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Summary. K. Baron and Z. Kominek [2] have studied the functional inequality

f(x+ y)− f(x)− f(y) ≥ φ(x, y), x, y ∈ X,
under the assumptions that X is a real linear space, φ is homogeneous with respect
to the second variable and f satisfies certain regularity conditions. In particular, they
have shown that φ is bilinear and symmetric and f has a representation of the form
f(x) = 1

2φ(x, x) + L(x) for x ∈ X, where L is a linear function.
The purpose of the present paper is to consider this functional inequality under dif-

ferent assumptions upon X, f and φ. In particular we will give conditions which force
biadditivity and symmetry of φ and the representation f(x) = 1

2φ(x, x)−A(x) for x ∈ X,
where A is a subadditive function.

Let (X,+) be an abelian group. We consider the functional inequality

f(x+ y)− f(x)− f(y) ≥ φ(x, y), x, y ∈ X,(1)

where φ: X ×X → R and f : X → R are unknown mappings.
It is easy to check that if φ: X × X → R is biadditive and symmetric,

A: X → R is subadditive and f : X → R is defined by the formula f(x) :=
1
2φ(x, x)−A(x) for x ∈ X, then (1) holds. We are going to provide conditions
under which the converse implication is valid.

Proposition. If f : X → R and φ: X ×X → R satisfy (1) and

φ(x,−x) ≥ −φ(x, x), x ∈ X,(2)

then: (a) f(0) ≤ 0; (b) f(x) + f(−x) ≤ φ(x, x) for x ∈ X; (c) f(2x) ≥
3f(x) + f(−x) for x ∈ X.
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Proof. The assumption (2) implies that φ(0, 0) ≥ 0; thus applying (1)
with x = 0 and y = 0 we get f(0) ≤ 0. Using this and substituting y := −x
in (1) we derive (b). Substituting y := x in (1) and using (b) proves (c).
This completes the proof.

In what follows we make use of a result of Karol Baron (see S. Rolewicz [4,
Lemma 5.7]). A careful inspection of the original proof allows us to weaken
certain assumptions of this lemma. The original result reads as follows.

Lemma (K. Baron). Assume that f : X → R and φ: X × X → R sat-
isfy (1). If f is even, f(2x) = 4f(x) and φ(x, ·) is odd for every x ∈ X, then
there exists a biadditive and symmetric functional B: X ×X → R such that
φ = 2B and f(x) = B(x, x) for every x ∈ X.

We have the following modification of this lemma.

Lemma 1. Assume that f : X → R and φ: X ×X → R satisfy (1). If

φ(x,−y) ≥ −φ(x, y), x, y ∈ X,(3)

and

f(2x) ≤ 4f(x), x ∈ X,(4)

then

f(x) =
1
2
φ(x, x), x ∈ X.

Moreover , φ is biadditive and symmetric.

Proof. Using the inequality (c) of the Proposition and (4) we see that
f(x) ≥ f(−x) for x ∈ X, which proves that f is even. Setting −y instead of
y in (1) we obtain

f(x− y)− f(x)− f(−y) ≥ φ(x,−y) ≥ −φ(x, y), x, y ∈ X.
Adding this to (1) and using the evenness of f leads to

f(x+ y) + f(x− y) ≥ 2f(x) + 2f(y), x, y ∈ X.
Fix u, v ∈ X. Applying the above inequality with x = u+ v and y = u− v
we infer that

4f(u) + 4f(v) ≥ f(2u) + f(2v) ≥ 2f(u+ v) + 2f(u− v), u, v ∈ X.
Therefore f is a quadratic function, i.e.

f(x+ y) + f(x− y) = 2f(x) + 2f(y), x, y ∈ X.
So, there exists a biadditive and symmetric functional B: X × X → R
such that f(x) = B(x, x) for x ∈ X (see e.g. J. Aczél & J. Dhombres [1,
Chapter 11, Proposition 1]). It is easy to check that

B(x, y) =
1
2

[f(x+ y)− f(x)− f(y)], x, y ∈ X.
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Now, assumption (3) and the biadditivity of B imply that 2B = φ. This
completes the proof.

Theorem 1. Assume that f : X → R and φ: X×X → R satisfy (1), (3)
and

(5)
lim sup
n→∞

1
4n
φ(2nx, 2nx) <∞, x ∈ X,

lim inf
n→∞

1
4n
φ(2nx, 2ny) ≥ φ(x, y), x, y ∈ X.

If f is even, then there exists a subadditive function A: X → R such that

f(x) =
1
2
φ(x, x)−A(x), x ∈ X.

Moreover , φ is biadditive and symmetric.

Proof. Fix an x ∈ X and a positive integer n. By the evenness of f and
the Proposition we get

1
4n−1 f(2n−1x) ≤ 1

4n
f(2nx) ≤ 1

4n
· 1

2
φ(2nx, 2nx).

The first part of the assumption (5) implies that the right-hand side of
this inequality is bounded by a real constant which does not depend on n.
Therefore the formula

Q(x) := lim
n→+∞

1
4n
f(2nx), x ∈ X,

correctly defines a map Q: X → R. Moreover, Q(2x) = 4Q(x) for x ∈ X
and the following inequality is satisfied:

Q(x+ y)−Q(x)−Q(y) = lim
n→∞

[
1
4n
f(2nx+ 2ny)− 1

4n
f(2nx)− 1

4n
f(2ny)

]

≥ lim inf
n→∞

1
4n
φ(2nx, 2ny) ≥ φ(x, y), x, y ∈ X.

Lemma 1 states that φ is biadditive and symmetric and Q(x) = 1
2φ(x, x)

for x ∈ X. In particular Q(x + y) − Q(x) − Q(y) = φ(x, y) for x, y ∈ X.
From this and (1), it is easy to check that A := Q− f is subadditive. This
completes the proof.

Corollary 1. Assume that f : X → R and φ: X ×X → R satisfy (1),
(3), (5) and

φ(−x,−y) = φ(x, y), x, y ∈ X.(6)

Then there exists a subadditive function A: X → R such that

f(x) =
1
2
φ(x, x)−A(x), x ∈ X.

Moreover , φ is biadditive and symmetric.
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Proof. Define h: X → R by h(x) := 1
2(f(x) + f(−x)) for x ∈ X. As-

sumption (6) implies that

h(x+ y)− h(x)− h(y) ≥ φ(x, y), x, y ∈ X.
Using Theorem 1 with f replaced by h we get the biadditivity and symmetry
of φ. Now, one may easily check that the map A: X → R given by A(x) :=
1
2φ(x, x)− f(x) for x ∈ X is subadditive. This completes the proof.

Now, we are going to provide conditions which, in particular, allow us
to omit the assumption (6) and to weaken (5). We start with a lemma.

Lemma 2. If f : X → R and φ: X×X → R satisfy (1), (2) and f is odd
then f(2x) = 2f(x) and φ(x, x) = 0 for x ∈ X. Moreover , if φ satisfies (3),
then f is additive and φ = 0.

Proof. Fix an x ∈ X. Since f is odd, we get

f(2x)− 2f(x) = −[f(−2x)− 2f(−x)] ≤ −φ(−x,−x) ≤ φ(−x, x)

≤ f(−x+ x)− f(−x)− f(x) = 0,

whence, again by the oddness of f , we obtain f(2x) = 2f(x) for x ∈ X and,
in consequence, φ(x, x) = 0 for x ∈ X.

Now, assume (3) and let x, y ∈ X. Using the assumption (3) and (1)
twice we obtain

f(x− y)− f(x)− f(−y) ≥ φ(x,−y) ≥ −φ(x, y) ≥ −f(x+ y) + f(x) + f(y),

which means that
f(x+ y) + f(x− y) ≥ 2f(x).

Interchanging the roles of x and y we obtain

f(y + x) + f(y − x) ≥ 2f(y).

Summing up these two inequalities we derive the superadditivity of f , which
together with its oddness implies that f is additive and φ ≤ 0. Using this
and (3) we finally get φ = 0. This completes the proof.

The following lemma provides sufficient conditions for the function f to
satisfy the assumption (4).

Recall that a group X is called uniquely 2-divisible if the map X 3 x 7→
x+ x ∈ X is bijective.

Lemma 3. Assume that X is uniquely 2-divisible, f : X → R and φ: X×
X → R satisfy (1), (2) and

φ(2x, 2x) ≤ 4φ(x, x), x ∈ X.(7)

If f is nonnegative and even, then f(x) = 1
2φ(x, x) for x ∈ X.
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Proof. By the Proposition, for every x ∈ X and every positive integer n
we have 4nf(x/2n) ≥ 4n+1f(x/2n+1) ≥ 0. So, the sequence (4nf(x/2n))n∈N
is pointwise convergent. In particular, limn→∞ 2nf(x/2n)=0 for every x∈X.

Now, fix an x ∈ X. Using (1) and (7), by induction, we get

2kf
(

x

2k−1

)
− 2k+1f

(
x

2k

)
≥ 2kφ

(
x

2k
,
x

2k

)
≥ 1

2k
φ(x, x)

for all k ∈ N. Summing up these inequalities for k ∈ {1, . . . , n} we get

2f(x)− 2n+1f

(
x

2n

)
≥

n∑

k=1

1
2k
φ(x, x), n ∈ N.

Letting n tend to +∞ yields 2f(x) ≥ φ(x, x). Since the Proposition provides
the opposite inequality, the proof is complete.

The following result yields an analogue of Corollary 1 in the paper [2] of
K. Baron and Z. Kominek.

Theorem 2. Assume X to be uniquely 2-divisible. If f : X → R and
φ: X ×X → R satisfy (1), (3), (7) and

f(x) + f(−x) ≥ 0, x ∈ X,(8)

then there exists an additive function a: X → R such that

f(x) =
1
2
φ(x, x) + a(x), x ∈ X.

Moreover , φ is biadditive and symmetric.

Proof. Define h, a: X → R by h(x) := 1
2 [f(x) + f(−x)] and a(x) :=

1
2 [f(x) − f(−x)], x ∈ X. Clearly h is even whereas a is odd. Next, define
φ1: X × X → R by φ1(x, y) := 1

2 [φ(x, y) + φ(−x,−y)] for x, y ∈ X. It
is easy to check that h and φ1 satisfy the assumptions of Lemma 3. So,
h(x) = 1

2φ1(x, x) for x ∈ X. Now, observe that the assumptions of Lemma 1
are satisfied. Therefore φ1 is biadditive and symmetric and, in consequence,

h(x+ y)− h(x)− h(y) = φ1(x, y), x, y ∈ X.
Define φ2: X × X → R by φ2 := φ − φ1. Note that φ2(x,−y) ≥ −φ2(x, y)
for x, y ∈ X and

a(x+ y)− a(x)− a(y) ≥ φ2(x, y), x, y ∈ X.
Now, Lemma 2 applied for f = a and φ = φ2 states that a is additive and
φ2 = 0, i.e. φ = φ1. This completes the proof.

A similar reasoning allows us to derive the following corollary from Lem-
mas 2 and 3.

Corollary 2. Assume X to be uniquely 2-divisible. If f : X → R and
φ: X×X → R satisfy (1), (2), (7) and (8), then there exists an odd function
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a: X → R such that a(2x) = 2a(x) for x ∈ X and

f(x) =
1
2
φ(x, x) + a(x), x ∈ X.

Moreover , φ(2x, 2x) = 4φ(x, x) ≥ 0 for x ∈ X.

Proof. Define a, h, φ1 and φ2 as in the previous proof. Lemma 3 implies
that h(x) = 1

2φ1(x, x) and h(2x) = 4h(x) for x ∈ X. We are going to show
that φ2 satisfies (2). Since φ2 = φ−φ1, it suffices to prove that φ1(x,−x) =
−φ1(x, x) for x ∈ X. But

−2h(x) = h(−x+ x)− h(−x)− h(x) ≥ φ1(−x, x) ≥ −φ1(−x,−x)

= −2h(x),

which is what we wanted. Lemma 2 implies that a(2x) = 2a(x) and φ2(x, x)
= 0, i.e. h(x) = 1

2φ1(x, x) = 1
2φ(x, x) for x ∈ X. This completes the proof.

We end this paper with some additional remarks.

Remark 1. If c ∈ (0,∞), f : R → R is constant and equal to −c,
φ : R×R→ R is constant and equal to c, then (1), (3) and (7) are satisfied.
So, the assumption (4) in Lemma 1 cannot be omitted, the assumption (5)
in Theorem 1 and Corollary 1 cannot be replaced by (7), the nonnegativity
of f in Lemma 3 cannot be replaced by its boundedness, and the assumption
(8) in Theorem 2 cannot be omitted.

Remark 2. Let ϕ: R→ R be a nonzero and even function which satisfies
the equality

ϕ(2t) = 2ϕ(t), t ∈ R
(see e.g. M. Kuczma, B. Choczewski and R. Ger [3] for examples of such
functions). Define f : R→ R and φ: R× R→ R by

f(x) := (ϕ(x))2, x ∈ R,
φ(x, y) := f(x+ y)− f(x)− f(y), x, y ∈ R.

Then inequality (1) is satisfied, and f is even, nonnegative and satisfies (4).
Moreover, φ satisfies (2), (5) and (6). So, in Lemma 1, Theorems 1 and 2
and Corollary 1, (3) cannot be replaced by (2).

Remark 3. Let (X; ‖ · ‖) be a normed linear space. Corollary 1 implies
that the inequality

f(x+ y)− f(x)− f(y) ≥ ‖x‖ · ‖y‖, x, y ∈ X,
has no solution. In fact, the function φ(x, y) := ‖x‖ · ‖y‖, x, y ∈ X, satisfies
(3), (5) and (6), but φ fails to be biadditive.

In this inequality X may stand for an abelian group and the norm can
be replaced by any real function, which is nonzero, nonnegative, even and
2-homogeneous.
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