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Summary. Let (X, A) be a pair of topological spaces, T': X — X a free involution and
A a T-invariant subset of X. In this context, a question that naturally arises is whether
or not all continuous maps f : X — R* have a T-coincidence point, that is, a point z € X
with f(z) = f(T(z)). In this paper, we obtain results of this nature under cohomological
conditions on the spaces A and X.

1. Introduction. One formulation of the Borsuk—Ulam Theorem [I] is
that there is no map from S™ to S™ equivariant with respect to the antipodal
map, when m > n. In [6], it was proved that if X and Y are Hausdorff,
pathwise connected and paracompact spaces equipped with free involutions
T:X — Xand S :Y — Y such that for some natural n > 1, H"(X;Zs) =0
for 1 < r < n and H""(Y/S;Z3) = 0, where Y/S is the orbit space of Y
by S, then there is no equivariant map f : (X,T) — (Y, 5).

The first aim of this paper is to generalize this result for the following
relative case:

THEOREM 1.1. Let X,Y be a Hausdorff, connected and paracompact
spaces equipped with free involutions T : X — X and S :' Y — Y. Let
A be a non-empty connected and T-invariant subset of X. Suppose that for
somen>1, H (A, Z3) =0 for 1 <r <n—1,i* : H"(X,Z) — H"(A,Z5)
is the null homomorphism, where i : A — X 1is the inclusion map and
H"(Y/S;7Z9) = 0. Then there is no equivariant map f : (X,T) — (Y, S).
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The following theorem is an important consequence of Theorem [1.1

THEOREM 1.2. Let X be a Hausdorff, connected and paracompact space
with a free involution T : X — X. Let A be a non-empty connected and T -
invariant subset of X. Suppose that for some n > 1, HT(A,ZQ) =0 forl1<
r<n—2andi*: H"YX, Zy) — H" (A, Zs) is the null homomorphism,
where i : A — X is the inclusion map. Then, if ¢ : X — R¥ is an acyclic
multi-valued map and n > k, there exists x € X such that p(z)Np(T(x)) # 0.

In the particular case when ¢ = f is a single-valued map, we obtain

COROLLARY 1.3. Let X be a Hausdorff, connected and paracompact space
with a free involution T : X — X. Let A be a non-empty connected and T'-
mwvariant subset of X. Suppose that for some n > 1, E[T(A,Zg) =0 for1<
r<n—2andi*: H"YX, Zy) — H" (A, Zs) is the null homomorphism,
where i : A — X is the inclusion map. Then, if f : X — R¥ is a map with
n >k, there exists x € X such that f(x) = f(T(x)).

The paper is organized as follows. In Section [2] we prove Theorem In
Section [3] we recall definitions, fix notations, state necessary results on multi-
valued maps and prove Theorem In Section [, we show an interesting
example to which Theorem [I.2] can be applied and we finish the paper with
some applications.

Throughout the paper, we assume that all spaces under consideration
are Hausdorff spaces. H *(,Z2) denotes Cech cohomology with coefficients
in ZQ.

2. Proof of Theorem In this section we prove Theorem We
need first to prove the following lemma.

LEMMA 2.1 (cf. [6]). Let X, Y be Hausdorff and paracompact spaces,
equipped with free involutions T : X — X and S :' Y — Y. Let e €
HY(X/T,Zs) and uw € H'(Y/T,Zs) be the Euler classes of the Zy-principal
bundles X — X/T and Y — YT, respectively. If "™ # 0 and v = 0,
then there is no equivariant map f: (X, T) — (Y, 9).

Proof. Let BZy be the classifying space for Zs, and denote by a €
H 1(BZQ, Z2) the Euler class of the universal principal Zs-bundle over BZ,.
Since X is a Hausdorff paracompact space, one can take a classifying map
h : X/T — BZsy for the principal Zo-bundle X — X/T, and from h* :
HY(BZs,Zs) — H'(X/T,Zs) one gets the Euler class

e =h*(a) € HY(X/T, Zy)

of X — X/T.
Now suppose f : (X,T) — (Y,S) is an equivariant map, and let g :
Y/S — BZs be a classifying map for Y — Y/S. Then go f is also a classifying
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map for X — X/T, and therefore it is homotopic to h; here f : X/T — Y/S
is induced by f. Since u = g*(a), we have e = h*(a) = (go f)*(a) =
f*og*(a) = f*(u), and thus f*(u"*1) = e**! #£ 0, which contradicts the

fact that u"*1 = 0. =

Proof of Theorem . Let é € H'(A/T,Zs) be the Euler class of the
principal Zo-bundle A — A/T and let i : A/T < X/T be induced by the
inclusion ¢ : A — X. We have

i*(e) = é€ HY (A/T, Zs),

where e € H'(X /T, Z5) is the Euler class of X — X/T.
Now, let us consider the following diagram:

0 — HO(X/T) 2 HO(X) T HO(X/T,) Yo H'(X/T) —> -

- N | -

0—= HO(A/T) L FO(A) T~ HO(A)T) Lo HY(A/T) —> - -

= HN(X)T) P BT(X) T H(X)T) Y B (XT) —> - -

= H"(A)T) L= H"(A) "= H"(A)T) 2% A™(A)T) — - --
where the rows are Gysin exact sequences (see for example [2l Theorem
17.9.2]) and each square commutes by naturality, p is the quotient map and
7 is the transfer homomorphism. Since A is connected, p* : H*(A/T, 7o) —
H%(A,7Z5) is an isomorphism, hence Ué : HO(A/T,Zs) — HY(A/T,Zs)
is injective and thus é = 1Ué € H'(A/T,Zs) is nonzero. The fact that
H"(A,7Z3) = 0 for 1 < r < n — 1 implies that Ué : H"(A/T,Z3) —
H™*tY(A/T,Zy) is an isomorphism for 1 < 7 < n — 2 and injective for
r = n — 1, hence é" € H"(A/T,Zs) is nonzero. Since i*(e") = é* # 0,
we see that e € H"(X/T,Zs) is nonzero.

Now, we will show that e"t! € H"(X/T,Z,) is nonzero. Suppose
e"t = e"Ue = 0. Then e" € ker(Ue) = im(7) and there exists a nonzero
a € H"(X,Zs) such that 7(a) = e”. Therefore, i* o 7(a) = i*(e”) = é” # 0.

On the other hand, since i* : H™(X,Zy) — H"™(A,Zs) is the null ho-
momorphism and each square in the diagram commutes, it follows that
i*o7(a) = 70i*(a) = 0. Thus "1 £ 0.

Finally, since H"*1(Y/S,Zs) = 0, we see that u"*1 € H"Y(Y/S, Zs) is
zero, and by Lemma [2.1| there is no equivariant map f: (X,T) — (¥, 5). =

3. Results on multi-valued maps and proof of Theorem Let
X and Y be two spaces and assume that for each point z € X a non-empty
closed subset p(z) of Y is given; in this case, we say that ¢ is a multi-valued
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map from X into Y and we write ¢ : X — Y. More precisely, a multi-valued
map @ : X —o Y can be defined as a subset ¢ of X xY for which the following
condition is satisfied: for every € X the set p, ={y €Y | (z,y) € ¢} isa
non-empty closed subset of Y.

A multi-valued map ¢ : X — Y is called upper semicontinuous (u.s.c.)
if for every open subset U of Y the set ¢ 1(U) = {z € X | ¢(z) C U} is an
open subset of X.

A compact space X is acyclic (with respect to the functor H*( ,Zs)) if
HY(X,Zs) = Zy and HY(X,Z5) = 0 for all ¢ > 0. In other words, X has the
cohomology of a point.

An u.s.c. multi-valued map ¢ : X —o Y is called acyclic if for every x € X
the set p(z) is an acyclic subset of Y.

Let ¢ : X — Y be an u.s.c. multi-valued map and consider

I ={(z,y) € X XY [y € p(2)},
the graph of . Associated with ¢ are two projections, p : I, — X and
q: Iy =Y, given by p(z,y) =« and ¢(z,y) = .
Below, we list some basic properties of u.s.c. multi-valued mappings.
LEMMA 3.1. Let X be a connected space and ¢ : X — Y an u.s.c. multi-

valued map with connected values. Then p(X) = |J,cx ©() is a connected
space.

A continuous function p : X — Y is called perfect if it is closed, surjective
and p~!(y) is compact for each y € Y.

LEMMA 3.2 (|3, Theorem 5.3]). Let p : X — Y be a perfect function.
If Y is paracompact, so also is X.

LEMMA 3.3 ([4, Proposition 32.3]). Let ¢ : X — Y be an u.s.c. multi-
valued map with compact values. Then the projection p : I\, — X is a perfect
function. In particular, if X is paracompact, so also is I',.

THEOREM 3.4 ([7]). Let X,Y be Hausdorff paracompact spaces and p :
X — Y a continuous, closed onto map such that p~*(y) is acyclic for every
y € Y. Then the induced homomorphism

" H¥ (Y, Zo) — H*(X,Zs)
is an tsomorphism.

Proof of Theorem . Let ¢ : X — R” be an acyclic multi-valued map.
Define

{(z,T(x),u,v) € X2 xR?* | u € ¢(x), ve o(T(x))},
{(z,T(x),u,v) € A2 xR¥* | u € p(z), v € p(T(z))}.

h N‘
I
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Thus X is the graph of the u.s.c. multi-valued map @ : {(z,T(z)) | z € X}
— R?* given by
D(x,T(x)) = () x o(T'(x))
and A is the graph of & restricted to {(a,T(a)) | @ € A}. By Lemma
X and A are paracompact spaces. Moreover, since X and A are connected
and @(z,T(x)) is connected for each z € X, by Lemma X and A are
connected. The map T : X — X defined by
T(z,T(z),u,v) = (T(x),z,v,u)
is a free involution on X. Moreover, A is T-invariant. Now, using Theo-
rem m one can prove that H"(A,Zs) = 0 for 1 < r < n — 2 and j*
H" (X, Zy) — H" (A, Zs) is the null homomorphism, where j : A < X
is the inclusion map. In fact, let s : X — X be defined by
s(z, T(z),u,v) =x

and s|; : A — A be the restriction of s to A. Then s and s| ; are continuous,
closed and onto maps. Moreover, s~ !(z) = {(z,T(z))} x o(z) x p(T(z)),
which is acyclic for each z € X. Hence, by Theorem s*: H*(X,Zy) —
H*(X,Zs) and (s|3)* : H*(A,Zs) — H*(A,Zs) are isomorphisms. Conse-
quently, H"(A,Zs) = 0 for 1 < r < n — 2. Note that i o (s| ;) = s oy, giving
the commutative diagram

V(X Z) 2 B (A, Z,)
s* |~ NT(SM)*
H =YX, 7o) = H""Y(A, Z,)

Since i* : H" (X, Zy) — H" (A, Zs) is the null homomorphism and s*
and (s| ;)* are isomorphisms, it follows that j* : H"1(X, Zs) — H" (A, Z,)
is the null homomorphism.

Finally, suppose that ¢(x) N (T (z)) =
well defined equivariant map F : (X,T) — (S¥~1, a) given by

)

where a : S¥~1 — S*~1 is the antipodal map. Since n > k, H*(S*!/a, Zy)
= 0, which contradicts Theorem [I.1]
Therefore, p(z) N (T (x)) # O for some z € X. u

4. Examples and applications

ExAMPLE 4.1. Let T,, = 11 4 --- #7171 be the n-fold connected sum of
tori Ty = S x S, which is embedded in R? symmetrically with respect to
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the origin. Let T' : T,, — T,, be the antipodal map given by T'(z,y,z) =
(—x, —y, —z). If n is even, there exists a loop A = {(,0,2) | 2?2+ 22 =1} C
T,, homeomorphic to S, which divides 7T}, into two components symmetrical
with respect to the origin and is such that T(A) = A. Since i* : H (T}, Zy) —
H'(A,Zs) is the null homomorphism, by Theorem for any u.s.c. multi-
valued map ¢ : T, — R? with connected compact values, there exists x €
T, such that ¢(x) N (T (x)) # 0. In particular, for any continuous map
f: T, — R? there exists x € Ty, such that f(x) = f(T(z)).

REMARK 4.2. In Example let us note that H'(T},,Zs) # 0, and
therefore [0, Theorem 1 or Theorem A’| cannot be applied to show this result.

4.1. Maximizing simultaneously two related functions. Let f :
X xY — R, where Y is compact. For each z € X, let f, : Y — R be
defined by f.(y) = f(z,y) for every y € Y. Thus, f defines a family of
maps, {fz : ¥ — R}zex. If X admits a free involution 7 : X — X, we
can ask if there exists zp € X such that the maps fy, and fr(,) can be
simultaneously maximized, that is, there exists yy € Y such that

fao (o) 2 foo(y) and freg)(Yo) 2 frewe)(y), forevery y €Y.
This problem is related to a Borsuk—Ulam problem for multi-valued maps.
Namely, let o : X — R be defined by
a(x) = max fy(Y) for each x € X,

and ¢ : X —o Y be the multi-valued map defined by

p(x) ={y €Y | fo(y) = a(x)}.
Then fz, and fr(,,) can be simultaneously maximized if and only if ¢(x0) N
(T (x0)) # 0.
Let Y C R" be a convex subset. A function f : ¥ — R is said to be
quasiconcave if, for each A € (0, 1), we have

JQyr + (1= Ny2) > min{f(y1), f(y2)} forally;,yo €Y.

In particular, if f : Y — R is quasiconcave and Y is compact, then the set
{y € Y| f(y) = max f(Y)} is a non-empty, compact and convex subset
of Y.

In view of Theorem and Example we can assert that:

COROLLARY 4.3. IfY C R? is a compact and convex subset of R and f -
To, XY — R is a continuous function such that f, : Y — R is quasiconcave
for each x € Ty, then there exists xo € Ty, such that f,, and f_, can be
stmultaneously mazimized.
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