ALGEBRAIC GEOMETRY

The Fedoryuk Condition and the Łojasiewicz Exponent near a Fibre of a Polynomial

by

Tomasz RODAK

Presented by Józef SICIAK

Summary. We give a description of the set of points for which the Fedoryuk condition fails in terms of the Łojasiewicz exponent at infinity near a fibre of a polynomial.

Let $f : \mathbb{C}^n \to \mathbb{C}$ be a polynomial and let grad $f : \mathbb{C}^n \to \mathbb{C}^n$ be its gradient. We take $\lambda \in \mathbb{C}$ and consider the *Fedoryuk condition* (see [3]) at λ :

(1) $\exists_{\delta,\eta, R>0} \forall_{z\in\mathbb{C}^n} \quad (|z|>R \land |f(z)-\lambda|<\delta \Rightarrow |\text{grad } f(z)|>\eta),$

where $|\cdot|$ is the policylindric norm in \mathbb{C}^n . We see that this condition restricts the asymptotic behaviour of grad f(z) as $|z| \to \infty$ and $f(z) \to \lambda$. One can prove that if condition (1) is fulfilled at λ and λ is not a critical value of f then f is topologically trivial over a small neighbourhood of λ in \mathbb{C} (cf. [5], [7]).

We denote by $\widetilde{K}_{\infty}(f)$ the set of $\lambda \in \mathbb{C}$ at which the Fedoryuk condition fails. Recently Spodzieja [9] has shown another application of the Fedoryuk condition. He proved that the set $\widetilde{K}_{\infty}(f)$ is finite if and only if grad f and fare separated at infinity, which means that there exist C, R > 0 and $q \in \mathbb{R}$ such that if $|f(z)| \geq R$ then $|\operatorname{grad} f(z)| \geq C|f(z)|^q$.

Now we define the *Lojasiewicz exponent at infinity* of grad f near a fibre $f^{-1}(\lambda)$, where $\lambda \in \mathbb{C}$, by

(2)
$$\mathcal{L}_{\infty,\lambda}(f) = \inf_{\varphi} \frac{\deg \operatorname{grad} f \circ \varphi}{\deg \varphi}$$

where $\varphi : \{t \in \mathbb{C} : |t| > r\} \to \mathbb{C}^n, r > 0$, is the sum of a Laurent series of

²⁰⁰⁰ Mathematics Subject Classification: 14R25, 58K55, 58K05.

Key words and phrases: Łojasiewicz exponent, Fedoryuk condition.

the form

(3)
$$\varphi(t) = a_p t^p + \dots + a_1 t + \sum_{k \ge 0} a_{-k} t^{-k}, \quad a_i \in \mathbb{C}^n, \ p \in \mathbb{N},$$

such that deg $\varphi > 0$ and deg $(f \circ \varphi - \lambda) < 0$. Here deg $\varphi(t) = \sup\{i : a_i \neq 0\}$ if $\varphi \neq 0$, and deg $0 = -\infty$. We shall call mappings of the form (3) *meromorphic* at infinity.

The exponent $\mathcal{L}_{\infty,\lambda}(f)$ was defined by Chądzyński and Krasiński in [2].

Chądzyński and Krasiński [2] for n = 2 and Skalski [8] for arbitrary n proved that this definition is equivalent to the following definition introduced by Ha [4]:

$$\mathcal{L}_{\infty,\lambda}(f) = \lim_{\delta \to 0^+} \mathcal{L}_{\infty}(\operatorname{grad} f | f^{-1}(D_{\delta})),$$

where $D_{\delta} = \{\xi \in \mathbb{C} : |\xi - \lambda| < \delta\}$ and $\mathcal{L}_{\infty}(\operatorname{grad} f | f^{-1}(D_{\delta}))$ is the Łojasiewicz exponent at infinity of the mapping grad f on the set $f^{-1}(D_{\delta})$.

Our aim is to prove the following characterization of the set $\widetilde{K}_{\infty}(f)$ in terms of the Lojasiewicz exponent near fibre.

THEOREM 1. Let $f : \mathbb{C}^n \to \mathbb{C}$ be a polynomial. Then $\widetilde{K}_{\infty}(f) = \{\lambda \in \mathbb{C} : \mathcal{L}_{\infty,\lambda}(f) < 0\}.$

The key in the proof is the Curve Selection Lemma at infinity. We begin with a definition. A mapping $\varphi : (r, +\infty) \to \mathbb{R}^n, r > 0$, is called *meromorphic* $at +\infty$ if φ is the sum of a Laurent series of the form (3), where $a_i \in \mathbb{R}^n$. We define deg φ as above.

LEMMA 1 (Curve Selection Lemma at infinity; [6, Lemma 2], [1, Lemma 1]). If $X \subset \mathbb{R}^n$ is an unbounded semialgebraic set, then there exists a curve $\varphi : (r, +\infty) \to X$ meromorphic at $+\infty$ such that $\deg \varphi > 0$.

Proof of Theorem 1. The inclusion \supset is clear.

Let $B = \{z \in \mathbb{C}^n : ||z|| < 1\}$, where $||\cdot||$ denotes the Euclidan norm in \mathbb{C}^n . The mapping

$$B \ni z \mapsto H(z) = \frac{z}{1 - \|z\|^2}$$

is a rational homeomorphism of B onto \mathbb{C}^n . Take any $\lambda \in \widetilde{K}_{\infty}(f)$. By the definition of H the set

$$\begin{aligned} X &= \{(z,R) \in B \times \mathbb{R} : \|H(z)\| > R \wedge |f(H(z)) - \lambda| < 1/R \\ & \wedge \|\text{grad } f(H(z))\| < 1/R \} \end{aligned}$$

is unbounded and semialgebraic. Hence, by the Curve Selection Lemma at infinity there exists a mapping $\tilde{\psi} = (\tilde{\varphi}, \varphi_{2n+1}) : (r, +\infty) \to X \subset \mathbb{C}^n \times \mathbb{R}$ meromorphic at $+\infty$ such that deg $\tilde{\psi} > 0$. Since $\|\tilde{\varphi}(t)\| < 1$ for $t \in (r, +\infty)$, we have deg $\varphi_{2n+1} > 0$. Put $\varphi = H \circ \tilde{\varphi}$. Since H is rational, φ is meromorphic at $+\infty$. Moreover for any $t \in (r, +\infty)$ we have

$$\begin{split} \|\varphi(t)\| &> |\varphi_{2n+1}|, \\ |f(\varphi(t)) - \lambda| \cdot |\varphi_{2n+1}(t)| < 1, \\ \|\operatorname{grad} f(\varphi(t))\| \cdot |\varphi_{2n+1}(t)| < 1 \end{split}$$

From the above inequalities we have

$$\begin{split} &\deg\varphi\geq \deg\varphi_{2n+1}>0,\\ &\deg(f\circ\varphi-\lambda)+\deg\varphi_{2n+1}\leq 0,\\ &\deg\operatorname{grad} f\circ\varphi+\deg\varphi_{2n+1}\leq 0. \end{split}$$

On the other hand we can extend φ to a complex mapping meromorphic at infinity. Thus, by (2),

$$\mathcal{L}_{\infty,\lambda}(f) \le \frac{\deg \operatorname{grad} f \circ \varphi}{\deg \varphi} < 0.$$

This ends the proof. \blacksquare

References

- J. Chądzyński and T. Krasiński, A set on which the Lojasiewicz exponent at infinity is attained, Ann. Polon. Math. 67 (1997), 191–197.
- [2] —, —, The gradient of a polynomial at infinity, Kodai Math. J. 26 (2003), 317–339.
- [3] M. V. Fedoryuk, The asymptotics of the Fourier transform of the exponential function of a polynomial, Dokl. Akad. Nauk SSSR 227 (1976), 580–583 (in Russian); English transl.: Soviet Math. Dokl. (2) 17 (1976), 486–490.
- [4] H. V. Ha, Nombres de Lojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris Sér. I 311 (1990), 429–432.
- [5] A. Némethi and A. Zaharia, On the bifurcation set of a polynomial, Publ. RIMS Kyoto Univ. 26 (1990), 681–689.
- [6] —, —, Milnor fibration at infinity, Indag. Math. 3 (1992), 323–335.
- [7] A. Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369–384.
- [8] G. Skalski, On the Lojasiewicz exponent near the fibre of a polynomial, this issue, 231–236.
- S. Spodzieja, Lojasiewicz inequalities at infinity for the gradient of a polynomial, Bull. Polish Acad. Sci. Math. 50 (2002), 273–281.

Tomasz Rodak Faculty of Mathematics Łódź University S. Banacha 22 90-238 Łódź, Poland E-mail: rodakt@imul.uni.lodz.pl