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Summary. We characterize curvature-adapted real hypersurfaces in nonflat quaternionic
space forms in terms of their shape operators and structure tensors.

1. Introduction. In a nonflat quaternionic space form, which is either a
quaternionic projective space or a quaternionic hyperbolic space, we have the
following nice examples of homogeneous real hypersurfaces. In a quaternionic
projective space HP n(c) of quaternionic sectional curvature c, they are

(A) a tube of radius r ∈ (0, π/
√
c) around the canonically embedded

totally geodesic HPm(c) for some m ∈ {0, . . . , n− 2},
(M) a tube of radius r ∈ (0, π/2

√
c) around the canonically embedded

totally geodesic complex projective space CP n(c),

and in a quaternionic hyperbolic space HHn(c) of quaternionic sectional
curvature c, they are

(A) a horosphere in HHn(c) and a tube of some radius r ∈ (0,∞)
around the canonically embedded totally geodesic HHm(c) for some
m ∈ {0, . . . , n− 1},
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(M) a tube of some radius r ∈ (0,∞) around the canonically embedded
totally geodesic complex hyperbolic space CHn(c).

We call these examples a hypersurface of type (A) and of type (M) in a
nonflat quaternionic space form Mn(c;H) of quaternionic sectional curva-
ture c (6= 0), respectively. In this note we study their shape operators and
structure tensors induced from the quaternionic structure on Mn(c;H).

2. Curvature-adapted real hypersurfaces. In order to study real
hypersurfaces of type (A) and (M), Berndt [B] introduced the notion of
curvature-adapted hypersurfaces in a Riemannian manifold M̃ . A hypersur-
face M of a Riemannian manifold M̃ is called curvature-adapted if the nor-
mal Jacobi operator K and the shape operator A of M with respect to a unit
normal vector field N are simultaneously diagonalizable (i.e. K◦A = A◦K).
Here the normal Jacobi operator K : TM → TM of M with respect to N
is defined by K(·) = R̃(·,N )N , where R̃ is the curvature tensor of M̃ . For a
real hypersurface M in a quaternionic Kähler manifold M̃ with quaternionic
Kähler structure J , which is a rank 3 vector subbundle of the bundle of en-
domorphisms of the tangent bundle TM , we decompose TM into D ⊕D⊥,
where D is the maximal subbundle of TM which is invariant by J . Here,
a quaternionic Kähler structure J on a Riemannian manifold M̃ of real di-
mension 4n is a rank 3 vector subbundle of the bundle of endomorphisms of
TM̃ with the following properties:

1) For each point x̃ ∈ M̃ there is an open neighborhood G̃ of x̃ in M̃

and sections J1, J2, J3 of the restriction J |G̃ over G̃ such that

(i) each Ji is an almost Hermitian structure on G̃, that is, J2
i = − id

and

〈JiX̃, Ỹ 〉+ 〈X̃, JiỸ 〉 = 0 for all vector fields X̃ and Ỹ on G̃,

where 〈 , 〉 is the Riemannian metric of M̃ ,
(ii) JiJi+1 = Ji+2 = −Ji+1Ji (i mod 3) for i = 1, 2, 3.

2) ∇̃X̃J is a section of J for each vector field X̃ on M̃ and section J of

the bundle J , where ∇̃ denotes the Riemannian connection of M̃ .

When the ambient space M̃ is a nonflat quaternionic space form, curvature-
adapted real hypersurfaces are characterized in terms of D and the shape op-
erators: The following three conditions on a real hypersurfaceM in Mn(c;H)
are equivalent:

(1) M is curvature-adapted.
(2) The subbundle D is invariant under the shape operator of M .
(3) The subbundle D⊥ is invariant under the shape operator of M .
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It was shown by Berndt [B] that every curvature-adapted real hypersurface
in HPn(c) is locally congruent to a hypersurface of type (A) or (M) and that
every curvature-adapted real hypersurface in HHn(c) all of whose principal
curvatures are constant is locally congruent to a hypersurface of type (A)
or (M).

3. Structure tensors and the shape operator. Let M be a real
hypersurface in a quaternionic Kähler manifold M̃ . For an endomorphism
J ∈ J we define the structure tensor φJ : TM → TM associated with J
by φJ = π ◦ J |TM , where π : TM̃ |M → TM is the canonical projection.
Let S = {φJ | J ∈ J } be the set of all structure tensors. This is a rank 3
subbundle of the bundle of endomorphisms of TM . We set ξJ = −JN for
each J ∈ J . It is clear that D⊥x = {ξJ(x) | J ∈ J } at each point x ∈M and
that φJ(ξJ) = 0, φJ (D⊥) ⊂ D⊥ and φJ (v) = Jv for every v ∈ D.

In a complex projective space, real hypersurfaces of type (A), which
are tubes around canonically embedded totally geodesic complex projective
spaces, are characterized as hypersurfaces with Aφ = φA. Here φ is the
structure tensor induced by the complex structure of the ambient space.

We denote by F(X) the set of real functions on a domain X. As in the
case of complex space form, we consider an endomorphism fφA + gAφ of
TM for f, g ∈ F(TM) and φ ∈ S, which is given by (fφA + gAφ)(v) =
f(v)φ(Av) + g(v)Aφ(v) for v ∈ TM .

Proposition 1. Let M be a real hypersurface of a nonflat quaternionic
space form M̃n(c;H). Then the following conditions are equivalent :

(1) M is curvature-adapted.
(2) For every φ ∈ S there exists f ∈ F(TM) satisfying (fφA+ Aφ)(D)
⊂ D.

(2′) (fφA+ gAφ)(D) ⊂ D for every φ ∈ S and f, g ∈ F(TM).
(3) For every φ ∈ S there exists g ∈ F(TM) satisfying (φA+ gAφ)(D⊥)
⊂ D⊥.

(3′) (fφA+ gAφ)(D⊥) ⊂ D⊥ for every φ ∈ S and f, g ∈ F(TM).

Proof. (1)⇒(2′)&(3′). This is trivial since A(D) ⊂ D and A(D⊥) ⊂ D⊥.
(2′)⇒(2) and (3′)⇒(3) are trivial.
(3)⇒(1). We decompose AξJ as AξJ = ξ̂J + ξ⊥J ∈ D ⊕ D⊥ for each

ξJ ∈ D⊥. We then have

D⊥ 3 (φJA+ gAφJ)(ξJ) = φJAξJ = φJ(ξ̂J) + φJ(ξ⊥J ).

As φJ(ξ̂) ∈ D and φJ(ξ⊥J ) ∈ D⊥, this implies φJ (ξ̂) = 0, so that ξ̂ = 0. Thus
we see that A(D⊥) ⊂ D⊥ and M is curvature-adapted.

(2)⇒(1). For each x ∈ M we take a local basis J1, J2, J3 ∈ J |G on a
neighborhood of x with J2

i = −1 and Ji◦Ji+1 = Ji+2 = −Ji+1◦Ji (i mod 3).
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Putting φi = φJi and ξi = ξJi , we express Av for each v ∈ D as

Av = v̂ + η1(v)ξ1 + η2(v)ξ2 + η3(v)ξ3 with v̂ ∈ D.
Then by assumption we have

D 3 (fφ1A+Aφ1)(v)

= f(v){φ1(v̂) + η2(v)ξ3 − η3(v)ξ2}
+ {φ̂1(v) + η1(φ1(v))ξ1 + η2(φ1(v))ξ2 + η3(φ1(v))ξ3}.

Hence η1(φ1(v)) = 0, and similarly η2(φ2(v)) = η3(φ3(v)) = 0. Thus we can
see that ηi(v) = ηi(φi(−φi(v))) = 0 for each i = 1, 2, 3, so that A(D) ⊂ D.
Therefore M is curvature-adapted in Mn(c;H).

As a consequence of Proposition 1 we establish the following characteri-
zation of hypersurfaces of type (A) in HP n(c).

Theorem 1. The following conditions on a real hypersurface M of
HPn(c) are equivalent :

(1) M is of type (A).
(2) φA = Aφ for each φ ∈ S.
(3) For each φ ∈ S there exists g ∈ F(TM) with φA+ gAφ = 0 on D⊥.
(4) For each φ ∈ S there exists f ∈ F(TM) with fφA+ Aφ = 0 on D.

Proof. Proposition 1 guarantees that M is curvature-adapted in
M̃n(H; c), hence M is either of type (A) or of type (M) under each con-
dition. We denote by λj an eigenvalue of A|D and by µj that of A|D⊥ , and
by m(ν) and Vν the multiplicity and the eigenspace corresponding to the
eigenvalue ν, respectively. The following is due to Berndt [B]:

When M is a hypersurface of type (A), its tangent bundle decomposes
as TM = Vλ1 ⊕ Vλ2 ⊕ Vµ1 with

λ1 =
√
c

2
cot
√
c r

2
, λ2 = −

√
c

2
tan
√
c r

2
, µ1 =

√
c cot(

√
c r),

and each of the eigenspaces Vλ1 , Vλ2 and Vµ1 is invariant under every φ ∈ S.
(For the case when M is a geodesic sphere, Vλ2 = {0}.) Therefore it is clear
that φA = Aφ for each φ ∈ S in this case. When M is of type (M), its
tangent bundle decomposes as TM = Vλ1 ⊕ Vλ2 ⊕ Vµ1 ⊕ Vµ2 , where

λ1 =
√
c

2
cot
√
c r

2
, λ2 = −

√
c

2
tan
√
c r

2
,

µ1 =
√
c cot(

√
c r), µ2 = −√c tan(

√
c r),

and m(µ1) = 1,m(µ2) = 2. For each point we can take a local basis Ji, i =
1, 2, 3, satisfying J2

i = −1, Ji ◦ Ji+1 = Ji+2 = −Ji+1 ◦ Ji (i mod 3) and
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φ1(Vλj ) = Vλj (j = 1, 2), φ1(Vµ1) = {0}, φ1(Vµ2) = Vµ2 ,

φi(Vλ1) = Vλ2 , φi(Vλ2) = Vλ1 , φi(Vµ1) ⊂ Vµ2 ,

φi(Vµ2) = Vµ1 (i = 2, 3),

(3.1)

where φi = φJi .
What we have to show is that condition (3) or (4) implies M is of

type (A).
(3)⇒(1). For each J ∈ J , (3) leads us to φJ(AξJ) = −g(ξ)AφJ(ξJ) = 0.

Hence AξJ is proportional to ξJ , which shows ξJ is principal. As D⊥x =
{ξJ(x) | J ∈ J } for each x, it should be an eigenspace of A|Dx . Considering
principal curvatures of real hypersurfaces of type (A) and of type (M), we
find that M is not of type (M). Every hypersurface of type (A) clearly
satisfies (3) with g ≡ −1. Thus M is of type (A).

(4)⇒(1). By assumption, Aφv = −f(v)φAv for every v ∈ D. When M
is of type (M), we consider a vector v = a1v1 + a2v2 ∈ D with a1, a2 ∈ R
and v1 ∈ Vλ1 , v2 ∈ Vλ2 , vj 6= 0. Since λ1 6= λ2, we see that Aφi(v) is not
proportional to φiAv for the structure tensor φi, i = 2, 3, associated with
the local basis given above. When M is of type (A), it satisfies (4) with
f ≡ −1. Thus M is of type (A).

Inspecting the proof of Proposition 1, we can improve the statement as
follows:

Proposition 2. For a real hypersurface M in a nonflat Mn(c;H), the
following conditions are equivalent:

(1) M is curvature-adapted in M̃n(c;H).
(2′′) For each x ∈ M there exists a basis {K1,K2,K3} of Jx and func-

tions f1, f2, f3 ∈ F(TxM) satisfying (fiφKiA+AφKi)(Dx) ⊂ Dx for
i = 1, 2, 3.

(3′′) For each x ∈ M there exists a basis {K1,K2,K3} of Jx and func-
tions g1, g2, g3 ∈ F(TxM) satisfying (φKiA + giAφKi)(D⊥x ) ⊂ D⊥x
for i = 1, 2, 3.

In this context we can improve Theorem 1 in the following manner.

Theorem 2. For a real hypersurface M in a quaternionic projective
space HPn(c) the following conditions are equivalent:

(1) M is of type (A).
(2′) For each x ∈ M there exists a basis {K1,K2,K3} of Jx satisfying

φKiA = AφKi for i = 1, 2, 3.
(3′) For each x ∈M there exists a basis {K1,K2,K3} of Jx and g1, g2, g3
∈ F(TxM) satisfying φKiA+ giAφKi = 0 on D⊥x for i = 1, 2, 3.

(4′) For each x∈M there exists a basis {K1,K2,K3} of Jx and f1, f2, f3

∈ F(TxM) satisfying fiφKiA+AφKi = 0 on Dx for i = 1, 2, 3.
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Proof. Proposition 2 guarantees that under each condition, M is curva-
ture-adapted in HP n(c), hence it is either of type (A) or of type (M). Re-
viewing the proof of Theorem 1, we only need to check that (4′) implies (1).
When M is of type (M), we take a local basis Ji, i = 1, 2, 3, of J satisfy-
ing J2

i = −1, Ji ◦ Ji+1 = Ji+2 = −Ji+1 ◦ Ji (i mod 3) and (3.1). Setting
Ki =

∑3
j=1 aijJj we may suppose a33 6= 0. We then have

AφK3(b1ξJ1 + b2ξJ2) = −µ1a33b2ξ1 + µ2a33b1ξ2 + µ2(a31b2 − a32b1)ξ3,

φK3A(b1ξJ1 + b2ξJ2) = −µ2a33b2ξ1 + µ1a33b1ξ2 + (µ2a31b2 − µ1a32b1)ξ3,

for some constants b1, b2. Hence AφK3(b1ξJ1 + b2ξJ2) is not neccesarily pro-
portional to φK3A(b1ξJ1 + b2ξJ2), and M is not of type (M). When M is of
type (A), it clearly satisfies (4′).

In order to characterize homogeneous real hypersurfaces in a complex
projective space CP n, Kimura [K] studied commutativity of two endomor-
phisms derived from the shape operators and structure tensors (see Proposi-
tion 3 below). Here, we also consider endomorphisms P = Pφ,f = φA+fAφ
and Q = Qφ,g,k = φA+gAφ+kφ of TM for functions f, g, k : M → R. When
we consider P,Q on a tangent space TxM , we treat f, g, k as constants.

Lemma. Let M be a real hypersurface in a quaternionic Kähler mani-
fold M̃ . If (PφJ ,fQφJ ,g,k−QφJ ,g,kPφJ ,f )ξJ(x) = 0 at some x ∈M with some
constants f, g, k with f 6= g, then ξJ(x) is a principal curvature vector of M
in M̃ .

Proof. Direct computation yields

(3.2) PφJ ,fQφJ ,g,k −QφJ ,g,kPφJ ,f
= (f − g)(−φJA2φJ + Aφ2

JA) + k{(1− f)φJAφJ + fAφ2
J − φ2

JA},
in particular,

(PφJ ,fQφJ ,g,k −QφJ ,g,kPφJ ,f )ξJ = (f − g)Aφ2
JAξJ − kφ2

JAξJ

= (f − g)A
(
−AξJ +

〈AξJ , ξJ〉
‖ξJ‖2

ξJ

)
− k
(
−AξJ +

〈AξJ , ξJ〉
‖ξJ‖2

ξJ

)
.

Hence

0 = 〈(PφJ ,fQφJ ,g,k −QφJ ,g,kPφJ ,f )ξJ(x), ξJ(x)〉

= (f(x)− g(x))
(
−‖AξJ‖2 +

〈AξJ(x), ξJ(x)〉2
‖ξJ‖2

)
,

which shows that ‖AξJ(x)‖2 = 〈AξJ(x), ξJ(x)〉2/‖ξJ‖2. Thus we conclude
that ξJ(x) is principal.

Remark. On every hypersurface of type (A) in a nonflat Mn(c;H) the
commutation relation PQ = QP holds for arbitrary φ ∈ S and functions
f, g, k because φA = Aφ.
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In view of the Lemma we obtain the following:

Theorem 3. For a real hypersurface M in HP n(c) the following condi-
tions are equivalent :

(1) M is of type (A).
(2) Pφ,fQφ,g,k = Qφ,g,kPφ,f for all φ ∈ S and f, g, k ∈ F(M).
(2′) For each φ ∈ S there exist f, g, k ∈ F(M) such that f − g has no

zeros and Pφ,fQφ,g,k = Qφ,g,kPφ,f .
(3) Pφ,fQφ,g,k = Qφ,g,kPφ,f on D⊥ for all φ ∈ S and f, g, k ∈ F(M).
(3′) For each φ ∈ S there exist f, g, k ∈ F(M) such that f − g has no

zeros and Pφ,fQφ,g,k = Qφ,g,kPφ,f on D⊥.
(4) For each x ∈ M there exists a basis {K1,K2,K3} of Jx and con-

stants fi, gi, ki such that fi 6= gi and

PφKi ,fiQφKi ,gi,ki = QφKi ,gi,kiPφKi ,fi on TxM for i = 1, 2, 3.

Proof. Under each condition it follows from the Lemma that AD⊥ ⊂
D⊥, so that our real hypersurface M is curvature-adapted. When M is of
type (A), these conditions trivially hold. Therefore we assume that M is of
type (M). Since there is a non-principal vector in D⊥, condition (3′) does
not hold. Suppose M satisfies (4). Then we may consider ξK1 ∈ Vµ1 and
ξK2 , ξK3 ∈ Vµ2 by the Lemma. Since {K1,K2,K3} is a basis of Jx, we see
that φK2(ξK3) = aξK1 with a nonzero constant a and φK2(ξK1) ∈ Vµ2 \ {0}.
As φK2(Vλ1) = Vλ2 , φK2(Vλ2) = Vλ1 , for v ∈ Vλ1 we find by (3.2) that

(PφK2 ,f2QφK2 ,g2,k2 −QφK2 ,g2,k2PφK2 ,f2)v

= (λ2 − λ1){(f2 − g2)(λ1 + λ2) + k2(f2 − 1)}v,
(PφK2 ,f2QφK2 ,g2,k2 −QφK2 ,g2,k2PφK2 ,f2)ξK3

= a(µ2 − µ1){(f2 − g2)(µ1 + µ2) + k2(f2 − 1)}φK2(ξK1).

Since λ1 + λ2 6= µ1 + µ2, this is a contradiction which proves our result.

In terms of D⊥, we have the following characterization of all curvature-
adapted real hypersurfaces of HP n(c):

Theorem 4. For a real hypersurface M in HP n(c) the following condi-
tions are equivalent :

(1) M is curvature-adapted.
(2) For each x ∈ M there exists a basis {K1,K2,K3} of Jx and con-

stants fi, gi, ki such that fi 6= gi and

PφKi ,fiQφKi ,gi,ki = QφKi ,gi,kiPφKi ,fi on D⊥x for i = 1, 2, 3.

(3) There exist constants f, g, k (f 6= g) such that for each x we can
choose a basis {K1,K2,K3} of Jx satisfying

PφKi ,fQφKi ,g,k = QφKi ,g,kPφKi ,f on D⊥x for i = 1, 2, 3.
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Proof. By the Lemma, (2) implies AD⊥ ⊂ D⊥, hence M is curvature-
adapted. On the other hand, when M is of type (M), we take f = −1, g = 1
and k = −(µ1 +µ2). For a local basis Ji, i = 1, 2, 3, of J satisfying J2

i = −1,
Ji ◦ Ji+1 = Ji+2 = −Ji+1 ◦ Ji (i mod 3) and (3.1), we see that PφJi ,f = 0 on
Vµ1 and QφJi ,g,k = 0 on Vµ2 . Hence (3) holds. Thus we obtain the result.

We end this paper with some results corresponding to Theorems 3 and 4
on real hypersurfaces in a nonflat complex space form Mn(c;C) of constant
holomorphic sectional curvature c (6= 0), which is either a complex projective
space or a complex hyperbolic space. We say that a real hypersurface M
in Mn(c;C) is a Hopf hypersurface if the characteristic vector ξ of M is
principal.

Proposition 3. For a real hypersurface M in a nonflat complex space
form Mn(c;C), two endomorphisms P = φA−Aφ and Qk = φA+Aφ+ kφ
commute for some constant k if and only if M is locally congruent to a Hopf
hypersurface all of whose principal curvatures are constant.

Proof. For c > 0, the statement was proved by Kimura [K].
As we have

PQk −QkP = 2φA2φ− 2Aφ2A+ k(2φAφ− Aφ2 − φ2A)(3.3)

and φ2v = −v + 〈v, ξ〉ξ for an arbitrary tangent vector v, we see that

〈(PQk −QkP )ξ, ξ〉 = 〈2A2ξ − 〈Aξ, ξ〉Aξ + k(Aξ − 〈Aξ, ξ〉ξ), ξ〉
= 2‖Aξ‖2 − 2〈Aξ, ξ〉2.

Thus if PQk−QkP = 0 we find that ξ is principal, so that the corresponding
principal curvature α is constant (see [NR]).

Let v be a principal vector orthogonal to ξ. If Av = λv, then we have
2(2λ − α)Aφv = (2αλ + c)φv. We first consider the case 2λ 6= α. Then φv
is also a principal vector of principal curvature (2αλ+ c)/{2(2λ− α)} (see
[NR]). By (3.3) we have

(
λ− 2αλ+ c

2(2λ− α)

)(
λ+

2αλ+ c

2(2λ− α)
+ k

)
= 0,

hence either 4λ2 − 4αλ + c = 0 or 4λ2 + 4kλ − 2kα + c = 0. Therefore in
this case each principal curvature function is locally constant on M . Next
we study the case that there is a point such that λ = α/2 is a principal
curvature. By continuity of principal curvature functions the above argu-
ment guarantees that α/2 is a principal curvature on some neighborhood
of this point. So our real hypersurface M is locally congruent to a Hopf
hypersurface with constant principal curvatures.

We now check that every Hopf hypersurface with constant principal cur-
vatures satisfies PQk = QkP for some constant k. Such real hypersurfaces
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are classified completely. In a complex hyperbolic space CHn(c) they are
called real hypersurfaces of type (A) and (B) (for details, see [NR]). For
a real hypersurface of type (A), which is either a horosphere or a tube of
radius r (0 < r <∞) around a totally geodesic CHd(c) with 0 ≤ d ≤ n− 1,
as we have P = φA− Aφ = 0, the claim is obvious. For a real hypersurface
M of type (B), which is a tube of radius r around a totally geodesic real
hyperbolic space RHn(c/4) of constant sectional curvature c/4, the tangent
bundle decomposes as TM = Vλ1 ⊕ Vλ2 ⊕ Rξ, where

λ1 =

√
|c|
2

coth

√
|c| r
2

, λ2 =

√
|c|
2

tanh

√
|c| r
2

, α =
√
|c| tanh(

√
|c| r),

and φ(Vλ1) = Vλ2 , φ(Vλ2) = Vλ1 . Therefore Qk = 0 with k = −(λ1 + λ2) =
−
√
|c| coth(

√
|c| r), hence PQk = QkP .

In a complex projective space CP n(c) Hopf hypersurfaces with constant
principal curvatures are real hypersurfaces of types (A)–(E) (see [NR]). For
a real hypersurface of type (A), which is a tube of radius r (<π/

√
c) around

a totally geodesic CP d(c) with 1 ≤ d ≤ n − 1, the statement is obvious as
P = 0. For a real hypersurface M of type (B), which is a tube of radius
r (< π/(2

√
c)) around a totally geodesic real projective space RP n(c/4) of

constant sectional curvature c/4, the tangent bundle decomposes as TM =
Vλ1 ⊕ Vλ2 ⊕ Rξ, where

λ1 = −
√
c

2
cot
√
c r

2
, λ2 =

√
c

2
tan
√
c r

2
, α =

√
c tan(

√
c r),

and φ(Vλ1) = Vλ2 , φ(Vλ2) = Vλ1 . Therefore Qk = 0 with k = −(λ1 + λ2) =√
c cot(

√
|c| r), hence PQk = QkP . For a real hypersurface M of type (C),

(D) or (E), which is a tube of radius r (< π/(2
√
c)) around CP 1(c) ×

CP (n−1)/2(c), complex Grassmannian CG2,5 or SO(10)/U(5), respectively,
the tangent bundle decomposes as TM = Vλ1 ⊕Vλ2 ⊕Vλ3 ⊕Vλ4 ⊕Rξ, where

λ1 =
√
c

2
cot
√
c r

2
, λ2 = −

√
c

2
tan
√
c r

2
, λ3 =

√
c(1 + tan(

√
c r/2))

2(1− tan(
√
c r/2))

,

λ4 = −
√
c(1− tan(

√
c r/2))

2(1 + tan(
√
c r/2))

, α =
√
c cot(

√
c r),

φ(Vλi) = Vλi , i = 1, 2, and φ(Vλ3) = Vλ4 , φ(Vλ4) = Vλ3 . We consider Qk for
k = −(λ3 + λ4) =

√
c tan

√
c r. Since

P (Vλi) = 0, Qk(Vλi) ⊂ Vλi (i = 1, 2),

Qk(Vλj ) = 0 (j = 3, 4), P (Vλ3) ⊂ Vλ4 , P (Vλ4) ⊂ Vλ3 ,

we find PQk = QkP = 0 and obtain our result.

Remark. In Proposition 3 we cannot relax the condition on k. Even in
a complex projective space there exist Hopf hypersurfaces satisfying PQk =
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QkP for some function k and having some principal curvatures not constant
(see [K] for details).
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