ALGEBRAIC GEOMETRY

On the Łojasiewicz Exponent near the Fibre of a Polynomial

by

Grzegorz SKALSKI

Presented by Józef SICIAK

Summary. The equivalence of the definitions of the Łojasiewicz exponent introduced by Ha and by Chądzyński and Krasiński is proved. Moreover we show that if the above exponents are less than -1 then they are attained at a curve meromorphic at infinity.

1. Introduction. Let $F : \mathbb{C}^n \to \mathbb{C}^m$ be a polynomial mapping and let $S \subset \mathbb{C}^n$ be an unbounded set. Put

$$N(F|S) := \{ \nu \in \mathbb{R} : \exists_{A,D>0} \ \forall_{z \in S} \ (|z| \ge D \Rightarrow |F(z)| \ge A|z|^{\nu}) \},\$$

where $|\cdot|$ is an arbitrary norm in \mathbb{C}^n . By the *Lojasiewicz exponent at infinity* of F|S we mean $\mathcal{L}_{\infty}(F|S) := \sup N(F|S)$.

Let $f : \mathbb{C}^n \to \mathbb{C}$ be a polynomial in variables z_1, \ldots, z_n , where $n \ge 2$, and $\nabla f = (\partial f / \partial z_1, \ldots, \partial f / \partial z_n) : \mathbb{C}^n \to \mathbb{C}^n$ be its gradient. Let $\lambda \in \mathbb{C}$. Ha [5] introduces the following notion of Lojasiewicz exponent:

(1)
$$\widetilde{\mathcal{L}}_{\infty,\lambda}(f) := \lim_{\delta \to 0^+} \mathcal{L}_{\infty}(\nabla f | S_{\lambda,\delta}),$$

where $S_{\lambda,\delta} = \{z \in \mathbb{C}^n : |f(z) - \lambda| < \delta\}$. He shows that in case $n = 2, \lambda$ is a bifurcation point at infinity of f if and only if $\widetilde{\mathcal{L}}_{\infty,\lambda}(f) < -1$.

Chądzyński and Krasiński [2] introduce another notion of Łojasiewicz exponent:

(2)
$$\mathcal{L}_{\infty,\lambda}(f) := \inf_{\Phi} \frac{\deg \nabla f \circ \Phi}{\deg \Phi},$$

where Φ is a meromorphic mapping defined in a neighbourhood of ∞ in $\overline{\mathbb{C}}$, deg $\Phi > 0$ and deg $(f - \lambda) \circ \Phi < 0$. They prove the equivalence of definitions

²⁰⁰⁰ Mathematics Subject Classification: 14E05, 14R25.

Key words and phrases: polynomial, Łojasiewicz exponent.

(1) and (2) in case n = 2. In this paper we show that definitions (1) and (2) are equivalent for any $n \ge 2$ and $\lambda \in \mathbb{C}$ (Theorem 2.1 in Section 2). The essence is the Curve Selection Lemma.

Moreover Chądzyński and Krasiński proved that in case n = 2 if deg $f = \deg_y f$ and $\mathcal{L}_{\infty,\lambda}(f) < -1$ then the exponent (2) is attained at a curve Ψ meromorphic at infinity such that $\deg \Psi > 0$, $\deg(f - \lambda) \circ \Psi < 0$ and $f'_y \circ \Psi = 0$ (see [2, Theorem 4.10 and Corollary 3.5]). In this article we prove that in case n > 2 if $\mathcal{L}_{\infty,\lambda}(f) < -1$ then the exponent (2) is also attained at a curve meromorphic at infinity (Theorem 3.1). From Theorem 3.1 we easily deduce that $\mathcal{L}_{\infty,\lambda}(f) \in \mathbb{Q} \cup \{-\infty\}$ provided $\mathcal{L}_{\infty,\lambda}(f) < -1$ (Corollary 3.3). We do not know if the assertion of Theorem 3.1 remains true without the additional assumption that $\mathcal{L}_{\infty,\lambda}(f) < -1$.

2. Equivalence of two definitions. We begin with some definitions. A real curve $\Phi : (R, +\infty) \to \mathbb{R}^N$, $R \in \mathbb{R}$, is called *meromorphic* at $+\infty$ if Φ is the sum of a Laurent series of the form

$$\Phi(t) = a_p t^p + a_{p-1} t^{p-1} + \cdots, \quad a_i \in \mathbb{R}^N, \ p \in \mathbb{Z}.$$

If $\Phi \neq 0$ and $a_p \neq 0$ then p is called the *degree* of Φ and denoted by deg Φ . If $\Phi = 0$ then we put additionally deg $\Phi = -\infty$.

As in the real case, a complex curve $\Psi : \{t \in \mathbb{C} : |t| > R\} \to \mathbb{C}^N$ is called *meromorphic at infinity* if Ψ is the sum of a Laurent series of the form

$$\Psi(t) = a_p t^p + a_{p-1} t^{p-1} + \cdots, \quad a_i \in \mathbb{C}^N, \ p \in \mathbb{Z}.$$

If $\Psi \neq 0$ and $a_p \neq 0$ then p is called the degree of Ψ and denoted by deg Ψ . If $\Psi = 0$ then we put additionally deg $\Psi = -\infty$.

The first main result of the paper is the following

THEOREM 2.1. Let
$$f : \mathbb{C}^n \to \mathbb{C}$$
 be a polynomial, $n \ge 2$ and $\lambda \in \mathbb{C}$. Then
(3) $\widetilde{\mathcal{L}}_{\infty,\lambda}(f) = \mathcal{L}_{\infty,\lambda}(f).$

Proof. Since $\widetilde{\mathcal{L}}_{\infty,\lambda}(f)$ does not depend on the choice of the norm in \mathbb{C}^n , we will use the Euclidean norm $\|\cdot\|$.

The inequality $\widetilde{\mathcal{L}}_{\infty,\lambda}(f) \leq \mathcal{L}_{\infty,\lambda}(f)$ follows directly from definitions (1) and (2). Indeed, it suffices to show that for every $\delta > 0$ we have

(4)
$$\mathcal{L}_{\infty,\lambda}(f) \ge \mathcal{L}_{\infty}(\nabla f | S_{\lambda,\delta}).$$

To prove (4) it suffices to show that for every $\nu \in N(\nabla f | S_{\lambda,\delta})$,

(5)
$$\mathcal{L}_{\infty,\lambda}(f) \ge \nu.$$

Let $\nu \in N(\nabla f | S_{\lambda,\delta})$. Then there exist A, D > 0 such that for $z \in S_{\lambda,\delta}$ we have

(6)
$$||z|| \ge D \implies ||\nabla f(z)|| \ge A ||z||^{\nu}.$$

Take any complex curve Φ meromorphic at infinity and such that deg $\Phi > 0$ and deg $(f - \lambda) \circ \Phi < 0$. We must show that

(7)
$$\frac{\operatorname{deg} \nabla f \circ \Phi}{\operatorname{deg} \Phi} \ge \nu.$$

Since deg $\Phi > 0$ and deg $(f - \lambda) \circ \Phi < 0$, there exists R > 0 such that for every $t \in \mathbb{C}$ with |t| > R we have $\Phi(t) \in S_{\lambda,\delta}$ and $|\Phi(t)| > D$. Then (6) implies that for |t| > R we have

$$\|\nabla f \circ \Phi(t)\| \ge A \|\Phi(t)\|^{\nu}.$$

Thus, deg $\nabla f \circ \Phi \geq \nu \deg \Phi$, and since deg $\Phi > 0$, we get (7). Because of arbitrariness of Φ, ν and δ we get (5), (4) and the " \leq " inequality of (3).

Now it suffices to prove

(8)
$$\widetilde{\mathcal{L}}_{\infty,\lambda}(f) \ge \mathcal{L}_{\infty,\lambda}(f).$$

Assume to the contrary that (8) does not hold. Hence there exists a rational number α such that

(9)
$$\widehat{\mathcal{L}}_{\infty,\lambda}(f) < \alpha < \mathcal{L}_{\infty,\lambda}(f).$$

Since the mapping $(0, +\infty) \ni \delta \mapsto \mathcal{L}_{\infty}(\nabla f | S_{\lambda,\delta}) \in \mathbb{R}$ is nonincreasing, for every $\delta > 0$ we have

 $\mathcal{L}_{\infty}(\nabla f|S_{\lambda,\delta}) < \alpha.$

Hence, $\alpha \notin N(\nabla f | S_{\lambda,\delta})$ for every $\delta > 0$. Thus, for every $\delta > 0$ there is $z^0 \in \mathbb{C}^n$ such that

(10)
$$|f(z^0) - \lambda| < \delta \land ||z^0|| > 1/\delta \land ||z^0||^{\alpha} > ||\nabla f(z^0)||.$$

Let $B = \{z \in \mathbb{C}^n : ||z|| < 1\}$. The mapping $H : B \ni z \mapsto z/(1 - ||z||^2) \in \mathbb{C}^n$ is a homeomorphism and is rational. Hence, the set

$$X = \{(z,\delta) \in B \times (0,+\infty) : |f \circ H(z) - \lambda|^2 < \delta^2 \wedge ||H(z)||^2 > 1/\delta^2 \\ \wedge ||H(z)||^{2\alpha} > ||\nabla f \circ H(z)||^2 \}$$

is semialgebraic. (10) implies that there is a sequence of points $(w^k, \delta_k) \in X$ convergent to a point $(w^0, 0)$ such that $w^0 \in \partial B$. Therefore by the Curve Selection Lemma (cf. [6, Lemma 3.1]) we easily see that there exists a real curve $\widetilde{\Psi} = (\widetilde{\Phi}, \varphi_{2n+1}) : (R, +\infty) \to X$, meromorphic at infinity, such that $\lim_{t\to\infty} \widetilde{\Psi}(t) = (w^0, 0)$. Hence, deg $\varphi_{2n+1} < 0$. Putting $\Phi = H \circ \widetilde{\Phi}$, we obtain the real curve $\Psi = (\Phi, \varphi_{2n+1}) : (R, +\infty) \to \mathbb{C}^n \times \mathbb{R}$ meromorphic at infinity and such that $\lim_{t\to\infty} \varphi_{2n+1}(t) = 0$. By definition of X, if t > R, we have

(11)
$$|f \circ \Phi(t) - \lambda| < \varphi_{2n+1}(t) \wedge ||\Phi(t)|| > \frac{1}{\varphi_{2n+1}(t)} \\ \wedge ||\Phi(t)||^{\alpha} > ||\nabla f \circ \Phi(t)||.$$

Thus, $\deg \Phi > 0$ and $\deg(f - \lambda) \circ \Phi \leq \deg \varphi_{2n+1} < 0$. By the last inequality, $\deg \nabla f \circ \Phi \leq \alpha \deg \Phi$. Extending Φ to the complex domain we obtain a

complex meromorphic curve at infinity. From the above we get

$$\frac{\operatorname{deg} \nabla f \circ \Phi}{\operatorname{deg} \Phi} \le \alpha,$$

which contradicts the second inequality in (9). This ends the proof.

3. Attaining the Łojasiewicz exponent. Let us turn to the next main result.

THEOREM 3.1. Let $f : \mathbb{C}^n \to \mathbb{C}$ be a polynomial, $n \geq 2, \lambda \in \mathbb{C}$. If $\mathcal{L}_{\infty,\lambda}(f) < -1$, then there exists a complex curve Φ meromorphic at infinity such that $\deg \Phi > 0$, $\deg(f - \lambda) \circ \Phi < 0$ and

$$\mathcal{L}_{\infty,\lambda}(f) = \frac{\operatorname{deg} \nabla f \circ \Phi}{\operatorname{deg} \Phi}.$$

Before we pass to the proof we quote two propositions.

PROPOSITION 3.2 (Łojasiewicz inequality, [4, Theorem 2.1]). Let $f : \mathbb{C}^n \to \mathbb{C}$ be a polynomial. Then there exist $C, \varepsilon > 0$ such that

$$|f(z)| \le \varepsilon \implies |z| |\nabla f(z)| \ge C |f(z)|.$$

Analogously to Proposition 1 in [3], by using the Tarski–Seidenberg Theorem (cf. [1, Remark 3.8]) we prove the following

PROPOSITION 3.3. Let $F : \mathbb{C}^n \to \mathbb{C}^m$ be a polynomial mapping and let $S \subset \mathbb{C}^n$ be an unbounded closed semialgebraic set. Then there exists a real curve $\Phi : (R, +\infty) \to S$ meromorphic at infinity such that deg $\Phi > 0$ and

$$\mathcal{L}_{\infty}(F|S) = \frac{\deg F \circ \Phi}{\deg \Phi}$$

Moreover if $\mathcal{L}_{\infty}(F|S) \neq -\infty$ then $\mathcal{L}_{\infty}(F|S) \in N(F|S)$.

Proof of Theorem 3.1. In the proof we will use the Euclidean norm. We can assume that $\lambda = 0$. From Theorem 3.2 we conclude that there exist $\varepsilon > 0$ and C > 0 such that for every $z \in \mathbb{C}^n$ we have the implication

(1)
$$|f(z)| \le \varepsilon \implies ||z|| \cdot ||\nabla f(z)|| \ge C \cdot |f(z)|.$$

Let $Y = \{w \in \mathbb{C}^n : C ||w||^{-1-r} |f(w)| \le 1\}$, where r is a rational number such that

(2)
$$\mathcal{L}_{\infty,0}(f) < r < -1.$$

Obviously Y is a closed semialgebraic set.

Let \mathcal{M}_∞ be the set of all complex meromorphic curves at infinity and define

$$\mathcal{A} = \{ \Psi \in \mathcal{M}_{\infty} : \deg \Psi > 0 \land \deg f \circ \Psi < 0 \land \deg \nabla f \circ \Psi / \deg \Psi < r \}.$$

The definition of $\mathcal{L}_{\infty,0}(f)$ and (2) imply that $\mathcal{A} \neq \emptyset$, and moreover

(3)
$$\mathcal{L}_{\infty,0}(f) = \inf_{\Psi \in \mathcal{A}} \frac{\deg \nabla f \circ \Psi}{\deg \Psi}$$

Observe that for every $\Psi \in \mathcal{A}$,

(4)
$$\exists_{R>0} \ \forall_{t\in\mathbb{C}} \ (|t|>R \Rightarrow \Psi(t)\in Y).$$

Indeed, take any $\Psi \in \mathcal{A}$. Then by the definition of \mathcal{A} there exists R > 0 such that for every $t \in \mathbb{C}$ if |t| > R then

$$|f \circ \Psi(t)| \le \varepsilon \land ||\Psi(t)||^{-r} ||\nabla f \circ \Psi(t)|| \le 1.$$

Hence (1) implies that for every |t| > R,

$$C\|\Psi(t)\|^{-1-r}|f\circ\Psi(t)| \le \|\Psi(t)\|^{-r}\|\nabla f\circ\Psi(t)\| \le 1.$$

From this and the definition of Y we have $\Psi(t) \in Y$ for |t| > R, and so (4) holds. Hence the set Y is nonempty and unbounded.

We will show that

(5)
$$\mathcal{L}_{\infty}(\nabla f|Y) \leq \mathcal{L}_{\infty,0}(f)$$

By (3) it suffices to show

(6)
$$\mathcal{L}_{\infty}(\nabla f|Y) \leq \inf_{\Psi \in \mathcal{A}} \frac{\operatorname{deg} \nabla f \circ \Psi}{\operatorname{deg} \Psi}.$$

If $\mathcal{L}_{\infty}(\nabla f|Y) = -\infty$, then (6) is obvious. Assume that $\mathcal{L}_{\infty}(\nabla f|Y) \neq -\infty$. Then by Proposition 3.3 there exist A, D > 0 such that for every $z \in Y$,

$$|z|| \ge D \Rightarrow ||\nabla f(z)|| \ge A ||z||^{\mathcal{L}_{\infty}(\nabla f|Y)}.$$

Therefore for every $\Psi \in \mathcal{A}$, by (4) we have deg $\nabla f \circ \Psi \geq \deg \Psi \cdot \mathcal{L}_{\infty}(\nabla f|Y)$, which gives (6). So (5) holds.

By Proposition 3.3 there exists a real curve $\Phi : (R', +\infty) \to Y$ meromorphic at infinity such that deg $\Phi > 0$ and

(7)
$$\mathcal{L}_{\infty}(\nabla f|Y) = \frac{\operatorname{deg} \nabla f \circ \Phi}{\operatorname{deg} \Phi}.$$

Extending Φ to the complex domain we get (8). Moreover deg $f \circ \Phi < 0$ by definition of Y. Hence from (5) and (7) we get the assertion.

Theorem 3.1 immediately yields

COROLLARY 3.4. Let $f : \mathbb{C}^n \to \mathbb{C}$ be a polynomial, $n \geq 2, \lambda \in \mathbb{C}$. If $\mathcal{L}_{\infty,\lambda}(f) < -1$ then $\mathcal{L}_{\infty,\lambda}(f) \in \mathbb{Q} \cup \{-\infty\}$.

Acknowledgments. I would like to acknowledge the highly inspiring comments I have received from Stanisław Spodzieja and thank him for his invaluable advice during the preparation of this paper.

References

- [1] R. Benedetti and J. J. Risler, *Real Algebraic and Semi-Algebraic Sets*, Hermann, Paris, 1990.
- J. Chądzyński and T. Krasiński, The gradient of a polynomial at infinity, Kodai Math. J. 26 (2003), 317–339.
- [3] —, —, A set on which the Lojasiewicz exponent at infinity is attained, Ann. Polon. Math. 67 (1997), 191–197.
- [4] J. Gwoździewicz and S. Spodzieja, *Lojasiewicz gradient inequality in a neighbourhood of the fibre*, Faculty of Math., Univ. of Łódź, preprint (http://www.math.uni.lodz.pl/preprints) (2002).
- [5] H. V. Ha, Nombres de Lojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris 311 (1990), 429–432.
- [6] J. Milnor, On Singular Points of Complex Hypersurfaces, Ann. of Math. Stud. 61, Princeton Univ. Press, 1968; Russian translation, Moscow, 1971.
- [7] A. Nemethi and A. Zaharia, *Milnor fibration at infinity*, Indag. Math. 3 (1992), 323–335.

Grzegorz Skalski Faculty of Mathematics University of Łódź S. Banacha 22 90-238 Łódź, Poland E-mail: skalskg@imul.uni.lodz.pl

> Received January 19, 2004; received in final form May 21, 2004

(7369)