A Positive Definite Binary Quadratic Form as a Sum of Five Squares of Linear Forms (Completion of Mordell's Proof)

by

A. SCHINZEL

Summary. The paper completes an incomplete proof given by L. J. Mordell in 1930 of the following theorem: every positive definite classical binary quadratic form is the sum of five squares of linear forms with integral coefficients.

Let $f(X, Y)=a X^{2}+2 h X Y+b Y^{2}$, where $a \geq 0, h, b$ are given integers and $\Delta=a b-h^{2} \geq 0$. L. J. Mordell [3] considered the equation

$$
\begin{equation*}
f(X, Y)=\sum_{r=1}^{n}\left(a_{r} X+b_{r} Y\right)^{2} \tag{1}
\end{equation*}
$$

where $a_{r}, b_{r}(r=1, \ldots, n)$ are integers. He proved that for $n=4$ the equation (1) is solvable if and only if $\Delta \neq 4^{\rho}(8 \sigma+7)$, where $\rho \geq 0, \sigma \geq 0$ are integers, i.e. Δ can be expressed as a sum of three integer squares. For $n=5$ Mordell asserted that (1) is always solvable, but the proof given on pp. 280-282 seems to contain a gap on p. 282. The author says "Suppose next that $\Delta=4^{\rho}(8 \sigma+7)(\rho>0)$. By a theorem of Lipschitz [Matthews, Theory of Numbers, pp. 159-62], every properly primitive form of determinant $D p^{2}$ where p is a prime, (and hence of determinant $D p^{2 \alpha}$) can be derived from a properly primitive form of determinant D by a substitution with integer coefficients and determinant p (or p^{α} in the second case). Hence, it suffices to prove our theorem for the improperly primitive forms of determinant Δ, i.e. those with $(a, 2 h, b)=2$. But then h is even since $\Delta=a b-h^{2}$, and we

[^0]can write
\[

$$
\begin{equation*}
a X^{2}+2 h X Y+b Y^{2}=2\left[\frac{1}{2} a X^{2}+2\left(\frac{1}{2} h\right) X Y+\frac{1}{2} b Y^{2}\right] \tag{2}
\end{equation*}
$$

\]

The determinant of the form in brackets is $\frac{1}{4} \Delta$. Hence, step by step, we are brought to the case $\rho=0$. Hence the theorem is proved and $N=5$ in $\S 1$ ".

Now, if $\rho=1$ the form in brackets in (2) has determinant $8 \sigma+7$ and by the already proved case of the theorem can be represented as $\sum_{r=1}^{5}\left(a_{r} X+b_{r} Y\right)^{2}$. However, why should $2 \sum_{r=1}^{5}\left(a_{r} X+b_{r} Y\right)^{2}$ be represented as $\sum_{r=1}^{5}\left(a_{r}^{\prime} X+b_{r}^{\prime} Y\right)^{2}, a_{r}^{\prime}, b_{r}^{\prime}$ integers? This question is not answered in 3.

The following argument fills this gap.
Lemma 1 (Ramanujan). The form $x^{2}+y^{2}+z^{2}+s t^{2}(1 \leq s \leq 7)$ represents over \mathbb{Z} all non-negative integers.

Proof. See [1, Theorem 96, p. 105].
Lemma 2. For every positive definite classical binary quadratic form f with determinant $\Delta=4(8 \sigma+7)$ there exist integers t, u such that

$$
\begin{equation*}
\Delta-f(t, u) \tag{3}
\end{equation*}
$$

is a sum of three squares.
Proof. Let $f=a X^{2}+2 h X Y+b Y^{2}$. Following Mordell (p. 281) by effecting a linear substitution of determinant unity and writing $-y$ for y if need be, we may suppose that the form f is reduced and that $h \geq 0$, so that

$$
\begin{equation*}
b \geq a \geq 2 h, \quad a \leq 2 \sqrt{\Delta / 3} \tag{4}
\end{equation*}
$$

If $a \leq 7$, then by Lemma 1 the equation $\Delta=x^{2}+y^{2}+z^{2}+a t^{2}$ has integer solutions (x, y, z, t), thus the conclusion holds with $u=0$. If $a \geq 8$, then by (4), $\Delta \geq 48$ and $b \leq \frac{4 \Delta}{3 a} \leq \frac{\Delta}{6}$. Since $\Delta \equiv 28 \bmod 32$, we have either $\Delta \geq 92$, or $a=b=8$ and $h=2$. In the first case

$$
\begin{aligned}
f(1,0) & <f(2,0)<\Delta, \quad f(0,1)<f(0,2)<\Delta \\
f(-1,-1) & <f(2,-2)=4 a-8 h+4 b \leq 4 a+\frac{4 \Delta}{a} \\
& =32+\frac{\Delta}{2}-(a-8)\left(\frac{\Delta}{2 a}-4\right) \leq 32+\frac{\Delta}{2}<\Delta .
\end{aligned}
$$

The corresponding inequalities are also true in the second case. Taking $(t, u)=(1,0),(0,1),(1,-1)$ and assuming that (3) does not hold we obtain

$$
\begin{equation*}
a \equiv 0,4,5 \bmod 8 ; \quad b \equiv 0,4,5 \bmod 8 ; \quad a+b-2 h \equiv 0,4,5 \bmod 8 \tag{5}
\end{equation*}
$$

Taking in turn $(t, u)=(2,0),(0,2),(2,-2)$ we obtain

$$
\begin{equation*}
a \equiv 0,3,7 \bmod 8 ; \quad b \equiv 0,3,7 \bmod 8 ; \quad a+b-2 h \equiv 0,3,7 \bmod 8 \tag{6}
\end{equation*}
$$

Comparing (5) with (6) we obtain $a \equiv 0 \bmod 8, b \equiv 0 \bmod 8, h \equiv 0 \bmod 4$, hence $\Delta=a b-h^{2} \equiv 0 \bmod 16$, contrary to $\Delta \equiv 28 \bmod 32$.

Completion of Mordell's proof. Let 4^{j} be the highest power of 4 dividing (a, h, b). Consider first $j=0$. If $\Delta \neq 4^{\rho}(8 \sigma+7)$ with $\rho \geq 1$ the assertion has been proved by Mordell. If $\Delta=4(8 \sigma+7)$, then by Lemma 2 there exist integers t, u such that $\Delta-f(t, u)$ is a sum of three squares. Since $\Delta-f(t, u)$ is the determinant of the form $f(X, Y)-(u X-t Y)^{2}$, from Mordell's theorem (for $n=4$) quoted in the introduction we obtain

$$
f(X, Y)=(u X-t Y)^{2}+\sum_{r=1}^{4}\left(a_{r} X+b_{r} Y\right)^{2}, \quad a_{r}, b_{r} \in \mathbb{Z}(r=1, \ldots, 4)
$$

If $\Delta=4^{\rho}(8 \sigma+7), \rho \geq 2$, let $d=(a, h, b)$. We have $d \not \equiv 0 \bmod 4$, since $j=0$. The form

$$
f_{d}(X, Y)=\frac{a}{d} X^{2}+\frac{2 h}{d} X Y+\frac{b}{d} Y^{2}
$$

is primitive. It cannot be improperly primitive, since in that case $\operatorname{ord}_{2} a>$ $\operatorname{ord}_{2} d, \operatorname{ord}_{2} b>\operatorname{ord}_{2} d$ and since $a b-h^{2}=\Delta \equiv 0 \bmod 16, \operatorname{ord}_{2} h>\operatorname{ord}_{2} d$. Thus $f_{d}(X, Y)$ is properly primitive and by the Lipschitz theorem there exist a form f_{0} with determinant $\Delta d^{-2} 4^{\text {ord }_{2} d-\rho}$ and integers $\alpha, \beta, \gamma, \delta$ such that

$$
\begin{equation*}
f_{d}(X, Y)=f_{0}(\alpha X+\beta Y, \gamma X+\delta Y) \tag{7}
\end{equation*}
$$

The determinant of the form $d f_{0}$ is $4^{\operatorname{ord}_{2} d}(8 \sigma+7)$, hence by the already proved part of the theorem, $d f_{0}$ is a sum of five squares of integral linear forms, and by (7) the same applies to f.

Consider now the general case. Since $4 \nmid\left(a / 4^{j}, h / 4^{j}, b / 4^{j}\right)$, by the already proved case of the theorem we have

$$
\frac{a}{4^{j}} X^{2}+\frac{2 h}{4^{j}} X Y+\frac{b}{4^{j}} Y^{2}=\sum_{r=1}^{5}\left(a_{r} X+b_{r} Y\right)^{2}, \quad a_{r}, b_{r} \text { integers }(r=1, \ldots, 5)
$$

Therefore,

$$
a X^{2}+2 h X Y+b Y^{2}=\sum_{r=1}^{5}\left(2^{j} a_{r} X+2^{j} b_{r} Y\right)^{2}
$$

A simpler question, namely whether under the same conditions on a, b and h,

$$
\begin{equation*}
a X^{2}+2 h X Y+b Y^{2}=\sum_{r=1}^{n}\left(a_{r} X+b_{r} Y\right)^{2}, \quad a_{r}, b_{r} \text { rationals }(1 \leq r \leq n) \tag{8}
\end{equation*}
$$

was settled affirmatively for $n=5$ already by Landau [2]. Here we add the following

THEOREM. If $n \geq 5, a, b, h$ are rationals, $a \geq 0, \Delta=a b-h^{2} \geq 0$ and rationals $a_{1}, \ldots, \bar{a}_{n}$ satisfy $a_{1}^{2}+\cdots+a_{n}^{2}=a$, then there exist rationals b_{1}, \ldots, b_{n} such that (8) holds.

Proof. By performing a linear substitution (see [2]) we reduce the general case to the case $h=0$. If $a=0$ we have $a_{1}=\cdots=a_{n}=0$ and we choose rational b_{1}, \ldots, b_{n} such that $b_{1}^{2}+\cdots+b_{n}^{2}=b$. If $b=0$ we take $b_{1}=\cdots=b_{n}=0$. If $a>0$ and $b>0$ we distinguish two cases:
(i) $a_{n} \neq 0$,
(ii) $a_{n}=0$.

In case (i) the quadratic form $f\left(u_{1}, \ldots, u_{n}\right)=b u_{n}^{2}-u_{1}^{2}-\cdots-u_{n-1}^{2}-$ $\left(a_{1} a_{n}^{-1} u_{1}+\cdots+a_{n-1} a_{n}^{-1} u_{n-1}\right)^{2}$ is indefinite, since $f(0, \ldots, 0,1)=b>0$ and $f(1,0, \ldots, 0)=-a_{1}^{2} a_{n}^{-2}-1<0$. By Meyer's theorem there exist integers v_{1}, \ldots, v_{n} not all zero such that $f\left(v_{1}, \ldots, v_{n}\right)=0$. The equality $v_{n}=0$ implies $v_{i}=0(1 \leq i \leq n)$, thus $v_{n} \neq 0$ and taking

$$
b_{i}=\frac{v_{i}}{v_{n}} \quad(1 \leq i<n), \quad b_{n}=-a_{1} a_{n}^{-1} b_{1}-\cdots-a_{n-1} a_{n}^{-1} b_{n-1}
$$

we obtain (8) with $h=0$.
In case (ii) there exists $k<n$ such that $a_{k} \neq 0$ and we perform the transposition (k, n).

Acknowledgments. Thanks are due to J. Browkin for his criticism of an earlier version.

References

[1] L. E. Dickson, Modern Elementary Theory of Numbers, Univ. of Chicago Press, 1939.
[2] E. Landau, Über die Zerlegung definiter Funktionen in Quadrate, Arch. Math. Physik (3) 7 (1904), 271-277; reprinted in Collected Works, Vol. 2, Thales-Verlag, 1986, 109-115.
[3] L. J. Mordell, A new Waring's problem with squares of linear forms, Quart. J. Math. 1 (1930), 276-288.
A. Schinzel

Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-956 Warszawa, Poland
E-mail: schinzel@impan.pl

[^0]: 2010 Mathematics Subject Classification: Primary 11E25.
 Key words and phrases: positive definite binary quadratic form, sums of squares of linear forms.

