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Summary. In this note we bind together Wilkie’s complement theorem with Lion’s the-
orem on geometric, regular and 0-regular families of functions.

0. Introduction. In [W] Wilkie proved that every weak o-minimal
structure which has the DSF property (is defined by its smooth functions)
is o-minimal. Karpinski and Macintyre [KM] gave a generalization of this
result and weakened the assumptions on smoothness for functions, which
determine a weak o-minimal structure. Lion [L] proved that a geometric,
regular and 0-regular family has the uniform finiteness property. He men-
tioned without proof that, by a modification of Wilkie’s theorem, such a
family generates an o-minimal structure. The aim of our note is to check
this by proving

Theorem. Let F = {Fn}n∈N be a regular, geometric and 0-regular fa-
mily. Then there exists an o-minimal structure S such that every f ∈ F is
definable in S.

This paper is organized as follows. In the first section we recall Wilkie’s
and Lion’s theorems. The second section is devoted to showing that a geo-
metric, regular family which has the uniform fibre finiteness property satis-
fies the DCN condition for all N (Def. 1.7). Then, the above theorem is an
immediate consequence of Lion’s theorem together with Proposition 2.5.

1. Theorems of Lion and Wilkie. Firstly we recall the following def-
initions.
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Definition 1.1 (see [L]). We say that a family G = {Gn}n∈N, where
each Gn is a set of real valued functions on Rn, is a geometric family if the
following conditions hold:

(G1) if f, g ∈ Gn, then fg and f + g ∈ Gn,
(G2) if f ∈ Gn, and f(x) 6= 0 for every x ∈ Rn, then 1/f ∈ Gn,
(G3) R[X1, . . . , Xn] ⊂ Gn,
(G4) if f ∈ Gn, and L : Rm → Rn is an affine map, then f ◦ L ∈ Gm.

Definition 1.2 (see [L]). A geometric family G = {Gn}n∈N is called
regular if for every n ∈ N and every g ∈ Gn, there exist a finite number of
affine hyperplanes H1, . . . ,Hl and n functions g1, . . . , gn ∈ Gn such that for
U = Rn \ (H1 ∪ · · · ∪Hl) the following conditions are satisfied:

(1) g|U is of class C1,
(2) ∂

∂xi
(g|U ) = gi|U , i = 1, . . . , n.

Let g : Rn → Rm and t ∈ Rm. By reg g−1(t) we denote (after Lion [L]) the
set of all x ∈ g−1(t) for which there exists an open neighbourhood U ⊂ Rn

of x such that g|U is a submersion of class C1.
Definition 1.3 (see [L]). We say that a geometric family G = {Gn}n∈N

is 0-regular if for every n ∈ N, every mapping g = (g1, . . . , gn) : Rn → Rn,
where gi ∈ Gn (i = 1, . . . , n), and for each t ∈ Rn, the set reg g−1(t) is finite.

Definition 1.4 (see [L]). We say that a geometric family G = {Gn}n∈N
has the uniform fibre finiteness (UFF) property if for every n, p ∈ N and
g = (g1, . . . , gp) : Rn → Rp, where gi ∈ Gn (i = 1, . . . , p), there exists N ∈ N
such that for each t ∈ Rp,

]{A ⊂ Rn | A is a connected component of g−1(t)} < N.

Theorem 1.5 (Lion [L]). Let G = {Gn}n∈N be a geometric regular fam-
ily. If it is 0-regular, then it has the uniform fibre finiteness property.

Now, we turn to the modification of Wilkie’s theorem by Karpinski and
Macintyre. Let AG(Rn) denote the set of all affine subspaces of Rn. Let
A ⊂ Rn. Then we put

γ(A) := min{N ∈ N : for all V ∈ AG(Rn),

A ∩ V has at most N connected components}.
If such an N does not exist, then we put γ(A) =∞.

Definition 1.6. A sequence S = {Sn}n∈N, where Sn ⊂ P(Rn) for each
n ∈ N, is called a weak o-minimal structure if for every n,m ∈ N, the
following conditions are satisfied:

(W1) if A,B ∈ Sn, then A ∩B ∈ Sn,
(W2) Sn contains all semialgebraic subsets of Rn,
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(W3) if A ∈ Sn and B ∈ Sm, then A×B ∈ Sn+m,
(W4) if A ∈ Sn and σ is a permutation of coordinates, then σ(A) ∈ Sn,
(W5) if A ∈ Sn, then γ(A) <∞,
(W6) if A ∈ Sn, then there exist m ≥ n and a closed set B ∈ Sm

such that A = Πm,n(B), where Πm,n : Rm 3 (x1, . . . , xm) 7→
(x1, . . . , xn) ∈ Rn.

Definition 1.7. Let N ∈ N. A weak o-minimal structure S = {Sn}n∈N
satisfies the DCN condition for all N if for each A ∈ Sn there exists p ≥ n,
such that for each N ∈ N, A is equal to Πp,n({fN = 0}), where

(1) fN : Rp → R is of class CN ,
(2) graph fN ∈ Sp+1.

Theorem 1.8 (Wilkie, Karpinski, Macintyre). Suppose S = {Sn}n∈N is
a weak o-minimal structure satisfying DCN for all N . Then there exists an
o-minimal structure S̃ = {S̃n}n∈N which contains S.

It is not difficult to check that if G = {Gn}n∈N is a regular geometric
family with the uniform fibre finiteness property, then defining Sn to be the
family of all subsets of Rn of the form f−1(0), where f ∈ Gn, we obtain
a weak o-minimal structure. It is less obvious that this structure satisfies the
DCN condition for all N ∈ N. We will check this in detail.

2. DCN condition

Lemma 2.1. Let F = {Fn}n∈N be a geometric family with the uniform
fibre finiteness property. Then

(1) for every k ∈ N,

S̃k := {g : Rk → R | there exist n ∈ N, f ∈ Fn and a semialgebraic

map ψ : Rk → Rn such that g = f ◦ ψ}
is a ring,

(2) the family S = {Sk}k∈N, where Sk is the ring of fractions of S̃k

with respect to the multiplicative set of nowhere vanishing functions,
is a geometric family with the UFF property.

Proof. (1) Let f : Rp → R, g : Rs → R, ψ : Rk → Rp, φ : Rk → Rs,
where f ∈ Fp, g ∈ Fs, and ψ, φ are semialgebraic maps. Then the function

h : Rp × Rq 3 (u, v) 7→ f(u)g(v) ∈ R
belongs to Sp+q, by (G1) and (G4). Consequently,

(f ◦ ψ) · (g ◦ φ) = h ◦ (ψ, φ) ∈ S̃k.

In a similar way we can show that f ◦ ψ + g ◦ φ ∈ S̃k.
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(2) The family S = {Sk}k∈N satisfies conditions (G1)–(G4) in the obvi-
ous way. To check the UFF property, take

Fi : Rji → R, Gi : Rli → R, Gi, Fi ∈ F, i = 1, . . . , k,

ψi : Rn → Rji , φi : Rn → Rli , ψi, φi semialgebraic maps, i = 1, . . . , k,

and

H =

(
F1 ◦ ψ1

G1 ◦ φ1
, . . . ,

Fk ◦ ψk

Gk ◦ φk

)
,

where G1 ◦φ1(x) 6= 0, . . . , Gk ◦φk(x) 6= 0, for every x ∈ Rn. By (G4) we may
assume that s = ji = li and ξ = ψi = φi for i = 1, . . . , k. There exist (see
[BCR, 2.2]) m ∈ N and a polynomial P : Rn × Rs × Rm → R such that

graph ξ = {(x, y) ∈ Rn × Rs | ∃z ∈ Rm : P (x, y, z) = 0}.
Define

Θ : Rn × Rk × Rk × Rs × Rm → Rk × Rk × Rk × R,
by

Θ
(
x, (a1, . . . , ak), (b1, . . . , bk), y, z

)
=
(
(a1b1, . . . , akbk), (F1(y)− a1, . . . , Fk(y)− ak),

(b1G1(y)− 1, . . . , bkGk(y)− 1), P (x, y, z)
)
.

There exists N ∈ N such that the number of connected components of
Θ−1(t, 0, 0, 0, ), for every t ∈ Rk, is not greater than N . It is easy to see
that

H−1(t) = Π(Θ−1(t, 0, 0, 0)),

where Π is the projection on the first n coordinates. Since the image of a
connected set under a continuous map is connected, the map H has the UFF
property.

Definition 2.2. We say that a geometric family G = {Gn}n∈N is semi-
algebraically regular if for every n ∈ N and g ∈ Gn, there exists a semialge-
braic, closed, nowhere dense subset A ⊂ Rn and functions g1, . . . , gn ∈ Gn

such that, for U = Rn \A:
(1) g|U is of class C1,
(2) ∂

∂xi
(g|U ) = gi|U , i = 1, . . . , n.

This is a generalization of the notion of a regular geometric family.
Lemma 2.1 easily implies

Lemma 2.3. Any geometric regular family F = {Fn}n∈N with the UFF
property generates a semialgebraically regular geometric family with the UFF
property, closed with respect to compositions on the right with semialgebraic
maps.
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Proof. It is enough to show that every composition f ◦ φ of f ∈ Fn and
a semialgebraic map φ : Rm → Rn is of class C1 except on a closed, nowhere
dense semialgebraic set A ⊂ Rm.

We prove this by induction on n. For n = 1 it is obvious. Let n > 1, and
assume that the statement is true for every m < n. There exist hyperplanes
H1, . . . ,Hk such that f |U is of class C1, where U = Rn \ (H1∪· · ·∪Hk). Also
φ is of class C1 outside a closed, nowhere dense semialgebraic set D ⊂ Rm.
Let B = φ−1(H1 ∪ · · · ∪Hk). If dimB < n, there is nothing to prove. When
intB 6= ∅, then it suffices to consider the maps gi = f |Hi ◦ φ̃i, where

φ̃i(x) =

{
φ(x), x ∈ φ−1(Hi),
ai, x ∈ Rn \ φ−1(Hi),

and ai is arbirarily chosen from Hi. By the inductive hypothesis gi is of class
C1 except a closed, nowhere dense semialgebraic set Ci. It follows that f ◦ φ
is of class C1 outside the set C = C1 ∪ · · · ∪ Ck ∪D.

Lemma 2.4. If C is a semialgebraic cell in Rn of dimension k, then there
exists a semialgebraic C∞-mapping φC : Rk → Rn such that C = imφC .

Proof. Use Proposition 2.9.10 from [BCR] and the C∞-diffeomorphism

Φk : Rk 3 (x1, . . . , xk)→
(
1

2

(
x1√
1 + x21

)
, . . . ,

1

2

(
xk√
1 + x2k

))
onto (0, 1)k.

Now we can state

Proposition 2.5. Let G = {Gn}n∈N be a semialgebraically regular ge-
ometric family with the uniform fibre finiteness property, closed with re-
spect to compositions on the right with semialgebraic maps. Then, for each
n ∈ N, there exists l ∈ N such that if F = (F1, . . . , Fk) : Rn → Rk, where
Fi ∈ Gn, i = 1, . . . , k, A := F−1(0), then for every N ∈ N there exists
F̃ : Rn+l → R of class CN such that F̃i ∈ Gn+l for every i = 1, . . . , n+ l and
A = Πn+l,n(F̃

−1(0)).

Proof. We will prove the proposition by induction on n. For n = 1 it
is obvious, because sets on the real line are finite sums of points and inter-
vals.

Now assume the conclusion is true for every m < n + 1. Take F :
Rn+1 → Rk, where Fi ∈ Gn+1, and let A = F−1(0). Let V ⊂ Rn+1 be
a closed, nowhere dense semialgebraic set such that F |Rn+1\V is of class CN .
Take a cell decomposition B of Rn+1 compatible with V . Then B =
B0 ∪ · · · ∪ Bn+1, where

Bi = {B ∈ Bi | dimB = i}, i = 0, 1, . . . , n+ 1.
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Let B ∈ B. Consider two cases:

(1) B ∈ Bn+1. There exists a semialgebraic diffeomorphism

ϕB = (ϕ1
B, . . . , ϕ

n+1
B ) : Rn+1 → B

of class C∞. Then

A ∩B = {x ∈ Rn+1 | ∃z ∈ Rn+1 : ψB(x, z) = 0},
where ψB(x, z) = (F ◦ϕB)

2(z) +
∑n+1

i=1 (ϕ
i
B(z)− xi)2 is a function of

class CN and ψB ∈ G2n+2.
(2) B ∈ Bj for some j = 1, . . . , n . There exists a semialgebraic diffeo-

morphism ϕB = (ϕ1
B, . . . , ϕ

n+1
B ) : Rj → B of class C∞. By induction

hypothesis there exist lj ∈ N and CN -maps F̂B : Rj+lj → R such
that Πj+lj ,j(F̂

−1
B (0)) = (F ◦ ϕB)

−1(0). Now

A ∩B = {x ∈ Rn+1 | ∃tj ∈ Rj ∃uj ∈ Rlj : ψB(x, t
j , uj) = 0},

where ψB(x, t
j , uj) = F̂ 2(tj , uj) +

∑n+1
i=1 (ϕ

i
B(t

j) − xi)2 is a function
of class CN and ψB ∈ Gn+j+lj+1.

Define B0 =
⋃

B∈B0 B and A0 = B0 ∩A. Consider the CN -function

Ψ : Rn+1 × Rn+1 × Rn × Rln × · · · × R1 × Rl1 −→ R
given by

Ψ(x, z, tn, uln , . . . , t1, ul1) =
∏

B∈Bn+1

ψB(x, z)
n∏

j=1

∏
B∈Bj

ψB(x, t
j , uj)

·
∏
a∈A0

( n+1∑
i=1

(ai − xi)2
)
.

Let l = 2n+2+n(n+1)/2+
∑n

j=1 lj . It is easy to see that A = Π(Ψ−1(0)),
where Π : Rl → Rn+1 is the projection onto the first n+ 1 coordinates.
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