dot{\gamma}, JN \rangle = -\langle \dot{\gamma}, \xi \rangle = 0$. Therefore when c > 0 (resp. c < 0) the geodesic γ is a circle of positive curvature $|\alpha|$ on $\mathbb{R}P^2(c/4)$ (resp. $\mathbb{R}H^2(c/4)$).

By the definitions we have the following inclusions: {the plane curves of positive curvature} \subset {the Frenet curves of proper order 2} and {the circles of positive curvature} \subset {the Frenet curves of proper order 2}. Hence in the rest of the proof, it suffices to verify that (2) implies (1).

Let $\gamma_i = \gamma_i(s)$ $(1 \le i \le 2n - 2)$ be geodesics of M with $\gamma_i(0) = x$ and $\dot{\gamma}_i(0) = v_i$. Then by assumption we have

$$\widetilde{\nabla}_{\dot{\gamma}_i}\dot{\gamma}_i = \kappa_i(s)Y_i(s) \text{ and } \widetilde{\nabla}_{\dot{\gamma}_i}Y_i(s) = -\kappa_i(s)\dot{\gamma}_i$$

for some positive smooth functions κ_i . Hence

(3.2)
$$\widetilde{\nabla}_{\dot{\gamma}_i}(\widetilde{\nabla}_{\dot{\gamma}_i}\dot{\gamma}_i) = (\kappa_i(s))'Y_i(s) - (\kappa_i(s))^2\dot{\gamma}_i.$$

From the first equality in (2.1) we note that

(3.3)
$$\kappa_i(s)Y_i(s) = \langle A\dot{\gamma}_i(s), \dot{\gamma}_i(s)\rangle \mathcal{N}_{\gamma_i(s)}$$

On the other hand, from (2.1) we get

(3.4)
$$\widetilde{\nabla}_{\dot{\gamma}_i}(\widetilde{\nabla}_{\dot{\gamma}_i}\dot{\gamma}_i) = (\nabla_{\dot{\gamma}_i}\langle A\dot{\gamma}_i, \dot{\gamma}_i\rangle)\mathcal{N} - \langle A\dot{\gamma}_i, \dot{\gamma}_i\rangle A\dot{\gamma}_i.$$

Comparing the tangential components of (3.2) and (3.4), from (3.3) we obtain $\langle A\dot{\gamma}_i, \dot{\gamma}_i \rangle A\dot{\gamma}_i = \kappa_i^2 \dot{\gamma}_i$, so that at s = 0 we have

(3.5)
$$\langle Av_i, v_i \rangle Av_i = (\kappa_i(0))^2 v_i \text{ for all } i \in \{1, \dots, 2n-2\}.$$

Since $\kappa_i(0) \neq 0$, this tells us that

(3.6)
$$Av_i = \kappa_i(0)v_i$$
 or $Av_i = -\kappa_i(0)v_i$ for all $i \in \{1, \dots, 2n-2\}$.

Let $\gamma_{ij} = \gamma_{ij}(s)$ $(1 \le i < j \le 2n-2)$ be geodesics of M with $\gamma_{ij}(0) = x$ and $\dot{\gamma}_{ij}(0) = (v_i + v_j)/\sqrt{2}$. Then by a similar computation we see that

(3.7)
$$\langle A(v_i + v_j), v_i + v_j \rangle A(v_i + v_j) = 2(\kappa_{ij}(0))^2 (v_i + v_j)$$

for some positive $\kappa_{ij}(0)$. Taking the inner product of (3.7) and the vector $v_i - v_j$, we have

(3.8)
$$\langle Av_i, v_i \rangle = \langle Av_j, v_j \rangle$$
 for any distinct $i, j \in \{1, \dots, 2n-2\}$.

It follows from (3.6) and (3.8) that AX = kX at x for all X orthogonal to ξ_x and for some k. Hence M is totally η -umbilic in $\widetilde{M}_n(c)$, since x is arbitrary.

The proof of Theorem 1 yields the following proposition.

PROPOSITION 1. Let M^n be a hypersurface of a Riemannian manifold \widetilde{M}^{n+1} . Then M^n is totally umbilic but not totally geodesic in \widetilde{M}^{n+1} if and only if at each $x \in M$ there exist orthonormal vectors $v_1, \ldots, v_n \in T_x M$ such that all geodesics of M through x in direction $v_i + v_j$ $(1 \le i \le j \le n)$ are mapped to Frenet curves of proper order 2 in the ambient space \widetilde{M}^{n+1} .

Motivated by Theorem 1, we establish the following:

THEOREM 2. Let M be a real hypersurface of a nonflat complex space form $\widetilde{M}_n(c)$ $(n \geq 2)$. Then the following are equivalent.

- (1) *M* is locally either a totally η -umbilic real hypersurface in $M_n(c)$ or a real hypersurface of type (A₂) with radius $\pi/(2\sqrt{c})$ in $\mathbb{C}P^n(c)$, that is, a tube over a totally geodesic $\mathbb{C}P^k(c)$ $(1 \le k \le n-2)$ of radius $\pi/(2\sqrt{c})$ in $\mathbb{C}P^n(c)$.
- (2) At each $x \in M$ there exist orthonormal vectors v_1, \ldots, v_{2n-2} orthogonal to ξ such that all geodesics of M through x in direction v_i $(1 \leq i \leq 2n-2)$ are mapped to Frenet curves of proper order 2 with the same curvature in $\widetilde{M}_n(c)$.
- (3) At each x ∈ M there exist orthonormal vectors v₁,..., v_{2n-2} orthogonal to ξ such that all geodesics of M through x in direction v_i (1 ≤ i ≤ 2n-2) are mapped to plane curves of the same positive curvature in M̃_n(c).
- (4) At each x ∈ M there exist orthonormal vectors v₁,..., v_{2n-2} orthogonal to ξ such that all geodesics of M through x in direction v_i (1 ≤ i ≤ 2n − 2) are mapped to circles of the same positive curvature in M̃_n(c).

Proof. (1) \Rightarrow (2), (3), (4). We only have to consider a real hypersurface M of type (A₂) with radius $\pi/(2\sqrt{c})$ in $\mathbb{C}P^n(c)$. Then the tangent bundle TM of M is decomposed as (see [NR])

$$TM = V_{\sqrt{c}/2} \oplus V_{-\sqrt{c}/2} \oplus \{\xi\}_{\mathbb{R}}.$$

Here, $A\xi = 0$, $V_{\sqrt{c}/2} = \{X \in TM \mid AX = (\sqrt{c}/2)X\}$, $V_{-\sqrt{c}/2} = \{X \in TM \mid AX = -(\sqrt{c}/2)X\}$, dim $V_{\sqrt{c}/2} = 2k$ and dim $V_{-\sqrt{c}/2} = 2n - 2 - 2k$. We take an orthonormal basis v_1, \ldots, v_{2n-2} orthogonal to ξ_x in such a way that $\{v_1, \ldots, v_{2k}\}$ (resp. $\{v_{2k+1}, \ldots, v_{2n-2}\}$) is an orthonormal basis of $V_{\sqrt{c}/2}$ (resp. $V_{-\sqrt{c}/2}$).

Let $\gamma_i = \gamma_i(s)$ $(1 \le i \le 2k)$ be geodesics of M with $\gamma_i(0) = x$ and $\dot{\gamma}_i(0) = v_i$. Then, as in the proof of Theorem 1, we find that the vector $\dot{\gamma}_i(s)$ is perpendicular to the characteristic vector $\xi_{\gamma_i(s)}$ for every s. This, combined

with Lemma 2(3), yields

$$\nabla_{\dot{\gamma}_i} \left\| A \dot{\gamma}_i - \frac{\sqrt{c}}{2} \dot{\gamma}_i \right\|^2 = 2 \left\langle (\nabla_{\dot{\gamma}_i} A) \dot{\gamma}_i, A \dot{\gamma}_i - \frac{\sqrt{c}}{2} \dot{\gamma}_i \right\rangle$$
$$= 2 \left\langle (\nabla_{\dot{\gamma}_i} A) \dot{\gamma}_i, A \dot{\gamma}_i \right\rangle - \sqrt{c} \left\langle (\nabla_{\dot{\gamma}_i} A) \dot{\gamma}_i, \dot{\gamma}_i \right\rangle = 0.$$

Since $A\dot{\gamma}_i(0) - (\sqrt{c}/2)\dot{\gamma}_i(0) = Av_i - (\sqrt{c}/2)v_i = 0 \ (1 \le i \le 2k)$, we see that

(3.9)
$$A\dot{\gamma}_i(s) = \frac{\sqrt{c}}{2}\dot{\gamma}_i(s) \quad (1 \le i \le 2k) \text{ for every } s$$

It follows from (2.1) and (3.9) that

$$\widetilde{\nabla}_{\dot{\gamma}_i}\dot{\gamma}_i = \langle A\dot{\gamma}_i, \dot{\gamma}_i \rangle = \frac{\sqrt{c}}{2}\mathcal{N} \quad \text{and} \quad \widetilde{\nabla}_{\dot{\gamma}_i}\mathcal{N} = -A\dot{\gamma}_i = -\frac{\sqrt{c}}{2}\dot{\gamma}_i.$$

This, together with $\tau_{\gamma} = \langle \dot{\gamma}_i, JN \rangle = -\langle \dot{\gamma}_i, \xi \rangle = 0$, implies that the curve γ_i is a circle of positive curvature $\sqrt{c/2}$ on $\mathbb{R}P^2(c/4)$.

Similarly we can verify that the geodesics γ_i $(2k+1 \le i \le 2n-2)$ of M with $\gamma_i(0) = x$ and $\dot{\gamma}_i(0) = v_i$ satisfy

$$\widetilde{
abla}_{\dot{\gamma}_i}\dot{\gamma}_i = \langle A\dot{\gamma}_i,\dot{\gamma}_i
angle = rac{\sqrt{c}}{2}\left(-\mathcal{N}
ight) \quad ext{and} \quad \widetilde{
abla}_{\dot{\gamma}_i}(-\mathcal{N}) = A\dot{\gamma}_i = -rac{\sqrt{c}}{2}\dot{\gamma}_i.$$

So we find that these curves are circles of the same curvature $\sqrt{c}/2$ on $\mathbb{R}P^2(c/4)$.

(2), (3), (4) \Rightarrow (1). We only have to prove that (2) implies (1). By the same argument as in the proof of Theorem 1, (3.6) gives

$$(3.10) Av_i = kv_i ext{ or } Av_i = -kv_i ext{ for } 1 \le i \le 2n-2,$$

where k is a positive number. Note that our real hypersurface M is Hopf. Indeed, $\langle A\xi, v_i \rangle = \langle \xi, Av_i \rangle = 0$ for $1 \leq i \leq 2n-2$. Moreover, M has at most three distinct principal curvatures k, -k and $\delta = \langle A\xi, \xi \rangle$ at each of its points. Note that Lemma 1(1) shows that δ is locally constant on M. Moreover, when c > 0, it follows from Lemma 1(2) that

(3.11)
$$k = \frac{\delta k + c/2}{2k - \delta} \quad \text{or} \quad -k = \frac{\delta k + c/2}{2k - \delta}$$

But the latter case does not hold, because c > 0. Hence the real hypersurface M is either of type (A₁), that is, M is totally η -umbilic, or of type (A₂) (see [NR]). But the shape operator of a real hypersurface of type (A₂) with radius $r \ (\neq \pi/(2\sqrt{c}))$ does not satisfy (3.10). In fact, a real hypersurface of type (A₂) of radius $r \ (0 < r < \pi/\sqrt{c})$ has principal curvatures

$$\lambda_1 = \frac{\sqrt{c}}{2} \cot \frac{\sqrt{cr}}{2}, \quad \lambda_2 = -\frac{\sqrt{c}}{2} \tan \frac{\sqrt{cr}}{2}, \quad \delta = \sqrt{c} \cot(\sqrt{cr}).$$

Note that $|\lambda_1| \neq |\lambda_2|$ for each $r \neq \pi/(2\sqrt{c})$. Thus we obtain the desired statement (1) in Theorem 2 when c > 0.

Next, we consider the case of c < 0. Suppose that $2k - \delta \neq 0$ on some open neighborhood \mathcal{U}_x of x. Then (3.11) asserts that k is constant on \mathcal{U}_x . This, together with the continuity of the principal curvature function k on M, implies that if $2k - \delta = 0$ at some $y \in M$, then there exists an open neighborhood \mathcal{U}_y of y such that $2k - \delta$ is identically zero on \mathcal{U}_y . Thus M is a Hopf hypersurface with at most three constant principal curvatures k, -kand $\delta = \langle A\xi, \xi \rangle$. Hence M is either of type (A₀), type (A₁), that is, M is totally η -umbilic, of type (A₂) or of type (B). But the shape operator of no real hypersurface of type (A₂) or of type (B) satisfies (3.10). Indeed, a real hypersurface of type (A₂) of radius r ($0 < r < \infty$) has principal curvatures

$$\lambda_1 = \frac{\sqrt{|c|}}{2} \operatorname{coth} \frac{\sqrt{|c|}r}{2}, \quad \lambda_2 = \frac{\sqrt{|c|}}{2} \tanh \frac{\sqrt{|c|}r}{2}, \quad \delta = \sqrt{|c|} \operatorname{coth}(\sqrt{|c|}r),$$

and a real hypersurface of type B of radius $r \ (0 < r < \infty)$ has principal curvatures

$$\lambda_1 = \frac{\sqrt{|c|}}{2} \coth \frac{\sqrt{|c|}r}{2}, \quad \lambda_2 = \frac{\sqrt{|c|}}{2} \tanh \frac{\sqrt{|c|}r}{2}, \quad \delta = \sqrt{|c|} \tanh(\sqrt{|c|}r). \bullet$$

Remarks.

- (1) In the statements of Theorems 1 and 2, on the real hypersurface M we do not need to take the orthonormal vectors v_1, \ldots, v_{2n-2} orthogonal to ξ_x continuously for all $x \in M$.
- (2) The following theorem is closely related to Theorems 1 and 2.

THEOREM B ([AKM2]). Let M^{2n-1} be a real hypersurface of a nonflat complex space form $\widetilde{M}_n(c)$ $(n \geq 2)$. Then M is locally congruent to either a totally η -umbilic real hypersurface or a ruled real hypersurface if and only if every geodesic γ of M whose initial vector $\dot{\gamma}(0)$ is orthogonal to the characteristic vector $\xi_{\gamma(0)}$ of M is mapped to a plane curve in the ambient space $\widetilde{M}_n(c)$.

Note that in the statement of Theorem B we do *not* suppose that the curvature of the plane curve γ in the ambient space $\widetilde{M}_n(c)$ $(n \ge 2), c \ne 0$, is positive.

We now characterize ruled real hypersurfaces M by using the fact that every geodesic γ of M whose initial vector $\dot{\gamma}(0)$ is orthogonal to the characteristic vector $\xi_{\gamma(0)}$ of M is also a geodesic in the ambient space $\widetilde{M}_n(c)$.

PROPOSITION 2. A real hypersurface M of a nonflat complex space form $\widetilde{M}_n(c)$, $n \geq 2$, is a ruled real hypersurface if and only if at each $x \in M$ there exist orthonormal vectors v_1, \ldots, v_{2n-2} orthogonal to ξ such that all geodesics of M through x in direction $v_i + v_j$ $(1 \leq i \leq j \leq 2n - 2)$ are mapped to geodesics in $\widetilde{M}_n(c)$.

Proof. Suppose that M is ruled. Let γ be a geodesic on M with initial vector $\dot{\gamma}(0)$ perpendicular to $\xi_{\gamma(0)}$ and $M_{n-1}^{(t)}$ (for some t) the integral manifold through the point $x = \gamma(0)$ for the holomorphic distribution T^0M . Since $M_{n-1}^{(t)}$ is totally geodesic in the ambient manifold $\widetilde{M}_n(c)$, we find easily that $M_{n-1}^{(t)}$ is also totally geodesic in the real hypersurface M. As $\dot{\gamma}(0) \in T_x M_{n-1}^{(t)}$, by the uniqueness theorem for geodesics we see that γ lies on $M_{n-1}^{(t)}$, hence is a geodesic as a curve on $\widetilde{M}_n(c)$.

Conversely, it follows from the assumption and the first equality in (2.1) that at each $x \in M$ there exist orthonormal vectors v_1, \ldots, v_{2n-2} orthogonal to ξ such that

$$\langle A(v_i + v_j), v_i + v_j \rangle = 0$$
 for $1 \le i \le j \le 2n - 2$.

This implies Lemma 3(3), so that M is ruled.

4. Problem. In the previous papers [AKM1, CM], the following characterization of all Hopf hypersurfaces with constant principal curvatures in a nonflat complex space form was given:

THEOREM C. A real hypersurface M of a nonflat complex space form $\widetilde{M}_n(c)$ $(n \geq 2)$ is locally congruent to a Hopf hypersurface with constant principal curvatures if and only if at each $x \in M$ there exist orthonormal vectors v_1, \ldots, v_{2n-2} orthogonal to ξ such that all geodesics of M through x in direction v_i $(1 \leq i \leq 2n - 2)$ are mapped to circles of positive curvature in $\widetilde{M}_n(c)$.

To end this paper, motivated by Theorem C we pose the following problem:

PROBLEM. Let M be a real hypersurface of a nonflat complex space form $\widetilde{M}_n(c)$ $(n \geq 2)$. Suppose that at each $x \in M$, there exist orthonormal vectors v_1, \ldots, v_{2n-2} orthogonal to ξ such that all geodesics of M through x in direction v_i $(1 \leq i \leq 2n-2)$ are mapped to Frenet curves of proper order 2 in the ambient space $\widetilde{M}_n(c)$. Is M locally congruent to a Hopf hypersurface with constant principal curvatures?

References

- [AKM1] T. Adachi, M. Kimura and S. Maeda, A characterization of all homogeneous real hypersurfaces in a complex projective space by observing the extrinsic shape of geodesics, Arch. Math. (Basel) 73 (1999), 303-310.
- [AKM2] —, —, —, Real hypersurfaces some of whose geodesics are plane curves in nonflat complex space forms, Tohoku Math. J. 57 (2005), 223–230.

136	T. Itoh and S. Maeda	
[CM]	B. Y. Chen and S. Maeda, <i>Hopf hypersur</i> in complex projective or complex hyperb 133-152.	faces with constant principal curvatures bolic spaces, Tokyo J. Math. 24 (2001),
[FS]	D. Ferus and S. Schirrmacher, Subman geodesics, Math. Ann. 260 (1982), 57-62	nifolds in Euclidean space with simple 2.
[M]	S. Maeda, Real hypersurfaces of complex projective spaces, ibid. 263 (1983), 473–478.	
[MO]	S. Maeda and K. Ogiue, Characterizations of geodesic hyperspheres in a complex projective space by observing the extrinsic shape of geodesics, Math. Z. 225 (1997), 537-542.	
[NR]	R. Niebergall and P. J. Ryan, <i>Real hypersurfaces in complex space forms</i> , in: Tight and Taut Submanifolds, T. E. Cecil and S. S. Chern (eds.), Cambridge Univ. Press, 1998, 233–305.	
[OT]	K. Ogiue and R. Takagi, A submanifold which contains many extrinsic circles, Tsukuba J. Math. 8 (1984), 171–182.	
[S]	K. Sakamoto, Planar geodesic immersions, Tôhoku Math. J. 29 (1977), 25-56.	
Takehiro Itoh Sadahiro Mae		
Faculty of Education		Department of Mathematics
Shinshu University		Shimane University
6-ro, Nishi-Nagano, Nagano 380-8544, Japan Matsue, Shimane, 690-8504		Matsue, Shimane, 690-8504, Japan
E-mail: ta	kehir@gipnc.shinshu-u.ac.jp	E-mail: smaeda@riko.shimane-u.ac.jp

Received March 30, 2006; received in final form July 8, 2006 (7521)