DIFFERENCE AND FUNCTIONAL EQUATIONS

On Functions with the Cauchy Difference Bounded by a Functional

by

Włodzimierz FECHNER

Presented by Andrzej LASOTA

Summary. K. Baron and Z. Kominek [2] have studied the functional inequality

$$f(x+y) - f(x) - f(y) \ge \phi(x,y), \quad x, y \in X,$$

under the assumptions that X is a real linear space, ϕ is homogeneous with respect to the second variable and f satisfies certain regularity conditions. In particular, they have shown that ϕ is bilinear and symmetric and f has a representation of the form $f(x) = \frac{1}{2}\phi(x, x) + L(x)$ for $x \in X$, where L is a linear function.

The purpose of the present paper is to consider this functional inequality under different assumptions upon X, f and ϕ . In particular we will give conditions which force biadditivity and symmetry of ϕ and the representation $f(x) = \frac{1}{2}\phi(x, x) - A(x)$ for $x \in X$, where A is a subadditive function.

Let (X, +) be an abelian group. We consider the functional inequality

(1)
$$f(x+y) - f(x) - f(y) \ge \phi(x,y), \quad x, y \in X,$$

where $\phi: X \times X \to \mathbb{R}$ and $f: X \to \mathbb{R}$ are unknown mappings.

It is easy to check that if $\phi: X \times X \to \mathbb{R}$ is biadditive and symmetric, $A: X \to \mathbb{R}$ is subadditive and $f: X \to \mathbb{R}$ is defined by the formula $f(x) := \frac{1}{2}\phi(x,x) - A(x)$ for $x \in X$, then (1) holds. We are going to provide conditions under which the converse implication is valid.

PROPOSITION. If $f: X \to \mathbb{R}$ and $\phi: X \times X \to \mathbb{R}$ satisfy (1) and

(2)
$$\phi(x, -x) \ge -\phi(x, x), \quad x \in X,$$

then: (a) $f(0) \le 0$; (b) $f(x) + f(-x) \le \phi(x, x)$ for $x \in X$; (c) $f(2x) \ge 3f(x) + f(-x)$ for $x \in X$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 39B62, 39B72.

Key words and phrases: functional inequality; subadditive, quadratic and biadditive functionals.

Proof. The assumption (2) implies that $\phi(0,0) \ge 0$; thus applying (1) with x = 0 and y = 0 we get $f(0) \le 0$. Using this and substituting y := -x in (1) we derive (b). Substituting y := x in (1) and using (b) proves (c). This completes the proof.

In what follows we make use of a result of Karol Baron (see S. Rolewicz [4, Lemma 5.7]). A careful inspection of the original proof allows us to weaken certain assumptions of this lemma. The original result reads as follows.

LEMMA (K. Baron). Assume that $f: X \to \mathbb{R}$ and $\phi: X \times X \to \mathbb{R}$ satisfy (1). If f is even, f(2x) = 4f(x) and $\phi(x, \cdot)$ is odd for every $x \in X$, then there exists a biadditive and symmetric functional $B: X \times X \to \mathbb{R}$ such that $\phi = 2B$ and f(x) = B(x, x) for every $x \in X$.

We have the following modification of this lemma.

LEMMA 1. Assume that $f: X \to \mathbb{R}$ and $\phi: X \times X \to \mathbb{R}$ satisfy (1). If

(3)
$$\phi(x, -y) \ge -\phi(x, y), \quad x, y \in X$$

(4)
$$f(2x) \le 4f(x), \quad x \in X,$$

then

$$f(x) = \frac{1}{2}\phi(x, x), \quad x \in X.$$

Moreover, ϕ is biadditive and symmetric.

Proof. Using the inequality (c) of the Proposition and (4) we see that $f(x) \ge f(-x)$ for $x \in X$, which proves that f is even. Setting -y instead of y in (1) we obtain

$$f(x-y) - f(x) - f(-y) \ge \phi(x, -y) \ge -\phi(x, y), \quad x, y \in X.$$

Adding this to (1) and using the evenness of f leads to

$$f(x+y) + f(x-y) \ge 2f(x) + 2f(y), \quad x, y \in X.$$

Fix $u, v \in X$. Applying the above inequality with x = u + v and y = u - v we infer that

$$4f(u) + 4f(v) \ge f(2u) + f(2v) \ge 2f(u+v) + 2f(u-v), \quad u, v \in X.$$

Therefore f is a quadratic function, i.e.

$$f(x+y) + f(x-y) = 2f(x) + 2f(y), \quad x, y \in X.$$

So, there exists a biadditive and symmetric functional $B: X \times X \to \mathbb{R}$ such that f(x) = B(x, x) for $x \in X$ (see e.g. J. Aczél & J. Dhombres [1, Chapter 11, Proposition 1]). It is easy to check that

$$B(x,y) = \frac{1}{2} [f(x+y) - f(x) - f(y)], \quad x, y \in X.$$

Now, assumption (3) and the biadditivity of B imply that $2B = \phi$. This completes the proof.

THEOREM 1. Assume that $f: X \to \mathbb{R}$ and $\phi: X \times X \to \mathbb{R}$ satisfy (1), (3) and

(5)
$$\limsup_{n \to \infty} \frac{1}{4^n} \phi(2^n x, 2^n x) < \infty, \qquad x \in X, \\ \liminf_{n \to \infty} \frac{1}{4^n} \phi(2^n x, 2^n y) \ge \phi(x, y), \qquad x, y \in X.$$

If f is even, then there exists a subadditive function A: $X \to \mathbb{R}$ such that

$$f(x) = \frac{1}{2}\phi(x, x) - A(x), \quad x \in X.$$

Moreover, ϕ is biadditive and symmetric.

Proof. Fix an $x \in X$ and a positive integer n. By the evenness of f and the Proposition we get

$$\frac{1}{4^{n-1}}f(2^{n-1}x) \le \frac{1}{4^n}f(2^nx) \le \frac{1}{4^n} \cdot \frac{1}{2}\phi(2^nx, 2^nx).$$

The first part of the assumption (5) implies that the right-hand side of this inequality is bounded by a real constant which does not depend on n. Therefore the formula

$$Q(x) := \lim_{n \to +\infty} \frac{1}{4^n} f(2^n x), \quad x \in X,$$

correctly defines a map $Q: X \to \mathbb{R}$. Moreover, Q(2x) = 4Q(x) for $x \in X$ and the following inequality is satisfied:

$$Q(x+y) - Q(x) - Q(y) = \lim_{n \to \infty} \left[\frac{1}{4^n} f(2^n x + 2^n y) - \frac{1}{4^n} f(2^n x) - \frac{1}{4^n} f(2^n y) \right]$$

$$\geq \liminf_{n \to \infty} \frac{1}{4^n} \phi(2^n x, 2^n y) \geq \phi(x, y), \quad x, y \in X.$$

Lemma 1 states that ϕ is biadditive and symmetric and $Q(x) = \frac{1}{2}\phi(x,x)$ for $x \in X$. In particular $Q(x+y) - Q(x) - Q(y) = \phi(x,y)$ for $x, y \in X$. From this and (1), it is easy to check that A := Q - f is subadditive. This completes the proof.

COROLLARY 1. Assume that $f: X \to \mathbb{R}$ and $\phi: X \times X \to \mathbb{R}$ satisfy (1), (3), (5) and

(6)
$$\phi(-x,-y) = \phi(x,y), \quad x,y \in X$$

Then there exists a subadditive function $A: X \to \mathbb{R}$ such that

$$f(x) = \frac{1}{2}\phi(x, x) - A(x), \quad x \in X.$$

Moreover, ϕ is biadditive and symmetric.

Proof. Define $h: X \to \mathbb{R}$ by $h(x) := \frac{1}{2}(f(x) + f(-x))$ for $x \in X$. Assumption (6) implies that

 $h(x+y) - h(x) - h(y) \ge \phi(x,y), \quad x, y \in X.$

Using Theorem 1 with f replaced by h we get the biadditivity and symmetry of ϕ . Now, one may easily check that the map $A: X \to \mathbb{R}$ given by $A(x) := \frac{1}{2}\phi(x,x) - f(x)$ for $x \in X$ is subadditive. This completes the proof.

Now, we are going to provide conditions which, in particular, allow us to omit the assumption (6) and to weaken (5). We start with a lemma.

LEMMA 2. If $f: X \to \mathbb{R}$ and $\phi: X \times X \to \mathbb{R}$ satisfy (1), (2) and f is odd then f(2x) = 2f(x) and $\phi(x, x) = 0$ for $x \in X$. Moreover, if ϕ satisfies (3), then f is additive and $\phi = 0$.

Proof. Fix an $x \in X$. Since f is odd, we get

$$\begin{aligned} f(2x) - 2f(x) &= -[f(-2x) - 2f(-x)] \le -\phi(-x, -x) \le \phi(-x, x) \\ &\le f(-x + x) - f(-x) - f(x) = 0, \end{aligned}$$

whence, again by the oddness of f, we obtain f(2x) = 2f(x) for $x \in X$ and, in consequence, $\phi(x, x) = 0$ for $x \in X$.

Now, assume (3) and let $x, y \in X$. Using the assumption (3) and (1) twice we obtain

 $f(x-y)-f(x)-f(-y) \geq \phi(x,-y) \geq -\phi(x,y) \geq -f(x+y)+f(x)+f(y),$ which means that

$$f(x+y) + f(x-y) \ge 2f(x).$$

Interchanging the roles of x and y we obtain

 $f(y+x) + f(y-x) \ge 2f(y).$

Summing up these two inequalities we derive the superadditivity of f, which together with its oddness implies that f is additive and $\phi \leq 0$. Using this and (3) we finally get $\phi = 0$. This completes the proof.

The following lemma provides sufficient conditions for the function f to satisfy the assumption (4).

Recall that a group X is called *uniquely* 2-*divisible* if the map $X \ni x \mapsto x + x \in X$ is bijective.

LEMMA 3. Assume that X is uniquely 2-divisible, $f: X \to \mathbb{R}$ and $\phi: X \times X \to \mathbb{R}$ satisfy (1), (2) and

(7)
$$\phi(2x, 2x) \le 4\phi(x, x), \quad x \in X.$$

If f is nonnegative and even, then $f(x) = \frac{1}{2}\phi(x,x)$ for $x \in X$.

Proof. By the Proposition, for every $x \in X$ and every positive integer n we have $4^n f(x/2^n) \ge 4^{n+1} f(x/2^{n+1}) \ge 0$. So, the sequence $(4^n f(x/2^n))_{n \in \mathbb{N}}$ is pointwise convergent. In particular, $\lim_{n\to\infty} 2^n f(x/2^n) = 0$ for every $x \in X$.

Now, fix an $x \in X$. Using (1) and (7), by induction, we get

$$2^{k} f\left(\frac{x}{2^{k-1}}\right) - 2^{k+1} f\left(\frac{x}{2^{k}}\right) \ge 2^{k} \phi\left(\frac{x}{2^{k}}, \frac{x}{2^{k}}\right) \ge \frac{1}{2^{k}} \phi(x, x)$$

for all $k \in \mathbb{N}$. Summing up these inequalities for $k \in \{1, \ldots, n\}$ we get

$$2f(x) - 2^{n+1}f\left(\frac{x}{2^n}\right) \ge \sum_{k=1}^n \frac{1}{2^k} \phi(x, x), \quad n \in \mathbb{N}.$$

Letting n tend to $+\infty$ yields $2f(x) \ge \phi(x, x)$. Since the Proposition provides the opposite inequality, the proof is complete.

The following result yields an analogue of Corollary 1 in the paper [2] of K. Baron and Z. Kominek.

THEOREM 2. Assume X to be uniquely 2-divisible. If $f: X \to \mathbb{R}$ and $\phi: X \times X \to \mathbb{R}$ satisfy (1), (3), (7) and

(8)
$$f(x) + f(-x) \ge 0, \quad x \in X,$$

then there exists an additive function $a: X \to \mathbb{R}$ such that

$$f(x) = \frac{1}{2}\phi(x, x) + a(x), \quad x \in X.$$

Moreover, ϕ is biadditive and symmetric.

Proof. Define $h, a: X \to \mathbb{R}$ by $h(x) := \frac{1}{2}[f(x) + f(-x)]$ and $a(x) := \frac{1}{2}[f(x) - f(-x)], x \in X$. Clearly h is even whereas a is odd. Next, define $\phi_1: X \times X \to \mathbb{R}$ by $\phi_1(x, y) := \frac{1}{2}[\phi(x, y) + \phi(-x, -y)]$ for $x, y \in X$. It is easy to check that h and ϕ_1 satisfy the assumptions of Lemma 3. So, $h(x) = \frac{1}{2}\phi_1(x, x)$ for $x \in X$. Now, observe that the assumptions of Lemma 1 are satisfied. Therefore ϕ_1 is biadditive and symmetric and, in consequence,

$$h(x+y) - h(x) - h(y) = \phi_1(x,y), \quad x, y \in X.$$

Define $\phi_2: X \times X \to \mathbb{R}$ by $\phi_2 := \phi - \phi_1$. Note that $\phi_2(x, -y) \ge -\phi_2(x, y)$ for $x, y \in X$ and

$$a(x+y) - a(x) - a(y) \ge \phi_2(x,y), \quad x, y \in X.$$

Now, Lemma 2 applied for f = a and $\phi = \phi_2$ states that a is additive and $\phi_2 = 0$, i.e. $\phi = \phi_1$. This completes the proof.

A similar reasoning allows us to derive the following corollary from Lemmas 2 and 3.

COROLLARY 2. Assume X to be uniquely 2-divisible. If $f: X \to \mathbb{R}$ and $\phi: X \times X \to \mathbb{R}$ satisfy (1), (2), (7) and (8), then there exists an odd function

a: $X \to \mathbb{R}$ such that a(2x) = 2a(x) for $x \in X$ and

$$f(x) = \frac{1}{2}\phi(x, x) + a(x), \quad x \in X.$$

Moreover, $\phi(2x, 2x) = 4\phi(x, x) \ge 0$ for $x \in X$.

Proof. Define a, h, ϕ_1 and ϕ_2 as in the previous proof. Lemma 3 implies that $h(x) = \frac{1}{2}\phi_1(x, x)$ and h(2x) = 4h(x) for $x \in X$. We are going to show that ϕ_2 satisfies (2). Since $\phi_2 = \phi - \phi_1$, it suffices to prove that $\phi_1(x, -x) = -\phi_1(x, x)$ for $x \in X$. But

$$-2h(x) = h(-x+x) - h(-x) - h(x) \ge \phi_1(-x,x) \ge -\phi_1(-x,-x)$$

= -2h(x),

which is what we wanted. Lemma 2 implies that a(2x) = 2a(x) and $\phi_2(x, x) = 0$, i.e. $h(x) = \frac{1}{2}\phi_1(x, x) = \frac{1}{2}\phi(x, x)$ for $x \in X$. This completes the proof.

We end this paper with some additional remarks.

REMARK 1. If $c \in (0, \infty)$, $f : \mathbb{R} \to \mathbb{R}$ is constant and equal to -c, $\phi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is constant and equal to c, then (1), (3) and (7) are satisfied. So, the assumption (4) in Lemma 1 cannot be omitted, the assumption (5) in Theorem 1 and Corollary 1 cannot be replaced by (7), the nonnegativity of f in Lemma 3 cannot be replaced by its boundedness, and the assumption (8) in Theorem 2 cannot be omitted.

REMARK 2. Let $\varphi \colon \mathbb{R} \to \mathbb{R}$ be a nonzero and even function which satisfies the equality

$$\varphi(2t) = 2\varphi(t), \quad t \in \mathbb{R}$$

(see e.g. M. Kuczma, B. Choczewski and R. Ger [3] for examples of such functions). Define $f: \mathbb{R} \to \mathbb{R}$ and $\phi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by

$$f(x) := (\varphi(x))^2, \quad x \in \mathbb{R},$$

$$\phi(x, y) := f(x + y) - f(x) - f(y), \quad x, y \in \mathbb{R}.$$

Then inequality (1) is satisfied, and f is even, nonnegative and satisfies (4). Moreover, ϕ satisfies (2), (5) and (6). So, in Lemma 1, Theorems 1 and 2 and Corollary 1, (3) cannot be replaced by (2).

REMARK 3. Let $(X; \|\cdot\|)$ be a normed linear space. Corollary 1 implies that the inequality

$$f(x+y) - f(x) - f(y) \ge ||x|| \cdot ||y||, \quad x, y \in X,$$

has no solution. In fact, the function $\phi(x, y) := ||x|| \cdot ||y||$, $x, y \in X$, satisfies (3), (5) and (6), but ϕ fails to be biadditive.

In this inequality X may stand for an abelian group and the norm can be replaced by any real function, which is nonzero, nonnegative, even and 2-homogeneous.

References

- J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia Math. Appl. 31, Cambridge Univ. Press, Cambridge, 1989.
- [2] K. Baron and Z. Kominek, On functionals with the Cauchy difference bounded by a homogeneous functional, Bull. Polish Acad. Sci. Math. 51 (2003), 301–307.
- [3] M. Kuczma, B. Choczewski and R. Ger, *Iterative Functional Equations*, Encyclopedia Math. Appl. 32, Cambridge Univ. Press, Cambridge, 1990.
- [4] S. Rolewicz, Φ-convex functions defined on metric spaces, Int. J. Math. Sci. 115 (2003), 2631–2652.

Włodzimierz Fechner Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice, Poland E-mail: fechner@ux2.math.us.edu.pl

> Received March 31, 2004; received in final form August 3, 2004 (7391)