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Summary. Two approaches are proposed to modelling of topological variations in elastic
solids. The first approach is based on the theory of selfadjoint extensions of differential
operators. In the second approach function spaces with separated asymptotics and point
asymptotic conditions are introduced, and a variational formulation is established. For
both approaches, accuracy estimates are derived.

1. Introduction. It seems that in the literature on shape optimization
there is a lack of general techniques or mathematical framework that could
be applied in the process of optimization of an arbitrary shape functional
(SF) for simultaneous boundary and topology variations. From the numer-
ical point of view there are, however, some efficient methods including the
homogenization technique [1], [6] or the level set method [2] which can be
used, in particular, for topology optimization.

In [24], [20] (see also [8], [9], [25]) the so-called topological derivative (TD)
of an arbitrary SF is introduced. TD usually determines if the value J(Ω)
of a given SF can be improved or not when a small hole is introduced in
the geometrical domain with centre at a given point x ∈ Ω. In the same
setting the influence of a small inclusion in the domain, with different ma-
terial properties, on the value of the SF can be considered. Such a change
of the topology of the geometrical domain implies a singular perturbation
of the domain. In asymptotic analysis some integral attributes of singu-
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lar perturbations are determined [19], for example polarization matrices.
In the present paper the boundary topology variations are considered for
a mixed boundary value problem for elastic solids. Singular perturbations
of the boundary value problem by a change of boundary conditions on a
small set are defined by small arcs γ1

h, . . . , γ
J
h of length O(h) on the bound-

ary ∂Ω.
We propose two efficient approaches to modelling of topological varia-

tions. The first approach is developed in the framework of selfadjoint exten-
sions of differential operators, the second uses function spaces with separated
asymptotics. In both cases, the main idea consists in modelling small defects
or inhomogeneities by concentrated actions, the so-called potentials of zero-
radii. In this way the solution u(ε, h) with singular behaviour for ε→ 0+ is
replaced by a function with singularities at the centres P 1, . . . , P J of the de-
fects. The modern analysis of elliptic boundary value problems in nonsmooth
domains yields a fairly complete theory of singular solutions and provides
techniques of derivation of error estimates for asymptotic approximations.
We can use the known results in this field for solution of shape and topology
optimization problems in reverse order. First, the localization and integral
atributes of openings are determined, followed by appropriate changes of the
topology of geometrical domains. The proposed two different approaches to
topology optimization have some properties that may be useful for further
applications, in particular in numerical methods. The first approach deals
with selfadjoint operators, so can be readily extended to evolution boundary
value problems. The second approach, based on generalized Green formulae,
results in variational formulations with the solution given by a stationary
point of an auxiliary functional close in its form to the energy functional.

General results on modelling of shape functionals and asymptotic analy-
sis can be found in [20]. The results presented in this paper can be obtained
by an application of that technique.

2. Problem formulation. Let us consider deformations of a plane
heterogeneous anisotropic elastic body Ω ⊂ R2 clamped or supported on
small parts of the boundary Γ = ∂Ω in the form of closed connected
curves γ1

h, . . . , γ
J
h . Instead of tensor notation, we make use of matrix nota-

tion which we describe briefly. The constitutive relations in elasticity theory
are written with elastic fields in the form of vectors. First, two matrices are
introduced:

D(x)> =
[
x1 0 αx2
0 x2 αx1

]
, d(x)> =

[
1 0 −αx2
0 1 αx1

]
,(1)

where α = 2−1/2 is the normalizing coefficient, and > stands for transpo-
sition. The first matrix is used to define the column of strains from the
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displacement column u = (u1, u2)>,

ε(u) := (ε11(u), ε22(u), α−1ε12(u))> = D(∇)u.(2)

Here ∇ = (∂/∂x1, ∂/∂x2)> is the gradient, and εjk(u) are the Cartesian
components of the strain tensor (the factors α in (1) and (2) make the
norms of the vector and tensor of strains equal). The second matrix gener-
ates the rigid motions d(x)>b of the body Ω for any column b ∈ R3. Hooke’s
law

σ(u;x) = A(x)ε(u;x)(3)

expresses the column of stresses as a function of the strains (2), and in-
cludes a symmetric and positive definite (3× 3)-matrix function A, which is
supposed to be a smooth function of x. In view of (1)–(3), the equilibrium
equations and the boundary conditions of traction free type are given as
follows:

L(x,∇)u(h, x) := D(−∇)>A(x)D(∇)u(h, x) = f(x), x ∈ Ω,(4)

B(x,∇)u(h, x) := D(n(x))>A(x)D(∇)u(h, x) = 0, x ∈ Σh.(5)

Here, n = (n1, n2)> is the unit external normal vector to the contour Γ ,
which is supposed to be sufficiently smooth for simplicity. In (5), Σh =
Γ \ {γ1

h ∪ · · · ∪ γIh}, and γjh are arcs of length hlj , with centres P j ∈ ∂Ω,
where h ∈ (0, h0] is a small parameter and l1, . . . , lJ are fixed constants.
The elastic body is either clamped on the sets γjh or in contact with a rigid
foundation, so the linearized contact conditions are possibly prescribed on
the arcs γI+1

h , . . . , γJh with I ≤ J ,

u(h, x) = 0, x ∈ γ1
h ∪ · · · ∪ γIh,(6)

un(h, x) := n(x)>u(h, x) = 0, x ∈ γI+1
h ∪ · · · ∪ γJh ,(7)

s(x)>D(n(x))>A(x)D(∇)u(h, x) = 0, x ∈ γI+1
h ∪ · · · ∪ γJh ,(8)

with tangent vector s = (−n2, n1)>. We point out that a proper formulation
of the contact conditions requires the application of the Signorini conditions
instead of (7). The simpler condition (7) does not imply the unilateral con-
ditions n>D(n)>AD(∇)u ≤ 0 on γI+1

h , . . . , γJh required in the variational
formulation of frictionless contact of an elastic body with a rigid founda-
tion. Such a unilateral relation means that the reaction of the foundation is
non-negative at each point of the specific contact zone. Nevertheless, there
are particular situations such that the solution of the Signorini problem
formulated in a proper way coincides with the solution of problem (4)–(8)
(cf. [4], and see Example 1). The cases of I = J and I = 0 are not excluded
from our modelling.
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3. Korn inequality. For I > 0 the Dirichlet condition provides the
Korn inequality

‖u; H1(Ω)‖ ≤ K(h)‖D(∇)u; L2(Ω)‖,(9)

but the dependence of K(h) on h is not known in general. We indicate
geometrical conditions which allow us to evaluate the order of K(h) as
h→ +0. Such an estimate is used to justify the proposed models of pro-
blem (4)–(6), (8), singularly perturbed due to the presence of a small pa-
rameter h in the boundary conditions.

We say that a column a ∈ R2 is admissible at a point P j if a ∈ R2

for j = 1, . . . , I (for clamped γjh) or a is parallel to the normal n(P j) for
j = I+1, . . . , J (in the case of contact along γjh). In what follows it is always
assumed that the following condition is satisfied.

(H1) The linear hull of the columns d(P j)>aj ∈ R3, where j = 1, . . . , J
with aj ∈ R2 admissible at P j , is the whole space R3.

Proposition 1. Under condition (H1), for any field u ∈ H1(Ω)2 satis-
fying the Dirichlet conditions (6)–(7), the Korn inequality holds with

K(h) ≤ c|lnh|.(10)

The estimate is asymptotically exact , and the constant c is independent of
u and h ∈ (0, h0] with h0 < 1.

Example. (a) If I ≥ 2 or I = 1, J ≥ 2, then condition (H1) is satisfied.
(b) If I = 0, then for any distribution of contact regions γ1

h, . . . , γ
J
h on

the boundary of the disk ω = {x : |x| < R} the Korn inequality (9) is not
valid.

(c) If I = J = 1, then condition (H1) is violated. Nevertheless, the Korn
inequality (9) is valid, but K(h) becomes of order h−1 (cf. [23]), and thus it
does not satisfy estimate (10).

(d) If I = 1, J = 2, P 1 = (0, R), P 2 = (0,−R) and f(x) = (0,−c),
c > 0, then the solution of problem (4)–(6), (8) in the disk coincides with
the solution of the Signorini problem in the same disk with the Dirichlet
condition on γ1

h and the unilateral condition on γ2
h.

4. Modelling of a singularly perturbed boundary value problem.
Since there are changes of the boundary conditions at the tips of small
arcs, the boundary value problem (4)–(6), (8) can be viewed as singularly
perturbed. The theory established in [14], [10] and others yields a complete
asymptotic expansion of the solution u(h, x) with accuracy O(hN ), where
N can be a priori fixed arbitrarily large. In the same way as in [20], such
asymptotic formulae are applicable to the analysis of shape functionals by
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means of topological derivatives. We consider the functional

F(u;h) =
�

Ω

J(x;u(h, x)) dx.(11)

In addition, the asymptotic structures for specific problems with a loga-
rithmic growth of fundamental solutions turn out to be quite complex, and
therefore of limited practical interest for analysis of the functional (11). The
main feature of the asymptotic analysis, besides the presence of boundary
layers near the arcs γ1

h, . . . , γ
J
h , is the form of asymptotic terms which are

rational functions of the large parameter |lnh|. This phenomenon was dis-
covered by A. M. Il’in for the scalar problem in [11] (see also [10] and [14]).

A simplification caused by regarding asymptotics with respect to |lnh|−1

is not sufficient to perform the analysis, since the leading terms of the asymp-
totics do not reflect the distribution of contact regions and do not exhibit
interactions between the regions.

We propose an approach, based on modelling problem (4)–(6), (8) by
means of auxiliary boundary value problems with the boundary conditions
of traction free type on the punctured contour ∂Ω \ {P 1, . . . , P J} and with
singularities of prescribed class at the points P 1, . . . , P J . Such singulari-
ties are obtained by application of forces concentrated at those points, and
therefore, imitate the reaction of the elastic body at the obstacles γ1

h, . . . , γ
J
h .

Thus, in this setting, the models take into account the interaction of the rigid
foundations through the elastic body. On the other hand, the proposed sin-
gularities are not in the energy class H1(Ω)2, but the resulting singular
solutions are still in the space Lq(Ω), for q ≥ 1. The main profit from our
point of view is the possibility to obtain, by means of singular solutions, an
asymptotically exact approximation of the functional (11), under the con-
dition that for some q ∈ [1,∞) and for any u, v ∈ Lq(Ω)2 the following
inequality is valid:

(12) |F(u;h)− F(v;h)|
≤ cF‖u− v; Lq(Ω)‖(‖u; Lq(Ω)‖q−1 + ‖v; Lq(Ω)‖q−1)

with the constant cF independent of h ∈ (0, h0] and u, v.
Modelling defects in media by an application of extensions of differential

operators which give rise to singular solutions originates from [7] and is de-
veloped e.g. in [22], [16], [19], [18] for problems of mathematical physics and
general elliptic systems. In particular, three-dimensional contact problems
are as well investigated in this direction in [4].

There are two possibilities for realization of such ideas. First of all, the
operator L(x,∇) in (4), considered as an unbounded operator in the space
L2(Ω)2, is restricted to a smaller domain of definition compared to its natu-
ral domain H1(Ω)2. In this way the domain of the adjoint operator becomes



242 S. A. Nazarov and J. Sokołowski

wider, and a proper choice of extension parameters can be used to select
an appropriate selfadjoint operator. The selfadjoint operator L with prop-
erly selected extension parameters asymptotically inherits the attributes, in
other words intrinsic characteristics, of the singularly perturbed problem
such as the energy functional and the spectrum (see [18], [20]). In addition,
the classical semigroup theory can be used to construct solutions for the
evolution problems associated with the selfadjoint operator. On the other
hand, the domain D(L) of the selected selfadjoint extension depends on the
large parameter |lnh|, which could be inconvenient for numerical methods
when applied to shape optimization or shape inverse problems (see [9], [24],
[25], [8]). This difficulty can be avoided by application of a slightly differ-
ent technique, including a space with separated asymptotics (see e.g. [19]).
Roughly speaking, the boundary value problem is defined and solved in
a larger class, compared even with D(L). The uniqueness of solutions is
obtained by conditions at the points P 1, . . . , P J . Such asymptotic point
conditions at P 1, . . . , P J serve as an additional relation between the coeffi-
cients of prescribed asymptotic expansions. In particular, by construction,
exactly the same solutions are obtained by the first and the second ap-
proach.

5. Modelling with selfadjoint extensions. The unbounded opera-
tor L in L2(Ω)2 defined by the differential expression L(x,∇) with domain

(13) D(L) = {v ∈ H2(Ω)2 : B(x,∇)v = 0 on ∂Ω,

v(P 1) = · · · = v(P I) = 0 ∈ R2, vn(P I+1) = · · · = vn(P J) = 0}
is closed and symmetric, but the adjoint L∗ has a larger domain:

D(L∗) = {v ∈ D : B(x,∇)v = 0 on ∂Ω \ {P 1, . . . , P J}},(14)

where

D =
{
v(x) = ṽ(x) +

I∑

i=1

χi(x)[bi + T i(x− P i)ai]

+
J∑

j=I+1

χj(x)[n(P j)bj + T j(x− P j)ajn(P j)] :

ṽ ∈H2(Ω)2, ṽ1(P 1) = · · · = ṽI(P I) = 0, ṽI+1
n (P I+1) = · · · = ṽJn(P J) = 0,

ai, bi ∈ R2, aj , bj ∈ R
}
.

Here χ1, . . . , χJ are cutoff functions with mutually disjoint supports, equal
to one in neighbourhoods of P 1, . . . , P J , respectively, and T j = (T j1, T j2) is
the Poisson kernel, i.e., a (2 × 2)-matrix function, where each column T jk,
k = 1, 2, is a solution of the elasticity boundary value problem in the half-
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plane {x : n(P j)>x > 0} under unit force concentrated at the point P j

and directed in the positive direction of the xk-axis (such solutions T jk are
linear combinations of the Boussinesq–Cerruti solutions [21]). The following
representation is well known:

T j(x) = −T j0 ln |x|+ T j1(|x|−1x),(15)

where T j1 is a smooth matrix function on the semisphere and T j0 is a
constant (2× 2)-matrix, symmetric and positive definite.

By comparison of formulae (13) and (14) we can see that the defect of
the operator L is (N : N), where N = 2I + (J − I) = J + I. The coefficients
bi1, b

i
2 and bj from (14) form a column b ∈ RN , the remaining coefficients

form a column a.

Lemma 1. Let S be a symmetric (N ×N)-matrix. The restriction L of
the operator L∗ to the linear subspace

D(L) = {v ∈ D(L∗) : b = Sa}(16)

is a selfadjoint operator in L2(Ω)2. If the matrix S is not singular , then
under condition (H1) the equation

Lv = f(17)

admits a unique solution for each f ∈ L2(Ω)2.

A proper choice of parameters of the selfadjoint extension, i.e., a selec-
tion of the matrix S is performed in Section 7 in such a way that the so-
lution v of equation (17) becomes an approximation of the solution to pro-
blem (4)–(6), (8).

6. Modelling in spaces with separated asymptotics. The linear
space (14) with the norm

‖v; D‖ = (‖ṽ; H2(Ω)‖2 + ‖a; RN‖2 + ‖b; RN‖2)1/2

becomes a Hilbert space. We introduce two projection operators π± :
D→ RN by

π−v = a, π+v = b.

Let us consider the boundary value problem of linear elasticity with the
asymptotic conditions at the points P 1, . . . , P J ,

L(x,∇)v(x) = f(x), x ∈ Ω,
B(x,∇)v(x) = 0, x ∈ ∂Ω \ {P 1, . . . , P J},(18)

Sπ−v− π+v = 0 ∈ RN .
It is easy to see that for S = S the solutions v ∈ D(L) of (17) and v ∈ D

of (18) coincide.
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Proposition 2. (i) For v, u ∈ D the following generalized Green for-
mula is valid :

(19) (Lv, u)Ω + (Bv, u)∂Ω + 〈Sπ−v− π+v, π−u〉
= (v, Lu)Ω + (v, Bu)∂Ω + 〈π−v, Sπ−u− π+u〉,

where (·, ·)Ξ and 〈·, ·〉 are the scalar products in the spaces L2(Ξ)2

and RN , respectively.
(ii) The function v ∈ D is a solution to problem (18) if and only if it is

a stationary point of the functional

E(v) = 1
2(Lv, v)Ω + 1

2(Bv, v)∂Ω + 1
2〈Sπ−v− π+v, π−v〉 − (f, v)Ω.(20)

If detS 6= 0 and condition (H1) is satisfied , then the stationary point of the
functional (20) is uniquely determined.

The symmetric generalized Green formula shows that the boundary value
problem is formally selfadjoint.

The second assertion in Proposition 2 furnishes the variational formula-
tion of problem (18) over the Hilbert space D, and shows the uniqueness of
solutions under the same conditions as in the case of equation (17).

7. How to determine the model parameters. The solution v = v

of equation (17) or of problem (18) satisfies system (4) and boundary con-
ditions (5), however, in general, fails to satisfy the boundary conditions (6)
and (7), (8). In order to construct an approximation for the solution u(h, x)
in the vicinity of the points P 1, . . . , P J , the method of matched asymp-
totic expansions is applied (see [10], [13], and cf. [14], [19]). Thus, selecting
v = v for the outer asymptotic expansion, we construct the inner expansions
wj(ξj), employing the fast variables ξj = h−1(x−P j). Formally, we change
the variables and pass to the limit as h → +0. In the limit h → +0 the
dilatation of coordinates implies the rectifying of the boundary, freezing of
the coefficients at the point P j , and vanishing of the volume forces in the
equilibrium equations. The procedure leads to the boundary value problem
for wj which consists of the homogeneous elasticity system

D(−∇ξ)>A(P j)D(∇ξ)wj(ξ) = 0, ξ ∈ R2
j ,(21)

the boundary conditions of traction free type

D(nj)>A(P j)D(∇ξ)wj(ξ) = 0, ξ ∈ ∂R2
j , |ξ| > lj/2,(22)

the Dirichlet conditions for j = 1, . . . , I,

wj(ξ) = 0, ξ ∈ ∂R2
j , |ξ| < lj/2,(23)

and the linearized contact conditions for j = I + 1, . . . , J ,
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(24) (nj)>wj(ξ) = 0, (sj)>D(nj)>A(P j)D(∇ξ)wj(ξ) = 0,

ξ ∈ ∂R2
j , |ξ| < lj/2.

Here nj = nj(P j) and sj = sj(P j) are normal and tangential vectors on ∂Ω,
respectively, evaluated at P j ; R2

j is the half-plane {ξ ∈ R2 : ξ>nj < 0}.
Since we are going to glue wj with the singular solution v = v with a

logarithmic singularity, it is necessary to allow for the logarithmic growth of
wj(ξ) as |ξ| → +∞. Such solutions of homogeneous problems (21), (22), (23)
and (21), (22), (24) are well known (see e.g. [5], [3]). The solutions resemble
capacitary potentials in the theory of harmonic functions (see e.g. [12]),
belong to the space H2

loc(R2
j)

2 and admit the following asymptotic represen-
tation at infinity:

wj(ξ) = T j(ξ)aj + cj +O(|ξj|−1), |ξj| → +∞.(25)

In the case of j = 1, . . . , I (part of the boundary ∂R2
j is clamped) the column

aj in (25) can be arbitrary, however,

cj = M jaj ,(26)

where the symmetric (2×2)-matrix M j is called the Wiener elastic capacity
matrix for the half-plane clamped along [−lj/2, lj/2]. For j = I + 1, . . . , J ,
we have

aj = n(P j)aj , (nj)>cj = mjaj ,(27)

where the scalars aj and (sj)>cj are arbitrary, and mi is a quantity which
can be called the Wiener scalar elastic capacity of the interval [−lj/2, lj/2]
on the boundary of the half-plane.

Remark 1. The matrix M j and the scalar mj depend only on the Hooke
matrix A(P j) and on the direction of the normal vector nj . Indeed, denoting
by M(l) and m(l) these objects for the interval of length l, by the contraction
x 7→ y = l−1x, in view of representation (15), we obtain

M(l) = M(1)− T j0 ln l, m(l) = m(1)− T j0nj ln l.

In the case of isotropic material, M j and mj , in addition, are independent of
the direction nj , and can be determined by using the Kolosov–Muskhelishvili
potentials (see [15]).

When we return to the coordinates x, by comparison of representations
obtained from (25)–(27) and (15),

wi(h−1(x− P i)) = T i(x− P i)ai + (T i0 lnh+M i)ai

+O(h|x− P i|−1), i = 1, . . . , I,

wj(h−1(x− P j)) = T j(x− P j)νjaj + (T j0νj lnh+mj)aj

+ (sj)>cj +O(h|x−P j|−1), j = I+1, . . . , J,

(28)
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with the expansion of the field v = v = v given in (14), the following
equalities arise:

bi = {T j0 lnh+M i}ai, i = 1, . . . , I,(29)

bj = {T j0νj lnh+mj}aj , j = I + 1, . . . , J,(30)

which in vector notation takes the form b = Sa, used already in (16) and
indirectly in (18). Thus, the matrix S is block-diagonal and contains the
entries separated in (29) and in (30) by curly braces, respectively (2 × 2)-
matrices and scalars. In view of the properties of T j0 listed after the for-
mula (15), the matrix S is symmetric and negative definite for sufficiently
small h ∈ (0, h0].

The relations (29) and (30) are derived by matching the outer expan-
sion v = v with the inner expansions wj(ξj), j = 1, . . . , J . Therefore, by
the Korn inequality (9), (10), proximity to the true solution u(h, x) of the
global asymptotic approximation in the energy norm can be established.
The global asymptotic approximation is obtained by glueing the expan-
sions in the standard way (cf. [10] and [14], [19]). However, in view of the
assumption (12) to model the functional (11) an estimate for the differ-
ence u − v = u − v in the Lq(Ω)2 norm is required. Such an estimate
can be established, taking into account the embedding H1(Ω) ⊂ Lq(Ω), by
direct evaluation of the Lq(Ω) norms of the remainders in the representa-
tions (28).

Theorem 1. If u and v = v are solutions to problems (4)–(8) and
(17)–(18), respectively , with the same right-hand side f ∈ L2(Ω)2, then

‖u− v; Lq(Ω)‖ ≤ cκh|lnh|κ+5/2‖f ; L2(Ω)‖.(31)

The functional (11) admits the estimate
∣∣∣F(u;h)−

�

Ω

J(x; v(lnh)) dx
∣∣∣ ≤ Cκµq(h)‖f ; L2(Ω)‖q,(32)

where κ is arbitrary positive, the constants cκ and Cκ are independent of
f and h ∈ (0, h0], and

µq(h) =

{
h|lnh|q(κ+5/2) for q ∈ [1, 2],

h2/q for q > 2.
(33)

Clapeyron’s Theorem, stating that the potential energy = the elastic en-
ergy minus the work of external forces, takes the form

E(u; f) =
1
2

(AD(∇)u,D(∇)u)Ω − (f, u)Ω = −1
2

�

Ω

u>f dx,(34)
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and Theorem 1 can be used to show that the functional (34) evaluated at the
solutions to problem (4)–(8) is approximated with error O(µq(h)‖f ; L2(Ω)‖)
by the energy functionals for the problems (17), (18),

E(v; f) = 1
2(Lv,v)Ω − (f,v)Ω ,

E(v; f) = 1
2(D(−∇)>AD(∇)v, v)Ω + 1

2〈Sπ−v− π+v, π−v〉 − (f, v)Ω.

We refer the reader to [18] for a general approach to modelling of geometrical
singularities.
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