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A Useful Charaterization of Some Real Hypersurfaesin a Non�at Complex Spae FormbyTakehiro ITOH and Sadahiro MAEDAPresented by Czesªaw BESSAGA
Summary. We haraterize totally η-umbili real hypersurfaes in a non�at omplexspae form M̃n(c) (= CP n(c) or CHn(c)) and a real hypersurfae of type (A2) of radius
π/(2

√

c) in CP n(c) by observing the shape of some geodesis on those real hypersurfaesas urves in the ambient manifolds (Theorems 1 and 2).1. Introdution. A urve γ = γ(s) (parametrized by its arlength s)on a Riemannian manifold M is alled a plane urve if it is loally ontainedin some real 2-dimensional totally geodesi submanifold of M .In some ases, it is possible to dedue the geometri properties of a sub-manifold by observing the shape of geodesis on it (for example, see [FS,M, MO, S℄). It is known that a hypersurfae Mn isometrially immersedinto Eulidean spae R
n+1 is loally a standard sphere if and only if everygeodesi of M is mapped to a plane urve of positive urvature in R

n+1.Suh a haraterization is quite natural, but it requires a very large amountof information beause of the ondition on every geodesi of M (f. [OT℄).In this ontext, we are interested in a useful riterion for a hypersurfae
Mn of R

n+1 to be a standard sphere. For example, we an see that a hy-persurfae Mn in R
n+1 is a standard sphere if and only if at eah point xof Mn there exists an orthonormal basis v1, . . . , vn of Tx(Mn) suh that allgeodesis of M through x in diretion vi + vj (1 ≤ i ≤ j ≤ n) are mapped to2000 Mathematis Subjet Classi�ation: Primary 53B25; Seondary 53C40.Key words and phrases: geodesis, plane urves of positive urvature, Frenet urves ofproper order 2, totally η-umbili real hypersurfaes, real hypersurfaes of type A2, non�atomplex spae forms, ruled real hypersurfaes.The �rst author is partially supported by Grant-in-Aid for Sienti� Researh (C)(No 17530653), Ministry of Eduation, Culture, Sports, Siene and Tehnology.[125℄
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plane urves of positive urvature in the ambient spae R

n+1 (see Proposi-tion 1).On the other hand, in a non�at omplex spae form M̃n(c), c 6= 0, whihis either a omplex projetive spae CPn(c) of onstant holomorphi se-tional urvature c > 0 or a omplex hyperboli spae CHn(c) of onstantholomorphi setional urvature c < 0, there does not exist a real hypersur-fae all of whose geodesis are mapped to plane urves in the ambient spae.This omes from the fat that a non�at omplex spae form does not admittotally umbili real hypersurfaes. However, there exist real hypersurfaes
M2n−1's all of whose geodesis orthogonal to the harateristi vetor �eld ξof M are mapped to plane urves in M̃n(c). In fat, every totally η-umbilireal hypersurfae has this property (see Setion 2 for the de�nition of totally
η-umbili real hypersurfaes).The main purpose of this paper is to provide a useful haraterizationof totally η-umbili real hypersurfaes of M̃n(c), c 6= 0, in the above sense(Theorem 1).The authors would like to express their hearty thanks to the referee forhis advie.2. Preliminaries. Let M2n−1 be a real hypersurfae (with unit nor-mal vetor �eld N ) of a non�at n-dimensional omplex spae form M̃n(c)
(= CPn(c) or CHn(c)) of onstant holomorphi setional urvature c. TheRiemannian onnetions ∇̃ of M̃n(c) and ∇ of M are related by
(2.1) ∇̃XY = ∇XY + 〈AX, Y 〉N and ∇̃XN = −AX,for vetor �elds X and Y tangent to M , where 〈 , 〉 denotes the standardRiemannian metri of M̃n(c) and A is the shape operator of M in M̃n(c). Itis known that M admits an almost ontat metri struture (φ, ξ, η, 〈 , 〉)indued from the Kähler struture J of M̃n(c). The harateristi vetor �eld
ξ of M is de�ned as ξ = −JN and this struture satis�es

φ2 = −I + η ⊗ ξ, η(ξ) = 1 and 〈φX, φY 〉 = 〈X, Y 〉 − η(X)η(Y ),where I denotes the identity map of the tangent bundle TM of M . It followsfrom (2.1) that
(2.2) ∇Xξ = φAX.The eigenvalues and eigenvetors of the shape operator A are alled prinipalurvatures and prinipal urvature vetors, respetively. In the following, wedenote by Vλ the eigenspae assoiated to the prinipal urvature λ, that is,
Vλ = {v ∈ TM | Av = λv}.We usually all M a Hopf hypersurfae if the harateristi vetor ξ is aprinipal urvature vetor. The following is useful ([NR℄):
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Lemma 1. For a Hopf hypersurfae M with Aξ = δξ in a non�at omplexspae form M̃n(c) the following hold.(1) δ is loally onstant.(2) If Av = λv for v ⊥ ξ, then (2λ−δ)Aφv = (δλ+c/2)φv. In partiular ,

Aφv =
δλ + c/2

2λ − δ
φv when c > 0.It is known that every tube (of su�iently small onstant radius) aroundeah Kähler submanifold of M̃n(c), c 6= 0, is a Hopf hypersurfae. This fattells us that the notion of Hopf hypersurfae is natural in the theory of realhypersurfaes in a non�at omplex spae form (see [NR℄).In the following, we onsider Hopf hypersurfaes with onstant prinipalurvatures. These hypersurfaes are ompletely lassi�ed ([NR℄). A Hopfhypersurfae in CPn(c) (n ≥ 2) with onstant prinipal urvatures is loallyongruent to one of the following:

(A1) a geodesi sphere of radius r, where 0 < r < π/
√

c;
(A2) a tube of radius r around a totally geodesi CP k(c) (1 ≤ k ≤ n−2),where 0 < r < π/

√
c;

(B) a tube of radius r around a omplex hyperquadri CQn−1, where
0 < r < π/(2

√
c),

(C) a tube of radius r around CP 1(c) × CP (n−1)/2(c), where 0 < r <
π/(2

√
c) and n ≥ 5 is odd;

(D) a tube of radius r around a omplex Grassmannian CG2,5, where
0 < r < π/(2

√
c) and n = 9;

(E) a tube of radius r around the Hermitian symmetri spae
SO(10)/U(5), where 0 < r < π/(2

√
c) and n = 15.These real hypersurfaes are said to be of type (A1), (A2), (B), (C), (D) and(E). Real hypersurfaes of type (A1) or (A2) are jointly alled real hyper-surfaes of type (A). The numbers of distint prinipal urvatures of thesereal hypersurfaes are 2, 3, 3, 5, 5, 5, respetively. One should notie that ageodesi sphere of radius r (0 < r < π/

√
c) in CPn(c) is ongruent to a tubeof radius π/

√
c − r over a totally geodesi hyperplane CPn−1(c).A Hopf hypersurfae M in CHn(c) (n ≥ 2) with onstant prinipal ur-vatures is loally ongruent to one of the following ([NR℄):

(A0) a horosphere in CHn(c);
(A1,0) a geodesi sphere of radius r (0 < r < ∞);
(A1,1) a tube of radius r around a totally geodesi CHn−1(c), where

0 < r < ∞;
(A2) a tube of radius r around a totally geodesi CHk (1 ≤ k ≤ n−2),where 0 < r < ∞;
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(B) a tube of radius r around a totally real totally geodesi RHn(c/4),where 0 < r < ∞.These real hypersurfaes are said to be of type (A0), (A1), (A2) and (B).Here, type (A1) means either (A1,0) or (A1,1), and real hypersurfaes of type(A0), (A1) or (A2) are jointly alled real hypersurfaes of type (A). A realhypersurfae of type (B) with radius r = (1/

√
|c|) ln(2+

√
3) has two distintonstant prinipal urvatures. Exept this real hypersurfae of type (B) withradius r = (1/

√
|c|) ln(2 +

√
3), the numbers of distint prinipal urvaturesof these real hypersurfaes are 2, 2, 2, 3, 3, respetively.A real hypersurfae M of M̃n(c) (n ≥ 2) is alled totally η-umbili if itsshape operator A is of the form A = αI + βη ⊗ ξ for some smooth funtions

α and β on M . This de�nition an be easily rewritten as AX = kX foreah vetor X on M whih is orthogonal to the harateristi vetor ξ of M ,where k is a smooth funtion on M . It is known that every totally η-umbilihypersurfae is a Hopf hypersurfae with onstant prinipal urvatures. Thefollowing lassi�ation theorem of totally η-umbili real hypersurfaes Mshows that these two funtions α and β are automatially onstant on M(see [NR℄):
Theorem A. Let M2n−1 be a totally η-umbili real hypersurfae of anon�at omplex spae form M̃n(c) (n ≥ 2) (with shape operator A = αI +

βη ⊗ ξ). Then M is loally ongruent to one of the following:(P) a geodesi sphere of radius r (0 < r < π/
√

c) in CPn(c), where
α = (

√
c/2) cot(

√
cr/2) and β = −1/α;(H) (i) a horosphere in CHn(c), where α = β =

√
|c|/2;(ii) a geodesi sphere of radius r (0 < r < ∞) in CHn(c), where

α = (
√

|c|/2) coth(
√
|c|r/2) and β = 1/α;(iii) a tube of radius r (0 < r < ∞) around a totally geodesiomplex hyperplane CHn−1(c) in CHn(c), where α = (

√
|c|/2)·

tanh(
√
|c|r/2) and β = 1/α.It is known that every totally η-umbili real hypersurfae M has twodistint onstant prinipal urvatures. For later use we prepare the followinglemma (see [NR℄).Lemma 2. Let M be a real hypersurfae in a non�at omplex spae form

M̃n(c) (n ≥ 2). Then the following are equivalent.(1) M is of type (A).(2) φA = Aφ.(3) 〈(∇XA)Y, Z〉 = (c/4)(−η(Y )〈φX, Z〉 − η(Z)〈φX, Y 〉) for arbitraryvetors X, Y and Z on M .
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Next we reall ruled real hypersurfaes in a non�at omplex spae form,whih are typial examples of non-Hopf hypersurfaes. A real hypersurfae

M is alled a ruled real hypersurfae in a non�at omplex spae form M̃n(c)
(n ≥ 2) if the holomorphi distribution T 0 de�ned by T 0(x) = {X ∈ TxM |
X ⊥ ξ} for x ∈ M is integrable and eah of its integral manifolds is a totallygeodesi omplex hypersurfae Mn−1(c) of M̃n(c). A ruled real hypersurfaeis onstruted in the following manner. Given an arbitrary regular urve
γ de�ned on an interval I in M̃n(c) we have at eah point γ(t) (t ∈ I)a totally geodesi omplex hypersurfae M

(t)
n−1(c) that is orthogonal to theplane spanned by {γ̇(t), Jγ̇(t)}. Then we see that M =

⋃
t∈I M

(t)
n−1(c) is aruled real hypersurfae in M̃n(c). The following gives a haraterization ofruled real hypersurfaes in terms of the shape operator A (see [NR℄).Lemma 3. For a real hypersurfae M in a non�at omplex spae form

M̃n(c) (n ≥ 2), the following onditions are equivalent.(1) M is a ruled real hypersurfae.(2) The shape operator A of M satis�es the following equalities on theopen dense subset M1 = {x ∈ M | ν(x) 6= 0} with a unit vetor �eld
U orthogonal to ξ:

Aξ = µξ + νU, AU = νξ, AX = 0for an arbitrary tangent vetor X orthogonal to ξ and U . Here µ, νare di�erentiable funtions on M de�ned by µ = 〈Aξ, ξ〉 and ν =
‖Aξ − µξ‖.(3) The shape operator A of M satis�es 〈Av, w〉 = 0 for arbitrary tangentvetors v, w ∈ TxM orthogonal to ξx at eah point x ∈ M .We treat ruled real hypersurfaes loally, beause generally suh hyper-surfaes have self-intersetions and singularities. When we study ruled realhypersurfaes, we usually omit points where ξ is prinipal and suppose that

ν does not vanish everywhere, that is, a ruled hypersurfae M is usuallysupposed to have M1 = M .We review the notion of Frenet urves of order 2. A smooth urve γ = γ(s)in a Riemannian manifold M parametrized by its arlength s is alled aFrenet urve of proper order 2 if there exist a �eld of orthonormal frames
{γ̇(s), Ys} along γ and a positive smooth funtion κ(s) satisfying the follow-ing system of ordinary di�erential equations:
(2.3) ∇γ̇ γ̇ = κ(s)Ys and ∇γ̇Ys = −κ(s)γ̇.The funtion κ is alled the urvature of the Frenet urve γ of proper order 2.Here we note that we do not allow the urvature κ(s) to vanish at any point.Therefore urves with in�etion points, suh as y = x3 on a Eulidean xy-plane, are not Frenet urves of proper order 2. A urve is alled a Frenet urve
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of order 2 if it is either a Frenet urve of proper order 2 or a geodesi. Whenthe urvature κ is a onstant funtion along γ, say k, the urve satisfying(2.3) is alled a irle of urvature k on M . Needless to say, a geodesi isregarded as a irle of null urvature.For a Frenet urve γ of proper order 2 in a Kähler manifold Mn (withRiemannian onnetion ∇ and omplex struture J), we de�ne a omplextorsion τγ by τγ = 〈γ̇(s), JYs〉. Of ourse we have −1 ≤ τγ ≤ 1. Note thatthe omplex torsion τγ is automatially onstant. In fat, we an see that

∇γ̇〈γ̇(s), JYs〉 = 〈∇γ̇ γ̇(s), JYs〉 + 〈γ̇(s), J∇γ̇Ys〉
= κ〈Ys, JYs〉 − κ〈γ̇(s), Jγ̇(s)〉 = 0.We know that a Frenet urve γ of proper order 2 in a non�at omplex spaeform M̃n(c) (n ≥ 2) is a plane urve (with positive urvature funtion) ifand only if τγ = ±1, 0. When τγ = ±1, this urve γ lies on CP 1(c) or

CH1(c), whih are omplex lines of M̃n(c). Also, when τ = 0, this urve γlies on RP 2(c/4) or RH2(c/4), whih are real parts of totally geodesi Kählersurfaes M2(c) in the ambient spaes M̃n(c).3. Results. The main purpose of this paper is to prove the following:Theorem 1. Let M be a onneted real hypersurfae of a non�at omplexspae form M̃n(c) (n ≥ 2). Then the following are equivalent.(1) M is totally η-umbili in M̃n(c).(2) At eah x ∈ M there exist orthonormal vetors v1, . . . , v2n−2 orthog-onal to ξ suh that all geodesis of M through x in diretion vi + vj

(1 ≤ i ≤ j ≤ 2n − 2) are mapped to Frenet urves of proper order 2in M̃n(c).(3) At eah x ∈ M there exist orthonormal vetors v1, . . . , v2n−2 or-thogonal to ξ suh that all geodesis of M through x in diretion
vi + vj (1 ≤ i ≤ j ≤ 2n − 2) are mapped to plane urves of positiveurvature in M̃n(c).(4) At eah x ∈ M there exist orthonormal vetors v1, . . . , v2n−2 or-thogonal to ξ suh that all geodesis of M through x in diretion
vi + vj (1 ≤ i ≤ j ≤ 2n − 2) are mapped to irles of positive urva-ture in M̃n(c).Proof. (1)⇒ (2), (3), (4). Let M be a totally η-umbili real hypersurfaein M̃n(c). We take an arbitrary point x of M and any unit vetor v ∈ Tx(M)whih is orthogonal to the harateristi vetor ξx. Let γ = γ(s) be a geodesion M with γ(0) = x and γ̇(0) = v. Note that Av = αv (see Theorem A).Then, from (2.2) and Lemma 2(2) we have
∇γ̇〈γ̇, ξ〉 = 〈γ̇,∇γ̇ξ〉 = 〈γ̇, φAγ̇〉 = 〈γ̇, Aφγ̇〉 = −〈φAγ̇, γ̇〉 = 0.
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This, together with 〈γ̇(0), ξ〉 = 〈v, ξ〉 = 0, shows that γ̇(s) is perpendiularto ξγ(s), so that
(3.1) Aγ̇(s) = αγ̇(s) for eah s.Therefore, we see from (2.1) and (3.1) that

∇̃γ̇ γ̇ = 〈Aγ̇, γ̇〉N = αN and ∇̃γ̇N = −Aγ̇ = −αγ̇.Moreover, τγ = 〈γ̇, JN〉 = −〈γ̇, ξ〉 = 0. Therefore when c > 0 (resp.
c < 0) the geodesi γ is a irle of positive urvature |α| on RP 2(c/4) (resp.
RH2(c/4)).By the de�nitions we have the following inlusions: {the plane urves ofpositive urvature} ⊂ {the Frenet urves of proper order 2} and {the irlesof positive urvature} ⊂ {the Frenet urves of proper order 2}. Hene in therest of the proof, it su�es to verify that (2) implies (1).Let γi = γi(s) (1 ≤ i ≤ 2n − 2) be geodesis of M with γi(0) = x and
γ̇i(0) = vi. Then by assumption we have

∇̃γ̇i
γ̇i = κi(s)Yi(s) and ∇̃γ̇i

Yi(s) = −κi(s)γ̇ifor some positive smooth funtions κi. Hene
(3.2) ∇̃γ̇i

(∇̃γ̇i
γ̇i) = (κi(s))

′Yi(s) − (κi(s))
2γ̇i.From the �rst equality in (2.1) we note that

(3.3) κi(s)Yi(s) = 〈Aγ̇i(s), γ̇i(s)〉Nγi(s).On the other hand, from (2.1) we get
(3.4) ∇̃γ̇i

(∇̃γ̇i
γ̇i) = (∇γ̇i

〈Aγ̇i, γ̇i〉)N − 〈Aγ̇i, γ̇i〉Aγ̇i.Comparing the tangential omponents of (3.2) and (3.4), from (3.3) we obtain
〈Aγ̇i, γ̇i〉Aγ̇i = κ2

i γ̇i, so that at s = 0 we have
(3.5) 〈Avi, vi〉Avi = (κi(0))2vi for all i ∈ {1, . . . , 2n − 2}.Sine κi(0) 6= 0, this tells us that
(3.6) Avi = κi(0)vi or Avi = −κi(0)vi for all i ∈ {1, . . . , 2n − 2}.Let γij = γij(s) (1 ≤ i < j ≤ 2n− 2) be geodesis of M with γij(0) = x and
γ̇ij(0) = (vi + vj)/

√
2. Then by a similar omputation we see that

(3.7) 〈A(vi + vj), vi + vj〉A(vi + vj) = 2(κij(0))2(vi + vj)for some positive κij(0). Taking the inner produt of (3.7) and the vetor
vi − vj , we have
(3.8) 〈Avi, vi〉 = 〈Avj , vj〉 for any distint i, j ∈ {1, . . . , 2n − 2}.It follows from (3.6) and (3.8) that AX = kX at x for all X orthogonal to ξxand for some k. Hene M is totally η-umbili in M̃n(c), sine x is arbitrary.
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The proof of Theorem 1 yields the following proposition.Proposition 1. Let Mn be a hypersurfae of a Riemannian manifold

M̃n+1. Then Mn is totally umbili but not totally geodesi in M̃n+1 if andonly if at eah x ∈ M there exist orthonormal vetors v1, . . . , vn ∈ TxM suhthat all geodesis of M through x in diretion vi + vj (1 ≤ i ≤ j ≤ n) aremapped to Frenet urves of proper order 2 in the ambient spae M̃n+1.Motivated by Theorem 1, we establish the following:Theorem 2. Let M be a real hypersurfae of a non�at omplex spaeform M̃n(c) (n ≥ 2). Then the following are equivalent.(1) M is loally either a totally η-umbili real hypersurfae in M̃n(c) ora real hypersurfae of type (A2) with radius π/(2
√

c) in CPn(c), thatis, a tube over a totally geodesi CP k(c) (1 ≤ k ≤ n − 2) of radius
π/(2

√
c) in CPn(c).(2) At eah x ∈ M there exist orthonormal vetors v1, . . . , v2n−2 ortho-gonal to ξ suh that all geodesis of M through x in diretion vi

(1 ≤ i ≤ 2n − 2) are mapped to Frenet urves of proper order 2 withthe same urvature in M̃n(c).(3) At eah x ∈ M there exist orthonormal vetors v1, . . . , v2n−2 ortho-gonal to ξ suh that all geodesis of M through x in diretion vi (1 ≤
i ≤ 2n−2) are mapped to plane urves of the same positive urvaturein M̃n(c).(4) At eah x ∈ M there exist orthonormal vetors v1, . . . , v2n−2 ortho-gonal to ξ suh that all geodesis of M through x in diretion vi

(1 ≤ i ≤ 2n− 2) are mapped to irles of the same positive urvaturein M̃n(c).Proof. (1) ⇒ (2), (3), (4). We only have to onsider a real hypersurfae
M of type (A2) with radius π/(2

√
c) in CPn(c). Then the tangent bundle

TM of M is deomposed as (see [NR℄)
TM = V√

c/2 ⊕ V−
√

c/2 ⊕ {ξ}R.Here, Aξ = 0, V√
c/2 = {X ∈ TM |AX = (

√
c/2)X}, V−

√
c/2 = {X ∈

TM |AX = −(
√

c/2)X}, dimV√
c/2 = 2k and dimV−

√
c/2 = 2n − 2 − 2k.We take an orthonormal basis v1, . . . , v2n−2 orthogonal to ξx in suh a waythat {v1, . . . , v2k} (resp. {v2k+1, . . . , v2n−2}) is an orthonormal basis of V√

c/2(resp. V−
√

c/2).Let γi = γi(s) (1 ≤ i ≤ 2k) be geodesis of M with γi(0) = x and
γ̇i(0) = vi. Then, as in the proof of Theorem 1, we �nd that the vetor γ̇i(s)is perpendiular to the harateristi vetor ξγi(s) for every s. This, ombined
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with Lemma 2(3), yields

∇γ̇i

∥∥∥∥Aγ̇i −
√

c

2
γ̇i

∥∥∥∥
2

= 2

〈
(∇γ̇i

A)γ̇i, Aγ̇i −
√

c

2
γ̇i

〉

= 2〈(∇γ̇i
A)γ̇i, Aγ̇i〉 −

√
c〈(∇γ̇i

A)γ̇i, γ̇i〉 = 0.Sine Aγ̇i(0) − (
√

c/2)γ̇i(0) = Avi − (
√

c/2)vi = 0 (1 ≤ i ≤ 2k), we see that
(3.9) Aγ̇i(s) =

√
c

2
γ̇i(s) (1 ≤ i ≤ 2k) for every s.It follows from (2.1) and (3.9) that

∇̃γ̇i
γ̇i = 〈Aγ̇i, γ̇i〉 =

√
c

2
N and ∇̃γ̇i

N = −Aγ̇i = −
√

c

2
γ̇i.This, together with τγ = 〈γ̇i, JN〉 = −〈γ̇i, ξ〉 = 0, implies that the urve γiis a irle of positive urvature √

c/2 on RP 2(c/4).Similarly we an verify that the geodesis γi (2k + 1 ≤ i ≤ 2n− 2) of Mwith γi(0) = x and γ̇i(0) = vi satisfy
∇̃γ̇i

γ̇i = 〈Aγ̇i, γ̇i〉 =

√
c

2
(−N ) and ∇̃γ̇i

(−N ) = Aγ̇i = −
√

c

2
γ̇i.So we �nd that these urves are irles of the same urvature √
c/2 on

RP 2(c/4).(2), (3), (4) ⇒ (1). We only have to prove that (2) implies (1). By thesame argument as in the proof of Theorem 1, (3.6) gives
(3.10) Avi = kvi or Avi = −kvi for 1 ≤ i ≤ 2n − 2,where k is a positive number. Note that our real hypersurfae M is Hopf.Indeed, 〈Aξ, vi〉 = 〈ξ, Avi〉 = 0 for 1 ≤ i ≤ 2n − 2. Moreover, M has atmost three distint prinipal urvatures k,−k and δ = 〈Aξ, ξ〉 at eah ofits points. Note that Lemma 1(1) shows that δ is loally onstant on M .Moreover, when c > 0, it follows from Lemma 1(2) that
(3.11) k =

δk + c/2

2k − δ
or −k =

δk + c/2

2k − δ
.But the latter ase does not hold, beause c > 0. Hene the real hypersurfae

M is either of type (A1), that is, M is totally η-umbili, or of type (A2) (see[NR℄). But the shape operator of a real hypersurfae of type (A2) with radius
r ( 6= π/(2

√
c)) does not satisfy (3.10). In fat, a real hypersurfae of type

(A2) of radius r (0 < r < π/
√

c) has prinipal urvatures
λ1 =

√
c

2
cot

√
cr

2
, λ2 = −

√
c

2
tan

√
cr

2
, δ =

√
c cot(

√
cr).Note that |λ1| 6= |λ2| for eah r 6= π/(2

√
c). Thus we obtain the desiredstatement (1) in Theorem 2 when c > 0.
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Next, we onsider the ase of c < 0. Suppose that 2k−δ 6= 0 on some openneighborhood Ux of x. Then (3.11) asserts that k is onstant on Ux. This,together with the ontinuity of the prinipal urvature funtion k on M ,implies that if 2k − δ = 0 at some y ∈ M , then there exists an open neigh-borhood Uy of y suh that 2k − δ is identially zero on Uy. Thus M is aHopf hypersurfae with at most three onstant prinipal urvatures k,−kand δ = 〈Aξ, ξ〉. Hene M is either of type (A0), type (A1), that is, M istotally η-umbili, of type (A2) or of type (B). But the shape operator of noreal hypersurfae of type (A2) or of type (B) satis�es (3.10). Indeed, a realhypersurfae of type (A2) of radius r (0 < r < ∞) has prinipal urvatures

λ1 =

√
|c|
2

coth

√
|c|r
2

, λ2 =

√
|c|
2

tanh

√
|c|r
2

, δ =
√

|c| coth(
√

|c|r),and a real hypersurfae of type B of radius r (0 < r < ∞) has prinipalurvatures
λ1 =

√
|c|
2

coth

√
|c|r
2

, λ2 =

√
|c|
2

tanh

√
|c|r
2

, δ =
√

|c| tanh(
√
|c|r).

Remarks.(1) In the statements of Theorems 1 and 2, on the real hypersurfae M wedo not need to take the orthonormal vetors v1, . . . , v2n−2 orthogonalto ξx ontinuously for all x ∈ M .(2) The following theorem is losely related to Theorems 1 and 2.
Theorem B ([AKM2℄). Let M2n−1 be a real hypersurfae of a non-�at omplex spae form M̃n(c) (n ≥ 2). Then M is loally ongruent toeither a totally η-umbili real hypersurfae or a ruled real hypersurfae ifand only if every geodesi γ of M whose initial vetor γ̇(0) is orthogonal tothe harateristi vetor ξγ(0) of M is mapped to a plane urve in the ambientspae M̃n(c).Note that in the statement of Theorem B we do not suppose that theurvature of the plane urve γ in the ambient spae M̃n(c) (n ≥ 2), c 6= 0,is positive.We now haraterize ruled real hypersurfaes M by using the fat thatevery geodesi γ of M whose initial vetor γ̇(0) is orthogonal to the hara-teristi vetor ξγ(0) of M is also a geodesi in the ambient spae M̃n(c).Proposition 2. A real hypersurfae M of a non�at omplex spae form

M̃n(c), n ≥ 2, is a ruled real hypersurfae if and only if at eah x ∈ Mthere exist orthonormal vetors v1, . . . , v2n−2 orthogonal to ξ suh that allgeodesis of M through x in diretion vi + vj (1 ≤ i ≤ j ≤ 2n − 2) aremapped to geodesis in M̃n(c).
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Proof. Suppose that M is ruled. Let γ be a geodesi on M with initialvetor γ̇(0) perpendiular to ξγ(0) and M

(t)
n−1 (for some t) the integral mani-fold through the point x = γ(0) for the holomorphi distribution T 0M . Sine

M
(t)
n−1 is totally geodesi in the ambient manifold M̃n(c), we �nd easily that

M
(t)
n−1 is also totally geodesi in the real hypersurfae M . As γ̇(0) ∈ TxM

(t)
n−1,by the uniqueness theorem for geodesis we see that γ lies on M

(t)
n−1, heneis a geodesi as a urve on M̃n(c).Conversely, it follows from the assumption and the �rst equality in (2.1)that at eah x ∈ M there exist orthonormal vetors v1, . . . , v2n−2 orthogonalto ξ suh that

〈A(vi + vj), vi + vj〉 = 0 for 1 ≤ i ≤ j ≤ 2n − 2.This implies Lemma 3(3), so that M is ruled.4. Problem. In the previous papers [AKM1, CM℄, the following har-aterization of all Hopf hypersurfaes with onstant prinipal urvatures ina non�at omplex spae form was given:
Theorem C. A real hypersurfae M of a non�at omplex spae form

M̃n(c) (n ≥ 2) is loally ongruent to a Hopf hypersurfae with onstantprinipal urvatures if and only if at eah x ∈ M there exist orthonormalvetors v1, . . . , v2n−2 orthogonal to ξ suh that all geodesis of M through xin diretion vi (1 ≤ i ≤ 2n − 2) are mapped to irles of positive urvaturein M̃n(c).To end this paper, motivated by Theorem C we pose the following prob-lem:
Problem. Let M be a real hypersurfae of a non�at omplex spae form

M̃n(c) (n ≥ 2). Suppose that at eah x ∈ M, there exist orthonormal vetors
v1, . . . , v2n−2 orthogonal to ξ suh that all geodesis of M through x in di-retion vi (1 ≤ i ≤ 2n − 2) are mapped to Frenet urves of proper order 2in the ambient spae M̃n(c). Is M loally ongruent to a Hopf hypersurfaewith onstant prinipal urvatures?

Referenes[AKM1℄ T. Adahi, M. Kimura and S. Maeda, A haraterization of all homogeneousreal hypersurfaes in a omplex projetive spae by observing the extrinsi shapeof geodesis, Arh. Math. (Basel) 73 (1999), 303�310.[AKM2℄ �, �, �, Real hypersurfaes some of whose geodesis are plane urves innon�at omplex spae forms, Tohoku Math. J. 57 (2005), 223�230.



136 T. Itoh and S. Maeda
[CM℄ B. Y. Chen and S. Maeda, Hopf hypersurfaes with onstant prinipal urvaturesin omplex projetive or omplex hyperboli spaes, Tokyo J. Math. 24 (2001),133�152.[FS℄ D. Ferus and S. Shirrmaher, Submanifolds in Eulidean spae with simplegeodesis, Math. Ann. 260 (1982), 57�62.[M℄ S. Maeda, Real hypersurfaes of omplex projetive spaes, ibid. 263 (1983),473�478.[MO℄ S. Maeda and K. Ogiue, Charaterizations of geodesi hyperspheres in a omplexprojetive spae by observing the extrinsi shape of geodesis, Math. Z. 225(1997), 537�542.[NR℄ R. Niebergall and P. J. Ryan, Real hypersurfaes in omplex spae forms, in:Tight and Taut Submanifolds, T. E. Ceil and S. S. Chern (eds.), CambridgeUniv. Press, 1998, 233�305.[OT℄ K. Ogiue and R. Takagi, A submanifold whih ontains many extrinsi irles,Tsukuba J. Math. 8 (1984), 171�182.[S℄ K. Sakamoto, Planar geodesi immersions, T�hoku Math. J. 29 (1977), 25�56.Takehiro ItohFaulty of EduationShinshu University6-ro, Nishi-Nagano, Nagano 380-8544, JapanE-mail: takehir�gipn.shinshu-u.a.jp

Sadahiro MaedaDepartment of MathematisShimane UniversityMatsue, Shimane, 690-8504, JapanE-mail: smaeda�riko.shimane-u.a.jpReeived Marh 30, 2006;reeived in �nal form July 8, 2006 (7521)


