On the Łojasiewicz Exponent near the Fibre of a Polynomial

by
Grzegorz SKALSKI
Presented by Józef SICIAK

Summary. The equivalence of the definitions of the Łojasiewicz exponent introduced by Ha and by Chądzyński and Krasiński is proved. Moreover we show that if the above exponents are less than -1 then they are attained at a curve meromorphic at infinity.

1. Introduction. Let $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial mapping and let $S \subset \mathbb{C}^{n}$ be an unbounded set. Put

$$
N(F \mid S):=\left\{\nu \in \mathbb{R}: \exists_{A, D>0} \forall_{z \in S}\left(|z| \geq D \Rightarrow|F(z)| \geq A|z|^{\nu}\right)\right\}
$$

where $|\cdot|$ is an arbitrary norm in \mathbb{C}^{n}. By the Łojasiewicz exponent at infinity of $F \mid S$ we mean $\mathcal{L}_{\infty}(F \mid S):=\sup N(F \mid S)$.

Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a polynomial in variables z_{1}, \ldots, z_{n}, where $n \geq 2$, and $\nabla f=\left(\partial f / \partial z_{1}, \ldots, \partial f / \partial z_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be its gradient. Let $\lambda \in \mathbb{C}$. На [5] introduces the following notion of Łojasiewicz exponent:

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{\infty, \lambda}(f):=\lim _{\delta \rightarrow 0^{+}} \mathcal{L}_{\infty}\left(\nabla f \mid S_{\lambda, \delta}\right) \tag{1}
\end{equation*}
$$

where $S_{\lambda, \delta}=\left\{z \in \mathbb{C}^{n}:|f(z)-\lambda|<\delta\right\}$. He shows that in case $n=2, \lambda$ is a bifurcation point at infinity of f if and only if $\widetilde{\mathcal{L}}_{\infty, \lambda}(f)<-1$.

Chądzyński and Krasiński [2] introduce another notion of Łojasiewicz exponent:

$$
\begin{equation*}
\mathcal{L}_{\infty, \lambda}(f):=\inf _{\Phi} \frac{\operatorname{deg} \nabla f \circ \Phi}{\operatorname{deg} \Phi} \tag{2}
\end{equation*}
$$

where Φ is a meromorphic mapping defined in a neighbourhood of ∞ in $\overline{\mathbb{C}}$, $\operatorname{deg} \Phi>0$ and $\operatorname{deg}(f-\lambda) \circ \Phi<0$. They prove the equivalence of definitions
(1) and (2) in case $n=2$. In this paper we show that definitions (1) and (2) are equivalent for any $n \geq 2$ and $\lambda \in \mathbb{C}$ (Theorem 2.1 in Section 2). The essence is the Curve Selection Lemma.

Moreover Chądzyński and Krasiński proved that in case $n=2$ if $\operatorname{deg} f=$ $\operatorname{deg}_{y} f$ and $\mathcal{L}_{\infty, \lambda}(f)<-1$ then the exponent (2) is attained at a curve Ψ meromorphic at infinity such that $\operatorname{deg} \Psi>0, \operatorname{deg}(f-\lambda) \circ \Psi<0$ and $f_{y}^{\prime} \circ \Psi=0$ (see [2, Theorem 4.10 and Corollary 3.5]). In this article we prove that in case $n>2$ if $\mathcal{L}_{\infty, \lambda}(f)<-1$ then the exponent (2) is also attained at a curve meromorphic at infinity (Theorem 3.1). From Theorem 3.1 we easily deduce that $\mathcal{L}_{\infty, \lambda}(f) \in \mathbb{Q} \cup\{-\infty\}$ provided $\mathcal{L}_{\infty, \lambda}(f)<-1$ (Corollary 3.3). We do not know if the assertion of Theorem 3.1 remains true without the additional assumption that $\mathcal{L}_{\infty, \lambda}(f)<-1$.
2. Equivalence of two definitions. We begin with some definitions. A real curve $\Phi:(R,+\infty) \rightarrow \mathbb{R}^{N}, R \in \mathbb{R}$, is called meromorphic at $+\infty$ if Φ is the sum of a Laurent series of the form

$$
\Phi(t)=a_{p} t^{p}+a_{p-1} t^{p-1}+\cdots, \quad a_{i} \in \mathbb{R}^{N}, p \in \mathbb{Z}
$$

If $\Phi \neq 0$ and $a_{p} \neq 0$ then p is called the degree of Φ and denoted by $\operatorname{deg} \Phi$. If $\Phi=0$ then we put additionally $\operatorname{deg} \Phi=-\infty$.

As in the real case, a complex curve $\Psi:\{t \in \mathbb{C}:|t|>R\} \rightarrow \mathbb{C}^{N}$ is called meromorphic at infinity if Ψ is the sum of a Laurent series of the form

$$
\Psi(t)=a_{p} t^{p}+a_{p-1} t^{p-1}+\cdots, \quad a_{i} \in \mathbb{C}^{N}, p \in \mathbb{Z}
$$

If $\Psi \neq 0$ and $a_{p} \neq 0$ then p is called the degree of Ψ and denoted by $\operatorname{deg} \Psi$. If $\Psi=0$ then we put additionally $\operatorname{deg} \Psi=-\infty$.

The first main result of the paper is the following
THEOREM 2.1. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a polynomial, $n \geq 2$ and $\lambda \in \mathbb{C}$. Then

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{\infty, \lambda}(f)=\mathcal{L}_{\infty, \lambda}(f) \tag{3}
\end{equation*}
$$

Proof. Since $\widetilde{\mathcal{L}}_{\infty, \lambda}(f)$ does not depend on the choice of the norm in \mathbb{C}^{n}, we will use the Euclidean norm $\|\cdot\|$.

The inequality $\widetilde{\mathcal{L}}_{\infty, \lambda}(f) \leq \mathcal{L}_{\infty, \lambda}(f)$ follows directly from definitions (1) and (2). Indeed, it suffices to show that for every $\delta>0$ we have

$$
\begin{equation*}
\mathcal{L}_{\infty, \lambda}(f) \geq \mathcal{L}_{\infty}\left(\nabla f \mid S_{\lambda, \delta}\right) \tag{4}
\end{equation*}
$$

To prove (4) it suffices to show that for every $\nu \in N\left(\nabla f \mid S_{\lambda, \delta}\right)$,

$$
\begin{equation*}
\mathcal{L}_{\infty, \lambda}(f) \geq \nu \tag{5}
\end{equation*}
$$

Let $\nu \in N\left(\nabla f \mid S_{\lambda, \delta}\right)$. Then there exist $A, D>0$ such that for $z \in S_{\lambda, \delta}$ we have

$$
\begin{equation*}
\|z\| \geq D \Rightarrow\|\nabla f(z)\| \geq A\|z\|^{\nu} \tag{6}
\end{equation*}
$$

Take any complex curve Φ meromorphic at infinity and such that $\operatorname{deg} \Phi>0$ and $\operatorname{deg}(f-\lambda) \circ \Phi<0$. We must show that

$$
\begin{equation*}
\frac{\operatorname{deg} \nabla f \circ \Phi}{\operatorname{deg} \Phi} \geq \nu \tag{7}
\end{equation*}
$$

Since $\operatorname{deg} \Phi>0$ and $\operatorname{deg}(f-\lambda) \circ \Phi<0$, there exists $R>0$ such that for every $t \in \mathbb{C}$ with $|t|>R$ we have $\Phi(t) \in S_{\lambda, \delta}$ and $|\Phi(t)|>D$. Then (6) implies that for $|t|>R$ we have

$$
\|\nabla f \circ \Phi(t)\| \geq A\|\Phi(t)\|^{\nu}
$$

Thus, $\operatorname{deg} \nabla f \circ \Phi \geq \nu \operatorname{deg} \Phi$, and since $\operatorname{deg} \Phi>0$, we get (7). Because of arbitrariness of Φ, ν and δ we get (5), (4) and the " \leq " inequality of (3).

Now it suffices to prove

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{\infty, \lambda}(f) \geq \mathcal{L}_{\infty, \lambda}(f) \tag{8}
\end{equation*}
$$

Assume to the contrary that (8) does not hold. Hence there exists a rational number α such that

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{\infty, \lambda}(f)<\alpha<\mathcal{L}_{\infty, \lambda}(f) \tag{9}
\end{equation*}
$$

Since the mapping $(0,+\infty) \ni \delta \mapsto \mathcal{L}_{\infty}\left(\nabla f \mid S_{\lambda, \delta}\right) \in \mathbb{R}$ is nonincreasing, for every $\delta>0$ we have

$$
\mathcal{L}_{\infty}\left(\nabla f \mid S_{\lambda, \delta}\right)<\alpha
$$

Hence, $\alpha \notin N\left(\nabla f \mid S_{\lambda, \delta}\right)$ for every $\delta>0$. Thus, for every $\delta>0$ there is $z^{0} \in \mathbb{C}^{n}$ such that

$$
\begin{equation*}
\left|f\left(z^{0}\right)-\lambda\right|<\delta \wedge\left\|z^{0}\right\|>1 / \delta \wedge\left\|z^{0}\right\|^{\alpha}>\left\|\nabla f\left(z^{0}\right)\right\| \tag{10}
\end{equation*}
$$

Let $B=\left\{z \in \mathbb{C}^{n}:\|z\|<1\right\}$. The mapping $H: B \ni z \mapsto z /\left(1-\|z\|^{2}\right) \in \mathbb{C}^{n}$ is a homeomorphism and is rational. Hence, the set

$$
\begin{array}{r}
X=\left\{(z, \delta) \in B \times(0,+\infty):|f \circ H(z)-\lambda|^{2}<\delta^{2} \wedge\|H(z)\|^{2}>1 / \delta^{2}\right. \\
\left.\wedge\|H(z)\|^{2 \alpha}>\|\nabla f \circ H(z)\|^{2}\right\}
\end{array}
$$

is semialgebraic. (10) implies that there is a sequence of points $\left(w^{k}, \delta_{k}\right) \in X$ convergent to a point $\left(w^{0}, 0\right)$ such that $w^{0} \in \partial B$. Therefore by the Curve Selection Lemma (cf. [6, Lemma 3.1]) we easily see that there exists a real curve $\widetilde{\Psi}=\left(\widetilde{\Phi}, \varphi_{2 n+1}\right):(R,+\infty) \rightarrow X$, meromorphic at infinity, such that $\lim _{t \rightarrow \infty} \widetilde{\Psi}(t)=\left(w^{0}, 0\right)$. Hence, $\operatorname{deg} \varphi_{2 n+1}<0$. Putting $\Phi=H \circ \widetilde{\Phi}$, we obtain the real curve $\Psi=\left(\Phi, \varphi_{2 n+1}\right):(R,+\infty) \rightarrow \mathbb{C}^{n} \times \mathbb{R}$ meromorphic at infinity and such that $\lim _{t \rightarrow \infty} \varphi_{2 n+1}(t)=0$. By definition of X, if $t>R$, we have

$$
\begin{align*}
|f \circ \Phi(t)-\lambda|<\varphi_{2 n+1}(t) \wedge\|\Phi(t)\|> & \frac{1}{\varphi_{2 n+1}(t)} \tag{11}\\
& \wedge\|\Phi(t)\|^{\alpha}>\|\nabla f \circ \Phi(t)\|
\end{align*}
$$

Thus, $\operatorname{deg} \Phi>0$ and $\operatorname{deg}(f-\lambda) \circ \Phi \leq \operatorname{deg} \varphi_{2 n+1}<0$. By the last inequality, $\operatorname{deg} \nabla f \circ \Phi \leq \alpha \operatorname{deg} \Phi$. Extending Φ to the complex domain we obtain a
complex meromorphic curve at infinity. From the above we get

$$
\frac{\operatorname{deg} \nabla f \circ \Phi}{\operatorname{deg} \Phi} \leq \alpha,
$$

which contradicts the second inequality in (9). This ends the proof.
3. Attaining the Łojasiewicz exponent. Let us turn to the next main result.

Theorem 3.1. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a polynomial, $n \geq 2, \lambda \in \mathbb{C}$. If $\mathcal{L}_{\infty, \lambda}(f)<-1$, then there exists a complex curve Φ meromorphic at infinity such that $\operatorname{deg} \Phi>0, \operatorname{deg}(f-\lambda) \circ \Phi<0$ and

$$
\mathcal{L}_{\infty, \lambda}(f)=\frac{\operatorname{deg} \nabla f \circ \Phi}{\operatorname{deg} \Phi} .
$$

Before we pass to the proof we quote two propositions.
 $\rightarrow \mathbb{C}$ be a polynomial. Then there exist $C, \varepsilon>0$ such that

$$
|f(z)| \leq \varepsilon \Rightarrow|z||\nabla f(z)| \geq C|f(z)| .
$$

Analogously to Proposition 1 in [3], by using the Tarski-Seidenberg Theorem (cf. [1, Remark 3.8]) we prove the following

Proposition 3.3. Let $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial mapping and let $S \subset \mathbb{C}^{n}$ be an unbounded closed semialgebraic set. Then there exists a real curve $\Phi:(R,+\infty) \rightarrow S$ meromorphic at infinity such that $\operatorname{deg} \Phi>0$ and

$$
\mathcal{L}_{\infty}(F \mid S)=\frac{\operatorname{deg} F \circ \Phi}{\operatorname{deg} \Phi} .
$$

Moreover if $\mathcal{L}_{\infty}(F \mid S) \neq-\infty$ then $\mathcal{L}_{\infty}(F \mid S) \in N(F \mid S)$.
Proof of Theorem 3.1. In the proof we will use the Euclidean norm. We can assume that $\lambda=0$. From Theorem 3.2 we conclude that there exist $\varepsilon>0$ and $C>0$ such that for every $z \in \mathbb{C}^{n}$ we have the implication

$$
\begin{equation*}
|f(z)| \leq \varepsilon \Rightarrow\|z\| \cdot\|\nabla f(z)\| \geq C \cdot|f(z)| \tag{1}
\end{equation*}
$$

Let $Y=\left\{w \in \mathbb{C}^{n}: C\|w\|^{-1-r}|f(w)| \leq 1\right\}$, where r is a rational number such that

$$
\begin{equation*}
\mathcal{L}_{\infty, 0}(f)<r<-1 . \tag{2}
\end{equation*}
$$

Obviously Y is a closed semialgebraic set.
Let \mathcal{M}_{∞} be the set of all complex meromorphic curves at infinity and define

$$
\mathcal{A}=\left\{\Psi \in \mathcal{M}_{\infty}: \operatorname{deg} \Psi>0 \wedge \operatorname{deg} f \circ \Psi<0 \wedge \operatorname{deg} \nabla f \circ \Psi / \operatorname{deg} \Psi<r\right\} .
$$

The definition of $\mathcal{L}_{\infty, 0}(f)$ and (2) imply that $\mathcal{A} \neq \emptyset$, and moreover

$$
\begin{equation*}
\mathcal{L}_{\infty, 0}(f)=\inf _{\Psi \in \mathcal{A}} \frac{\operatorname{deg} \nabla f \circ \Psi}{\operatorname{deg} \Psi} \tag{3}
\end{equation*}
$$

Observe that for every $\Psi \in \mathcal{A}$,

$$
\begin{equation*}
\exists_{R>0} \forall_{t \in \mathbb{C}}(|t|>R \Rightarrow \Psi(t) \in Y) \tag{4}
\end{equation*}
$$

Indeed, take any $\Psi \in \mathcal{A}$. Then by the definition of \mathcal{A} there exists $R>0$ such that for every $t \in \mathbb{C}$ if $|t|>R$ then

$$
|f \circ \Psi(t)| \leq \varepsilon \wedge\|\Psi(t)\|^{-r}\|\nabla f \circ \Psi(t)\| \leq 1
$$

Hence (1) implies that for every $|t|>R$,

$$
C\|\Psi(t)\|^{-1-r}|f \circ \Psi(t)| \leq\|\Psi(t)\|^{-r}\|\nabla f \circ \Psi(t)\| \leq 1
$$

From this and the definition of Y we have $\Psi(t) \in Y$ for $|t|>R$, and so (4) holds. Hence the set Y is nonempty and unbounded.

We will show that

$$
\begin{equation*}
\mathcal{L}_{\infty}(\nabla f \mid Y) \leq \mathcal{L}_{\infty, 0}(f) \tag{5}
\end{equation*}
$$

By (3) it suffices to show

$$
\begin{equation*}
\mathcal{L}_{\infty}(\nabla f \mid Y) \leq \inf _{\Psi \in \mathcal{A}} \frac{\operatorname{deg} \nabla f \circ \Psi}{\operatorname{deg} \Psi} \tag{6}
\end{equation*}
$$

If $\mathcal{L}_{\infty}(\nabla f \mid Y)=-\infty$, then (6) is obvious. Assume that $\mathcal{L}_{\infty}(\nabla f \mid Y) \neq-\infty$. Then by Proposition 3.3 there exist $A, D>0$ such that for every $z \in Y$,

$$
\|z\| \geq D \Rightarrow\|\nabla f(z)\| \geq A\|z\|^{\mathcal{L}_{\infty}(\nabla f \mid Y)}
$$

Therefore for every $\Psi \in \mathcal{A}$, by (4) we have $\operatorname{deg} \nabla f \circ \Psi \geq \operatorname{deg} \Psi \cdot \mathcal{L}_{\infty}(\nabla f \mid Y)$, which gives (6). So (5) holds.

By Proposition 3.3 there exists a real curve $\Phi:\left(R^{\prime},+\infty\right) \rightarrow Y$ meromorphic at infinity such that $\operatorname{deg} \Phi>0$ and

$$
\begin{equation*}
\mathcal{L}_{\infty}(\nabla f \mid Y)=\frac{\operatorname{deg} \nabla f \circ \Phi}{\operatorname{deg} \Phi} \tag{7}
\end{equation*}
$$

Extending Φ to the complex domain we get (8). Moreover $\operatorname{deg} f \circ \Phi<0$ by definition of Y. Hence from (5) and (7) we get the assertion.

Theorem 3.1 immediately yields
Corollary 3.4. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a polynomial, $n \geq 2, \lambda \in \mathbb{C}$. If $\mathcal{L}_{\infty, \lambda}(f)<-1$ then $\mathcal{L}_{\infty, \lambda}(f) \in \mathbb{Q} \cup\{-\infty\}$.

Acknowledgments. I would like to acknowledge the highly inspiring comments I have received from Stanisław Spodzieja and thank him for his invaluable advice during the preparation of this paper.

References

[1] R. Benedetti and J. J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1990.
[2] J. Chądzyński and T. Krasiński, The gradient of a polynomial at infinity, Kodai Math. J. 26 (2003), 317-339.
[3] -, -, A set on which the Lojasiewicz exponent at infinity is attained, Ann. Polon. Math. 67 (1997), 191-197.
[4] J. Gwoździewicz and S. Spodzieja, Łojasiewicz gradient inequality in a neighbourhood of the fibre, Faculty of Math., Univ. of Łódź, preprint (http://www.math.uni.lodz.pl/ preprints) (2002).
[5] H. V. Ha, Nombres de Łojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris 311 (1990), 429-432.
[6] J. Milnor, On Singular Points of Complex Hypersurfaces, Ann. of Math. Stud. 61, Princeton Univ. Press, 1968; Russian translation, Moscow, 1971.
[7] A. Nemethi and A. Zaharia, Milnor fibration at infinity, Indag. Math. 3 (1992), 323-335.

Grzegorz Skalski
Faculty of Mathematics
University of Łódź
S. Banacha 22

90-238 Łódź, Poland
E-mail: skalskg@imul.uni.lodz.pl

Received January 19, 2004;
received in final form May 21, 2004

