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Summary. The equivalence of the definitions of the Łojasiewicz exponent introduced
by Ha and by Chądzyński and Krasiński is proved. Moreover we show that if the above
exponents are less than −1 then they are attained at a curve meromorphic at infinity.

1. Introduction. Let F : Cn → Cm be a polynomial mapping and let
S ⊂ Cn be an unbounded set. Put

N(F |S) := {ν ∈ R : ∃A,D>0 ∀z∈S (|z| ≥ D ⇒ |F (z)| ≥ A|z|ν)},
where | · | is an arbitrary norm in Cn. By the Łojasiewicz exponent at infinity
of F |S we mean L∞(F |S) := supN(F |S).

Let f : Cn → C be a polynomial in variables z1, . . . , zn, where n ≥ 2, and
∇f = (∂f/∂z1, . . . , ∂f/∂zn) : Cn → Cn be its gradient. Let λ ∈ C. Ha [5]
introduces the following notion of Łojasiewicz exponent:

L̃∞,λ(f) := lim
δ→0+

L∞(∇f |Sλ,δ),(1)

where Sλ,δ = {z ∈ Cn : |f(z)− λ| < δ}. He shows that in case n = 2, λ is a
bifurcation point at infinity of f if and only if L̃∞,λ(f) < −1.

Chądzyński and Krasiński [2] introduce another notion of Łojasiewicz
exponent:

L∞,λ(f) := inf
Φ

deg∇f ◦ Φ
degΦ

,(2)

where Φ is a meromorphic mapping defined in a neighbourhood of ∞ in C,
degΦ > 0 and deg(f − λ) ◦Φ < 0. They prove the equivalence of definitions

2000 Mathematics Subject Classification: 14E05, 14R25.
Key words and phrases: polynomial, Łojasiewicz exponent.

[231]



232 G. Skalski

(1) and (2) in case n = 2. In this paper we show that definitions (1) and
(2) are equivalent for any n ≥ 2 and λ ∈ C (Theorem 2.1 in Section 2). The
essence is the Curve Selection Lemma.

Moreover Chądzyński and Krasiński proved that in case n = 2 if deg f =
degy f and L∞,λ(f) < −1 then the exponent (2) is attained at a curve
Ψ meromorphic at infinity such that degΨ > 0, deg(f − λ) ◦ Ψ < 0 and
f ′y ◦Ψ = 0 (see [2, Theorem 4.10 and Corollary 3.5]). In this article we prove
that in case n > 2 if L∞,λ(f) < −1 then the exponent (2) is also attained at
a curve meromorphic at infinity (Theorem 3.1). From Theorem 3.1 we easily
deduce that L∞,λ(f) ∈ Q ∪ {−∞} provided L∞,λ(f) < −1 (Corollary 3.3).
We do not know if the assertion of Theorem 3.1 remains true without the
additional assumption that L∞,λ(f) < −1.

2. Equivalence of two definitions. We begin with some definitions.
A real curve Φ : (R,+∞)→ RN , R ∈ R, is called meromorphic at +∞ if Φ
is the sum of a Laurent series of the form

Φ(t) = apt
p + ap−1t

p−1 + · · · , ai ∈ RN , p ∈ Z.
If Φ 6= 0 and ap 6= 0 then p is called the degree of Φ and denoted by degΦ.
If Φ = 0 then we put additionally degΦ = −∞.

As in the real case, a complex curve Ψ : {t ∈ C : |t| > R} → CN is called
meromorphic at infinity if Ψ is the sum of a Laurent series of the form

Ψ(t) = apt
p + ap−1t

p−1 + · · · , ai ∈ CN , p ∈ Z.
If Ψ 6= 0 and ap 6= 0 then p is called the degree of Ψ and denoted by degΨ.
If Ψ = 0 then we put additionally degΨ = −∞.

The first main result of the paper is the following

Theorem 2.1. Let f : Cn → C be a polynomial , n ≥ 2 and λ ∈ C. Then

L̃∞,λ(f) = L∞,λ(f).(3)

Proof. Since L̃∞,λ(f) does not depend on the choice of the norm in Cn,
we will use the Euclidean norm ‖ · ‖.

The inequality L̃∞,λ(f) ≤ L∞,λ(f) follows directly from definitions (1)
and (2). Indeed, it suffices to show that for every δ > 0 we have

L∞,λ(f) ≥ L∞(∇f |Sλ,δ).(4)

To prove (4) it suffices to show that for every ν ∈ N(∇f |Sλ,δ),
L∞,λ(f) ≥ ν.(5)

Let ν ∈ N(∇f |Sλ,δ). Then there exist A,D > 0 such that for z ∈ Sλ,δ we
have

‖z‖ ≥ D ⇒ ‖∇f(z)‖ ≥ A‖z‖ν .(6)



Łojasiewicz Exponent 233

Take any complex curve Φ meromorphic at infinity and such that degΦ > 0
and deg(f − λ) ◦ Φ < 0. We must show that

deg∇f ◦ Φ
degΦ

≥ ν.(7)

Since degΦ > 0 and deg(f − λ) ◦ Φ < 0, there exists R > 0 such that for
every t ∈ C with |t| > R we have Φ(t) ∈ Sλ,δ and |Φ(t)| > D. Then (6)
implies that for |t| > R we have

‖∇f ◦ Φ(t)‖ ≥ A‖Φ(t)‖ν .
Thus, deg∇f ◦ Φ ≥ ν degΦ, and since degΦ > 0, we get (7). Because of
arbitrariness of Φ, ν and δ we get (5), (4) and the “≤” inequality of (3).

Now it suffices to prove

L̃∞,λ(f) ≥ L∞,λ(f).(8)

Assume to the contrary that (8) does not hold. Hence there exists a rational
number α such that

L̃∞,λ(f) < α < L∞,λ(f).(9)

Since the mapping (0,+∞) 3 δ 7→ L∞(∇f |Sλ,δ) ∈ R is nonincreasing, for
every δ > 0 we have

L∞(∇f |Sλ,δ) < α.

Hence, α 6∈ N(∇f |Sλ,δ) for every δ > 0. Thus, for every δ > 0 there is
z0 ∈ Cn such that

|f(z0)− λ| < δ ∧ ‖z0‖ > 1/δ ∧ ‖z0‖α > ‖∇f(z0)‖.(10)

Let B = {z ∈ Cn : ‖z‖ < 1}. The mapping H : B 3 z 7→ z/(1− ‖z‖2) ∈ Cn
is a homeomorphism and is rational. Hence, the set

X = {(z, δ) ∈ B × (0,+∞) : |f ◦H(z)− λ|2 < δ2 ∧ ‖H(z)‖2 > 1/δ2

∧‖H(z)‖2α > ‖∇f ◦H(z)‖2}
is semialgebraic. (10) implies that there is a sequence of points (wk, δk) ∈ X
convergent to a point (w0, 0) such that w0 ∈ ∂B. Therefore by the Curve
Selection Lemma (cf. [6, Lemma 3.1]) we easily see that there exists a real
curve Ψ̃ = (Φ̃, ϕ2n+1) : (R,+∞) → X, meromorphic at infinity, such that
limt→∞ Ψ̃(t) = (w0, 0). Hence, degϕ2n+1 < 0. Putting Φ = H ◦ Φ̃, we obtain
the real curve Ψ = (Φ,ϕ2n+1) : (R,+∞)→ Cn ×R meromorphic at infinity
and such that limt→∞ ϕ2n+1(t) = 0. By definition of X, if t > R, we have

(11) |f ◦ Φ(t)− λ| < ϕ2n+1(t) ∧ ‖Φ(t)‖ > 1
ϕ2n+1(t)
∧‖Φ(t)‖α > ‖∇f ◦ Φ(t)‖.

Thus, degΦ > 0 and deg(f −λ) ◦Φ ≤ degϕ2n+1 < 0. By the last inequality,
deg∇f ◦ Φ ≤ α degΦ. Extending Φ to the complex domain we obtain a
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complex meromorphic curve at infinity. From the above we get

deg∇f ◦ Φ
degΦ

≤ α,

which contradicts the second inequality in (9). This ends the proof.

3. Attaining the Łojasiewicz exponent. Let us turn to the next
main result.

Theorem 3.1. Let f : Cn → C be a polynomial , n ≥ 2, λ ∈ C. If
L∞,λ(f) < −1, then there exists a complex curve Φ meromorphic at infinity
such that degΦ > 0, deg(f − λ) ◦ Φ < 0 and

L∞,λ(f) =
deg∇f ◦ Φ

degΦ
.

Before we pass to the proof we quote two propositions.

Proposition 3.2 (Łojasiewicz inequality, [4, Theorem 2.1]). Let f : Cn
→ C be a polynomial. Then there exist C, ε > 0 such that

|f(z)| ≤ ε ⇒ |z| |∇f(z)| ≥ C|f(z)|.
Analogously to Proposition 1 in [3], by using the Tarski–Seidenberg The-

orem (cf. [1, Remark 3.8]) we prove the following

Proposition 3.3. Let F : Cn → Cm be a polynomial mapping and let
S ⊂ Cn be an unbounded closed semialgebraic set. Then there exists a real
curve Φ : (R,+∞)→ S meromorphic at infinity such that degΦ > 0 and

L∞(F |S) =
degF ◦ Φ

degΦ
.

Moreover if L∞(F |S) 6= −∞ then L∞(F |S) ∈ N(F |S).

Proof of Theorem 3.1. In the proof we will use the Euclidean norm. We
can assume that λ = 0. From Theorem 3.2 we conclude that there exist
ε > 0 and C > 0 such that for every z ∈ Cn we have the implication

|f(z)| ≤ ε ⇒ ‖z‖ · ‖∇f(z)‖ ≥ C · |f(z)|.(1)

Let Y = {w ∈ Cn : C‖w‖−1−r|f(w)| ≤ 1}, where r is a rational number
such that

L∞,0(f) < r < −1.(2)

Obviously Y is a closed semialgebraic set.
Let M∞ be the set of all complex meromorphic curves at infinity and

define

A = {Ψ ∈M∞ : degΨ > 0 ∧ deg f ◦ Ψ < 0 ∧ deg∇f ◦ Ψ/degΨ < r}.
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The definition of L∞,0(f) and (2) imply that A 6= ∅, and moreover

L∞,0(f) = inf
Ψ∈A

deg∇f ◦ Ψ
degΨ

.(3)

Observe that for every Ψ ∈ A,

∃R>0 ∀t∈C (|t| > R⇒ Ψ(t) ∈ Y ).(4)

Indeed, take any Ψ ∈ A. Then by the definition of A there exists R > 0 such
that for every t ∈ C if |t| > R then

|f ◦ Ψ(t)| ≤ ε ∧ ‖Ψ(t)‖−r‖∇f ◦ Ψ(t)‖ ≤ 1.

Hence (1) implies that for every |t| > R,

C‖Ψ(t)‖−1−r|f ◦ Ψ(t)| ≤ ‖Ψ(t)‖−r‖∇f ◦ Ψ(t)‖ ≤ 1.

From this and the definition of Y we have Ψ(t) ∈ Y for |t| > R, and so (4)
holds. Hence the set Y is nonempty and unbounded.

We will show that
L∞(∇f |Y ) ≤ L∞,0(f).(5)

By (3) it suffices to show

L∞(∇f |Y ) ≤ inf
Ψ∈A

deg∇f ◦ Ψ
degΨ

.(6)

If L∞(∇f |Y ) = −∞, then (6) is obvious. Assume that L∞(∇f |Y ) 6= −∞.
Then by Proposition 3.3 there exist A,D > 0 such that for every z ∈ Y ,

‖z‖ ≥ D ⇒ ‖∇f(z)‖ ≥ A‖z‖L∞(∇f |Y ).

Therefore for every Ψ ∈ A, by (4) we have deg∇f ◦Ψ ≥ degΨ · L∞(∇f |Y ),
which gives (6). So (5) holds.

By Proposition 3.3 there exists a real curve Φ : (R′,+∞) → Y mero-
morphic at infinity such that degΦ > 0 and

L∞(∇f |Y ) =
deg∇f ◦ Φ

degΦ
.(7)

Extending Φ to the complex domain we get (8). Moreover deg f ◦ Φ < 0 by
definition of Y . Hence from (5) and (7) we get the assertion.

Theorem 3.1 immediately yields

Corollary 3.4. Let f : Cn → C be a polynomial , n ≥ 2, λ ∈ C. If
L∞,λ(f) < −1 then L∞,λ(f) ∈ Q ∪ {−∞}.
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