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Summary. There are three kinds of Benz planes: Möbius planes, Laguerre planes and
Minkowski planes. A Minkowski plane satisfying an additional axiom is connected with
some other structure called a nearaffine plane. We construct an analogous structure for a
Laguerre plane. Moreover, our description is common for both cases.

1. Introduction. In the case of a Minkowski plane B, H. A. Wilbrink
[10] investigated the external structure BP [4, p. 3], where circles and gen-
erators are treated as blocks. A slight modification B[P ] of BP is called the
residual plane in P. More precisely, all points lying on generators through
P are removed and each trace of a circle not passing through P is sup-
plemented with exactly one point. If a Minkowski plane B satisfies some
additional condition, then the residual plane B[P ] becomes a variation of
a nearaffine plane considered before by J. André [1, 11]. Such a nearaffine
plane is a quadruple (Ω,Ξ, ⊲,≡) with the point set Ω, the set Ξ of lines
(subsets of Ω) and an equivalence relation ≡ ⊂ Ξ × Ξ called parallelism
of lines. Finally, the operation ⊲, called join, maps the set of all ordered
pairs of distinct points onto Ξ. So-called straight lines are distinguished in
Ξ, the remaining lines are called proper, and Q is called the base point of
the line ⊲(Q,R). If a point P of a Minkowski plane B induces a nearaffine
plane B[P ] then circles not through P and generators not through P become
proper lines and straight lines, respectively.

We wish to consider an analogous situation for Laguerre planes. That
is, we want to get a structure with points, lines, parallelism and join which
(maybe only in special cases) can be obtained as the external structure with

2000 Mathematics Subject Classification: 51A15, 51A45, 51B15, 51B20.
Key words and phrases: affine plane, external structure, Laguerre plane, Minkowski

plane, nearaffine plane.

[87]



88 J. Jakóbowski

respect to some fixed point P of a Laguerre plane. Therefore circles should
become proper lines and generators should become straight lines. Moreover,
in classic nearaffine planes two lines are parallel if there exists a translation
which maps one line to the other. This idea should be kept for the case
of Laguerre planes. But now we have only one class of generators, so the
residual plane has only one class of straight lines. In the case of a Minkowski
plane B, if two points Q, R determining a line Q⊲R are given in the residual
plane B[P ], then in the initial Minkowski plane B, generators through P and
Q intersect also in some points Q1, Q2 and hence we have three points Q1,
Q2, R determining a circle. This is impossible in the case of Laguerre planes.
Here the concept of the base point of a line does not seem to make sense.
There are more differences. As a matter of fact, at least two classes of parallel
straight lines exist in any nearaffine plane. Thus investigation of residual
structures determined by Laguerre planes must really differ from the case of
Minkowski planes. However, in order to get a common description of external
structures concerning Laguerre planes as well as Minkowski planes, we shall
use classes of parallelism to define some modification of join. Moreover, we
start from two distinct families of lines: proper and straight. Since a Möbius
plane has no generator, we shall not extend this idea to that case.

2. Preliminary results. The concept of an affine plane [4, p. 116] is
well known. It is a structure (A,L) with the pointset A provided with the
family L of subsets of A, called lines, such that: there exist three points not
on a common line; every unordered pair of points A, B uniquely determines
a line AB containing both points; for every line l and point P not on l, there
exists a unique line k with P ∈ k and k ∩ l = ∅.

We shall also use some other structures.

Let Π be a nonempty set whose elements are called points. Let Σ1, Σ2
be families of subsets of Π, called generators, such that the following axioms
hold:

(G1) Let i ∈ {1, 2}. If Σi 6= ∅ then for every point P there exists a unique
generator σ ∈ Σi passing through P .

(G2) If Σ1 6= Σ2, σ ∈ Σ1, and τ ∈ Σ2, then σ meets τ in a unique point.

We shall use the notations Σ, [P ]i, and [P ] for the union of all generators,
the generator from Σi passing through P , and the union of all generators
through P , respectively (i.e. Σ = Σ1 ∪Σ2; σ = [P ]i ⇔ σ ∈ Σi ∧ P ∈ σ; and
[P ] = [P ]1 ∪ [P ]2). Distinct points A1, . . . , An are said to be joinable if no
generator passes through any two of them.

Let (Π,Σ) be any structure satisfying (G1), (G2), provided with a family
Λ of subsets of Π called circles.
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Definition 2.1 ([7, p. 219]). The structure B = (Π,Σ,Λ) is a Benz
plane if the following axioms hold:

(B1) Every circle intersects every generator in a unique point.
(B2) Through three pairwise distinct joinable points A,B,C, there is a

unique circle λ with A,B,C ∈ λ (denoted by (A,B,C)).
(B3) Given a circle λ, a point P ∈ λ and a point Q 6∈ λ with P and Q

joinable, there is a unique circle µ through Q such that λ∩µ = {P}.
(B4) There is a circle λ with at least three points such that Π \ λ 6= ∅.

Definition 2.2 (cf. e.g. [2], [3, p. 258], [5, pp. 45–46], [7, p. 219], [8]).
A Benz plane is called aMöbius plane, a Laguerre plane or aMinkowski plane
according as it contains 0, 1 or 2 nonempty distinct families of generators.

By (G1), (B1) and (G2) every circle λ of a Minkowski plane determines
the following involutorial bijection Sλ called the circle-symmetry with re-
spect to λ [9, pp. 271–272].

Definition 2.3.

Sλ : Π → Π, Sλ(P ) = Q ⇔ [P ]1 ∩ λ = [Q]2 ∩ λ ∧ [P ]2 ∩ λ = [Q]1 ∩ λ.

There exist Minkowski planes with a point P for which the following
condition holds [10, conditions (A), (B), pp. 121–122]:

(W) Let κ, λ ∈ Λ, P 6∈ κ∪ λ, [P ]i ∩ κ = {R
i
κ}, [P ]i ∩ λ = {R

i
λ}, R

i
κ 6= R

i
λ

(i = 1, 2).

(WA) If there exists a circle µ touching κ at R1κ and touching λ at
R2λ, then there also exists a circle ν touching κ at R

2
κ and

touching λ at R1λ.
(WB) If Sκ(P ) ∈ λ and Sλ(P ) ∈ κ, then there exist circles µ, ν such

that
µ ∩ κ = {R1κ}, µ ∩ λ = {R

2
λ}, ν ∩ κ = {R

2
κ}, ν ∩ λ = {R

1
λ}.

Let Ω be a nonempty set, and Ξ some family of subsets of Ω. Elements
of Ω will be called points, elements of Ξ, lines. Moreover, let ⊲ : Ω × Ω \
{(Z,Z); Z ∈ Ω} → Ξ be a surjection called join (⊲(X,Y ) will be denoted
by X ⊲ Y ) and let ≡ ⊂ Ξ × Ξ be an equivalence relation called parallelism
of lines. X is called the base point of the line X ⊲ Y . Lines satisfying the
condition X ⊲Y = Y ⊲X are called straight lines, the remaining ones, proper
lines. The set of all straight lines will be denoted by Υ .

Definition 2.4 ([11, pp. 53–54], [6, pp. 345–346]). A quadruple (Ω,Ξ,
⊲,≡) is a nearaffine plane if the following three groups of axioms hold:

(I) Axioms of lines:

(L1) X,Y ∈ X ⊲ Y for all X,Y ∈ Ω, X 6= Y .
(L2) Z ∈ X ⊲ Y \ {X} ⇔ X ⊲ Y = X ⊲ Z for all X,Y, Z ∈ Ω, X 6= Y .
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(L3) X ⊲ Y = Y ⊲ X = X ⊲ Z ⇒ X ⊲ Z = Z ⊲ X for all X,Y, Z ∈ Ω,
Y 6= X 6= Z.

(II) Axioms of parallelism:

(P1) For every line a and every point X, there exists a unique line with
base point X and parallel to a (we denote this line by (X ≡ a)).

(P2) X ⊲ Y ≡ Y ⊲ X for all X,Y ∈ Ω, X 6= Y .
(P3) a ≡ b ∧ a ∈ Υ ⇒ b ∈ Υ for all a, b ∈ Ξ.

(III) Axioms of richness:

(N1) There exist at least two nonparallel straight lines.
(N2) Every line a meets every straight line b nonparallel to a in exactly

one point.

Definition 2.5. For any Minkowski plane B = (Π,Σ,Λ) with a distin-
guished point P we put:

• Ω = Π \ [P ], Ξ = {σ ∩Ω; σ ∈ Σ, P 6∈ σ} ∪ {λ ∩Ω ∪ {Sλ(P )}; λ ∈ Λ,
P 6∈ λ}.
• ≡ ⊂ Ξ × Ξ and a ≡ b if one of the following mutually exclusive
conditions holds:

– a = b;
– a = σ ∩Ω and b = τ ∩Ω for some σ, τ ∈ Σ with σ ∩ τ = ∅;
– a = λ ∩ Ω ∪ {Sλ(P )} and b = µ ∩ Ω ∪ {Sµ(P )} for some λ, µ ∈ Λ
such that Sλ(P ) 6= Sµ(P ), Sλ(P ) ∈ [Sµ(P )] and λ ∩ µ ∩Ω = ∅;
– a = λ ∩ Ω ∪ {Sλ(P )}, b = µ ∩ Ω ∪ {Sµ(P )}, and Sλ(P ) 6∈ [Sµ(P )]
for some λ, µ ∈ Λ, and there exists ν ∈ Λ such that Sλ(P ), Sµ(P ) ∈
[Sν(P )] and λ ∩ ν ∩Ω = ∅ = ν ∩ µ ∩Ω;

• ⊲ : Ω ×Ω \ {(Z,Z); Z ∈ Ω} → Ξ and

– X ⊲ Y = σ ∩Ω if X,Y ∈ σ for some σ ∈ Σ;
– X⊲Y = λ∩Ω∪{X} ifX 6∈ [Y ], [X]∩[P ] = {U, V }, and λ = (U, V, Y )
(then Sλ(P ) = X).

Theorem 2.1 ([10, pp. 120–123]). If a Minkowski plane B = (Π,Σ,Λ)
with a distinguished point P satisfies condition (W), then the structure
B[P ] = (Ω,Ξ, ⊲,≡) given in Definition 2.5 is a nearaffine plane.

3. Pseudo-affine planes. Let Ω be a nonempty set of points provided
with two disjoint families Ψ , Υ of subsets of Ω called proper lines and straight
lines, respectively. We define

Γ =
{

(Q,R) ∈ Ω ×Ω;
∨

l∈Υ

Q ∈ l ∧R ∈ l
}

.(3.1)

Further we require:
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(i) (a) Υ = Υ1 ∪ Υ2, Υ1 6= ∅ 6= Υ2, and either Υ1 = Υ2 or Υ1 ∩ Υ2 = ∅.
(b) If Υ1 ∩Υ2 = ∅ then every p ∈ Υ1 meets every q ∈ Υ2 in a unique
point.

(c) For every point A there exists a unique p ∈ Υi (i = 1, 2) such
that A ∈ p.

(ii) For i ∈ {1, 2} an equivalence relation ≃i ⊂ Ψ × Ψ is given and
Υ1 = Υ2 ⇔ ≃1 = ≃2. We define Θi = {[l]≃i ; l ∈ Ψ}, Θ = Θ1 ∪ Θ2
and ≃ = ≃1 ∪ ≃2. The relation ≃ is called pseudo-parallelism.

(iii) There exists a surjective mapping △ : [(Ω×Ω)\Γ ]×Θ → Ψ called
pseudo-join.

We will consider a couple of structures in this paper. In order not to mix
the structures and their blocks, we shall denote:

• points (of all structures considered) by capital Latin letters A, B,
C, . . . ;
• lines (of any kind) by small Latin letters a, b, c, . . . ;
• classes of pseudo-parallelism by small letters of the first part of the
Greek alphabet, α, β, γ, . . .;
• the image of (A,B, α) with respect to △ by △(A,B, α);
• circles of a Benz plane by small letters of the middle part of the Greek
alphabet, κ, λ, µ, ν, . . . ;
• generators of a Benz plane by small letters of the last part of the Greek
alphabet, σ, ς, τ, . . . .

Definition 3.1. The structure (Ω,Ψ, Υ,≃,△) is called a pseudo-affine
plane if the following axioms hold:

(PA0) There exists p ∈ Υ with two distinct points and Ω \ p 6= ∅.
(PA1) A,B ∈ △(A,B, α) ∧△(A,B, α) ∈ α.
(PA2) C,D ∈ △(A,B, α) ∧ C 6= D ⇒△(A,B, α) = △(C,D, α).
(PA3) Every straight line intersects every proper line in a unique point.
(PA4) For every a ∈ Ψ and every A 6∈ a there exists a unique b ∈ Ψ such

that b ≃i a (i = 1, 2), A ∈ b, and a ∩ b = ∅.

Corollary 3.1. (a) △(A,B, α) = △(B,A, α).

(b) If a, b, c ∈ α and a ∩ b = ∅ = b ∩ c, then a ∩ c = ∅.

(c) △(A,B, α) ∈ β ⇒△(A,B, α) = △(A,B, β).

Proof. (a) follows immediately from (PA1) and (PA2) (we put C = B,
D = A), and (b) follows immediately from (PA4). Let △(A,B, α) ∈ β. By
(PA1) we have △(A,B, α) ∈ α ∩ β. Since ≃i (i = 1, 2) is an equivalence
relation, △(A,B, α) belongs to exactly one class of Θi. Thus we obtain
α = β if α, β ∈ Θ1 or α, β ∈ Θ2. Let α 6= β. Then Θ1 6= Θ2 (so ≃1 6= ≃2)
and e.g. α ∈ Θ1, β ∈ Θ2. The elements A, B and β uniquely determine the
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image △(A,B, β). By (PA1), it must be the proper line containing A, B
and belonging to β, i.e. △(A,B, α).

Theorem 3.1. Let (Ω,Ψ, Υ,≃,△) be a pseudo-affine plane and let α∈Θ.
Then (Ω, Υ ∪ α) is an affine plane.

Proof. Let A,B ∈ Ω, A 6= B. If (A,B) ∈ Γ then there exists p ∈ Υ
such that A,B ∈ p and, by requirement (i), such a p is unique. By (PA3),
no q ∈ Ψ contains both A and B. If (A,B) 6∈ Γ then △(A,B, α) uniquely
determined by (iii) is the unique element of Υ ∪ α containing A, B.
Let p ∈ Υ ∪ α and A ∈ Ω \ p. If p ∈ Υ1 then there exists a unique q ∈ Υ1

such that A ∈ q and q ∩ p = ∅ by (i)(c). Every r ∈ Ψ meets p by (PA3) and
the same arguments work for r ∈ Υ2 if Υ1 6= Υ2.
If p ∈ α then p ∩ r 6= ∅ for every r ∈ Υ by (PA3), and (PA4) shows that

there exists a unique q ∈ α such that A ∈ q and p ∩ q = ∅.
(PA0) implies that there exist three points not on a common line from

Υ ∪ α.

Definition 3.2. For any Laguerre or Minkowski plane B = (Π,Σ,Λ)
and P ∈ Π we put

(a) Ω = Π \ [P ];
(b) Υ = {σ ∩Ω; σ ∈ Σ, P 6∈ σ};
(c) for every λ ∈ Λ with P 6∈ λ,

λ∗ =

{

λ ∩Ω if B is a Laguerre plane,

(λ ∩Ω) ∪ {Sλ(P )} if B is a Minkowski plane,

Ψ = {λ∗; λ ∈ Λ, P 6∈ λ};

(d) λ∗ ≃ µ∗ ⇔ λ ∩ µ ∩ [P ] 6= ∅.

Using (B1) we get:

Corollary 3.2. Let ≃ be the relation given in Definition 3.2(d). If B
is a Laguerre plane then ≃ is an equivalence relation. If B is a Minkowski
plane then ≃ = ≃1 ∪ ≃2, where λ

∗ ≃i µ
∗ ⇔ λ ∩ µ ∩ [P ]i 6= ∅ (i = 1, 2) and

≃1, ≃2 are equivalence relations.

Let Θ denote the set of all equivalence classes of the relation ≃ from Def-
inition 3.2(d) (i.e. in the case of Minkowski planes we have Θ = Θ1 ∪Θ2,
where Θi is the set of all classes of ≃i, i = 1, 2). In both cases there is a
bijection between Θ and [P ] \ {P}. Let A≃ denote the class from Θ deter-
mined by A ∈ [P ] \ {P}. Preserving all notations from Definition 3.2 and
the meaning of Γ we make

Definition 3.3. △ : [(Ω × Ω) \ Γ ] × Θ → Ψ , △(Q,R, α) = λ∗, where
α = A≃ for some A ∈ [P ] \ {P} and we put
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(a) λ = (Q,R,A) for joinable Q,R,A;
(b) λ = (Q,A,B), where {B} = [R]2 ∩ [P ]1 for [R]1 = [A]1;
(c) λ = (Q,A,B), where {B} = [R]1 ∩ [P ]2 for [R]2 = [A]2.

Corollary 3.3. In cases (b), (c) of Definition 3.3 we obtain Sλ(P ) = R.

Theorem 3.2. The structure B〈P 〉 = (Ω,Ψ, Υ,≃,△) given in Defini-
tions 3.2 and 3.3 is a pseudo-affine plane.

Proof. We have to verify requirements (i)–(iii) and axioms (PA0)–(PA4).
Corollary 3.2 ensures the existence of ≃i (i = 1, 2). If B is a Laguerre plane
then we obviously obtain Υ1 = Υ2 = Υ and ≃1 = ≃2 = ≃. If B is a
Minkowski plane then Υ1 ∩ Υ2 = ∅ and ≃1 6= ≃2. Thus (i)(a) and (ii) hold.
(G1) and (G2) yield (i)(c) and (i)(b), respectively. By Definition 3.3, for
every triple (Q,R, α) ∈ [(Ω × Ω) \ Γ ] × Θ the line △(Q,R, α) is uniquely
determined. We shall show that △ is surjective. If a ∈ Ψ then a = λ∗ for
some λ ∈ Λ with P 6∈ λ. By (B1) there exists A ∈ ([P ] \ {P}) ∩ λ, and by
(B4), there exist at least two points Q, R (resp. one point Q) in λ ∩ Ω if
B is a Laguerre (resp. Minkowski) plane. Thus we obtain a = △(Q,R,A≃)
(resp. a = △(Q,Sλ(P ), A≃)).
In order to check (PA0)–(PA4), let us use Definition 3.3 and assume

a = △(A,B, α) = △(A,B,Q≃) = λ
∗, where Q ∈ ([P ] \ {P}) ∩ λ. We have

the following three exclusive possibilities for A, B: A,B ∈ λ; A = Sλ(P ),
B ∈ λ; B = Sλ(P ), A ∈ λ.
(PA0) is immediate from (B4), (G1) and (B1).
(PA1): Q ∈ ([P ] \ {P}) ∩ λ with Q≃ = α means λ

∗ ∈ α. In all three
possibilities mentioned above we get A,B ∈ λ∗.
(PA2): Let C,D ∈ △(A,B,Q≃), C 6= D, {C,D} 6= {A,B}. If C,D ∈ λ

then λ = (C,D,Q) and λ∗ = △(C,D,Q≃). If A = Sλ(P ) = C then B,D ∈ λ
and for R ∈ [P ] ∩ λ, R 6= Q we have (B,Q,R) = λ = (D,Q,R). Thus
△(A,B,Q≃) = λ∗ = △(C,D,Q≃).
(PA3): In the case of Laguerre planes straight and proper lines are un-

changed generators and circles without one point, respectively, not
through P . So (PA3) and (B1) coincide. In the case of Minkowski planes
every circle λ not through P meets every generator not through Sλ(P ) in a
point not in [P ]. Thus the point of intersection is on both traces, i.e. on the
proper line and on the straight line. Finally, the traces of [Sλ(P )]+ and of
[Sλ(P )]− intersect λ

∗ in Sλ(P ).
(PA4): Let C 6∈ a; b ∈ Ψ ; a 6= b = µ∗ for some µ ∈ Λ, P 6∈ µ. By

Definition 3.2(d), b ≃ a if there exists R ∈ [P ]∩λ∩µ. If R 6= T ∈ [P ]∩λ∩µ
(i.e. a ≃i b for i ∈ {1, 2} in a Minkowski plane) then Sλ(P ) ∈ λ

∗ ∩µ∗, hence
a ∩ b 6= ∅. If [P ] ∩ λ ∩ µ = {R} then either λ ∩ µ = {R} or there exists
T ∈ λ ∩ µ \ [P ]. In the former case, by (B3), exactly one such µ passes
through C. In the latter case T ∈ λ∗ ∩ µ∗, i.e. a ∩ b 6= ∅.
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Definition 3.4. For every (A,B) 6∈ Γ we put

[A,B] = {A,B} ∪
{

C ∈ Ω; ¬
∨

l∈Ψ

A,B,C ∈ l
}

.

Theorem 3.3. Let B = (Π,Σ,Λ) be a Laguerre or Minkowski plane,
P ∈ Π and [A,B] given in the pseudo-affine plane B〈P 〉. Then in the initial
Benz plane B we have [A,B] ∪ {P} = (A,B, P ).

Proof. Clearly, A,B, P ∈ ([A,B]∪{P})∩(A,B, P ) so let C 6∈ {A,B, P}.
Suppose C ∈ (A,B, P ) and C 6∈ [A,B]. Hence (A,B, P ) = (A,B,C) and
there exists some α ∈ Θ such that C ∈ △(A,B, α). But α = Q≃ for some
Q ∈ [P ] \ {P}. Thus (A,B, P ) = (A,B,C) = (A,B,Q), which contradicts
(B1). Conversely, let C ∈ [A,B] and suppose C 6∈ (A,B, P ). Then P 6∈
(A,B,C) and by (B1), there exists some point Q ∈ [P ] \ {P} such that Q ∈
(A,B,C). But Q determines the class α = Q≃ and (A,B,C)

∗ = △(A,B, α).
So C 6∈ [A,B], a contradiction.

Corollary 3.4. The plane B〈P 〉 completely determines the plane B.

4. A connection with nearaffine planes. Among all pseudo-affine
planes PA = (Ω,Ψ, Υ,≃,△) with Υ = Υ1 ∪ Υ2, Υ1 6= Υ2, we distinguish the
class satisfying the following additional axioms (PV) and (PW).

(PV) There exist bijections fi : Θi → Υi (i = 1, 2) such that f1(α1) ∩
f2(α2) ⊂ p for any αi ∈ Θi and p ∈ α1 ∩ α2.

Definition 4.1. f : Θ1 × Θ2 → Ω and f(α1, α2) = Q ⇔ fi(αi) = qi,
where qi ∈ Υi and Q ∈ qi for i = 1, 2.

Corollary 4.1. If a pseudo-affine plane PA = (Ω,Ψ, Υ,≃,△) satisfies
(PV) then every ordered pair of points (Q,R) 6∈ Γ uniquely determines l ∈ Ψ
such that Q,R ∈ l.

Proof. By (PV), Q = f(α, β) for some (α, β) ∈ Θ1×Θ2. Thus we obtain
l = △(Q,R, α) = △(Q,R, β).

Definition 4.2. Q is called a base point of a proper line l if l ∈ α ∩ β
and Q = f(α, β) for some (α, β) ∈ Θ1×Θ2. Every point of a straight line is
called its base point.

Corollary 4.2. Every proper line p = △(Q,R, αi) with αi ∈ Θi (i =
1, 2) has its base point on the straight line qi ∈ Υi if and only if fi(αi) = qi.

Now consider

(PW) If αi, βi ∈ Θi; αi 6= βi for i ∈ {1, 2}; a ∈ α1 ∩ α2; b ∈ α1 ∩ β2;
c ∈ β1 ∩ β2; a ∩ b = ∅ = b ∩ c; d ∈ β1 ∩ α2; e ∈ β1 ∩ β2 and
a ∩ d = ∅ = d ∩ e then c = e. Moreover, if f(β1, β2) ∈ a then
f(α1, α2) ∈ c.
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Definition 4.3. For any pseudo-affine plane (Ω,Ψ, Υ,≃,△) satisfying
(PV) and (PW) we define the structure (Ω,Ξ,≡, ⊲) as follows:

(i) Ξ = Ψ ∪ Υ .
(ii) ≡ ⊂ Ξ × Ξ and a ≡ b if one of the following mutually exclusive
conditions holds:

(a) a = b;
(b) a, b ∈ Υ and a ∩ b = ∅;
(c) a, b ∈ Ψ , a ∩ b = ∅ and a ≃1 b ∨ a ≃2 b;
(d) a, b ∈ Ψ , a 6= b and there exists c ∈ Ψ such that a∩c = ∅ = c∩b
and (a ≃1 c ∧ c ≃2 b) ∨ (a ≃2 c ∧ c ≃1 b).

(iii) ⊲ : Ω ×Ω \ {(Z,Z); Z ∈ Ω} → Ξ, and if (X,Y ) ∈ Γ then X ⊲ Y =
l, where l ∈ Υ and X,Y ∈ l, while if (X,Y ) 6∈ Γ then X ⊲ Y
is the proper line containing X, Y and uniquely determined by
Corollary 4.1.

In the structure (Ω,Ξ,≡, ⊲) from Definition 4.3 we have Ξ = Ψ ∪Υ and
we still call elements of Ξ, Ψ and Υ lines, proper lines and straight lines,
respectively.

Theorem 4.1. The structure (Ω,Ξ,≡, ⊲) given in Definition 4.3 is a
nearaffine plane.

Proof. (I) Clearly, the definition of the mapping ⊲ is correct. It remains
to show that ⊲ is surjective. Let l ∈ Ξ. If l ∈ Υ then l = X ⊲ Y for any
X, Y with X 6= Y . If l ∈ Ψ then l = △(U, V, α) = △(U, V, β) for some
(U, V ) ∈ Ω ×Ω \ Γ and α ∈ Θ1, β ∈ Θ2. By (PV) and Definition 4.1, there
exists Q ∈ l with f(α, β) = Q. If Q 6= U then we obtain l = Q⊲U . If Q = U
then Q 6= V and l = Q ⊲ V .
(II) ≡ is an equivalence relation. Indeed, it is immediate from Defini-

tion 4.3(ii) that ≡ is reflexive and symmetric. To show transitivity, assume
that a ≡ b and b ≡ c. Then either a, b, c ∈ Υ or a, b, c ∈ Ψ . The former
case is obvious, since then a, b, c ∈ Υ1 or a, b, c ∈ Υ2. Any two lines p, q
from Υi (i = 1, 2) are disjoint or equal, i.e. p ≡ q, by Definition 4.3(ii)(a),
(ii)(b). Consider the latter case and assume a 6= b 6= c. We shall consider the
following possibilities, omitting cases obtained by exchanging ≃1 and ≃2.
(A) a ≃1 b ≃1 c and a ∩ b = ∅ = b ∩ c. By (ii), ≃1 is an equivalence

relation, so a ≃1 c. In view of Corollary 3.1(b), a ∩ c = ∅. Therefore a ≡ c
(Definition 4.3(ii)(c)).
(B) a ≃1 b ≃2 c and a ∩ b = ∅ = b ∩ c. Then we get item (ii)(d) of

Definition 4.3.
(C) a ≃1 b, a ∩ b = ∅ and there exists d ∈ Ψ with b ≃1 d ≃2 c and

b ∩ d = ∅ = d ∩ c. Using (A) for a, b, d we get a ≃1 d, a ∩ d = ∅. Now we
have a ≃1 d ≃2 c and using (B) we get a ≡ c (Definition 4.3(ii)(d)).
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(D) a ≃1 b, a ∩ b = ∅ and there exists d ∈ Ψ such that b ≃2 d ≃1 c and
b ∩ d = ∅ = d ∩ c. We have a, b ∈ α; b, d ∈ β; d, c ∈ γ for some α, γ ∈ Θ1,
β ∈ Θ2. But also c ∈ δ for some δ ∈ Θ2. Consider the lines b, d, c. Set
T = f(α, δ). By (PA4), there exists a unique e ∈ α such that T ∈ e and
e ∩ b = ∅. In view of Corollary 4.2, the base point of e is on the straight
line f1(α). Since e intersects f1(α) in exactly one point, T must be the base
point of e. Therefore e ∈ δ. Let S be the base point of c. Using (PA4) again,
there exists a unique k ∈ δ such that S ∈ k and k ∩ e = ∅. So we obtain
b ≃1 e ≃2 k, b ∩ e = ∅ = e ∩ k and b ≃2 d ≃1 c, b ∩ d = ∅ = d ∩ c. By
(PW), we get k = c, i.e. e ∩ c = ∅. Therefore we have got a ≃1 b ≃1 e ≃2 c,
a ∩ b = ∅ = b ∩ e = e ∩ c and now it suffices to use (C).
(E) There exist lines d, e with a ≃1 d ≃2 b, a∩d = ∅ = d∩b, b ≃2 e ≃1 c,

and b ∩ e = ∅ = e ∩ c. Then we get a ≃1 d ≃2 e ≃1 c, i.e. (D).
(F) There exist lines d, e with a ≃1 d ≃2 b, a∩d = ∅ = d∩b, b ≃1 e ≃2 c,

and b∩e = ∅ = e∩ c. Since a ≃1 d ≃2 b ≃1 e, we can first use the arguments
from (D) to get a line k with a ≃1 k ≃2 e. Now we have c ≃2 e ≃2 k ≃1 a
and use arguments from (C) to get c ≡ a.
(III) Verification of axioms (L1)–(N2).
(L1) is obvious. Also (L2) and (L3) are obvious for straight lines X ⊲ Y .

So assume X ⊲ Y = △(X,Y, α) = △(X,Y, β), where X = f(α, β).
(L2): Let Z ∈ X ⊲ Y \ {X}. Then Z ∈ △(X,Y, α) for some α ∈ Θ and

(PA2) implies △(X,Y, α) = (X,Z, α) = X ⊲ Z.
By (PA1), Z ∈ △(X,Z, α). X⊲Z is defined only for Z 6= X, and X⊲Y =

X ⊲ Z means △(X,Y, α) = △(X,Z, α), so Z ∈ △(X,Y, α) \ {X}.
(L3): Clearly, Y = f(γ, δ) for some (γ, δ) ∈ Θ1 × Θ2. The assumption

X ⊲Y = Y ⊲X = X ⊲Z gives △(X,Y, α) = △(Y,X, γ) = △(X,Z, α). Every
proper line belongs to exactly one class from Θi, i = 1, 2. Thus α = γ.
Similarly we obtain β = δ. Hence X = f(α, β) = f(γ, δ) = Y . Therefore
X ⊲ Y = Y ⊲ X is impossible for proper lines.
(P3), (N2), (N1): By Definition 4.3(ii), if a is a proper line and b is a

straight line then a 6≡ b. Thus we obtain (P3). As (N2) and (PA3) coincide,
we get (N2). Since Υ1 and Υ2 are two distinct classes of straight lines, we
also get (N1).
(P1): Let a ∈ Ξ = Ψ∪Υ , X ∈ Ω, X = f(α, β) for some (α, β) ∈ Θ1×Θ2.

For straight lines a, b we have a ≡ b ⇔ a ≃ b ⇔ (a ∩ b = ∅ ∨ a = b). Thus
if a ∈ Υi then (X ≡ a) is the straight line from Υi passing through X (see
requirement (i)(c)). Let a ∈ Ψ . Then a = U ⊲ V = △(U, V, γ) = △(U, V, δ)
for some (U, V ) 6∈ Γ and (γ, δ) ∈ Θ1×Θ2, where U = f(γ, δ). If X = U then
(X ≡ a) = a and then a 6≡ b for every line b different from a and passing
through X, by Definition 4.3(ii) and Corollary 4.2. Assume that X 6= U . If
X, U are on a common straight line from Υ1 then X 6∈ a, and by (PA4),
there exists a unique proper line b through X with a ∩ b = ∅ and b ∈ γ. By
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Definition 4.3(ii)(c), b ≡ a. By Corollary 4.2, the base point of b lies on the
straight line from Υ1 passing through U and by (PA3), it must be X. Then
obviously γ = α, i.e. b ∈ α ∩ β. Let X, U be not on a common straight line
and write {Y } = u1 ∩ x2, where u1 ∈ Υ1, U ∈ u1, x2 ∈ Υ2, and X ∈ x2. As
before, we get uniquely determined proper lines b and c with base points Y
and X, respectively, such that b ∈ γ ∩ β, b∩ a = ∅, c ∈ α∩ β, and c∩ b = ∅.
Definition 4.3(ii)(d) implies that a ≡ c and that the only other way to get
a line e with base point X and e ≡ a is the following: Let {Z} = u2 ∩ x1
(notations as before) and take proper lines d, e such that Z is the base point
of d and X is the base point of e (then d ∈ α∩ δ, e ∈ α∩ β), d∩ a = ∅, and
e ∩ d = ∅. By (PW), e = c.
(P2): If X⊲Y is a straight line then X⊲Y = Y ⊲X and so X⊲Y ≡ Y ⊲X,

by Definition 4.3(ii)(a). Let a = X ⊲ Y be proper. Checking (P1), we have
already shown that there exists a unique proper line b with base point Y
such that X ⊲ Y ≡ b. There exist some α, γ ∈ Θ1 and β, δ ∈ Θ2 such
that X = f(α, β) and Y = f(γ, δ). Clearly, there also exists a line c with
a ∩ c = ∅ = c ∩ b and c ∈ α ∩ δ. Since Y ∈ a and the last part of (PW) is
valid, we obtain X ∈ b.
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[8] R. Löwen and R. U. Pfüller, Two-dimensional Laguerre planes over convex func-
tions, Geom. Dedicata 23 (1987), 73–85.

[9] N. Percsy, Finite Minkowski planes in which every circle-symmetry is an automor-
phism, ibid. 10 (1981), 269–282.

[10] H. A. Wilbrink, Finite Minkowski planes, Geom. Dedicata 12 (1982), 119–129.
[11] —, Nearaffine planes, ibid. 12 (1982), 53–62.

Jan Jakóbowski
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