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Summary. Let (X,A) be a pair of topological spaces, T : X → X a free involution and
A a T -invariant subset of X. In this context, a question that naturally arises is whether
or not all continuous maps f : X → Rk have a T -coincidence point, that is, a point x ∈ X
with f(x) = f(T (x)). In this paper, we obtain results of this nature under cohomological
conditions on the spaces A and X.

1. Introduction. One formulation of the Borsuk–Ulam Theorem [1] is
that there is no map from Sm to Sn equivariant with respect to the antipodal
map, when m > n. In [6], it was proved that if X and Y are Hausdorff,
pathwise connected and paracompact spaces equipped with free involutions
T : X → X and S : Y → Y such that for some natural n ≥ 1, Ȟr(X;Z2) = 0
for 1 ≤ r ≤ n and Ȟn+1(Y/S;Z2) = 0, where Y/S is the orbit space of Y
by S, then there is no equivariant map f : (X,T )→ (Y, S).

The first aim of this paper is to generalize this result for the following
relative case:

Theorem 1.1. Let X,Y be a Hausdorff, connected and paracompact
spaces equipped with free involutions T : X → X and S : Y → Y . Let
A be a non-empty connected and T -invariant subset of X. Suppose that for
some n ≥ 1, Ȟr(A,Z2) = 0 for 1 ≤ r ≤ n− 1, i∗ : Ȟn(X,Z2)→ Ȟn(A,Z2)
is the null homomorphism, where i : A ↪→ X is the inclusion map and
Ȟn+1(Y/S;Z2) = 0. Then there is no equivariant map f : (X,T )→ (Y, S).
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The following theorem is an important consequence of Theorem 1.1.

Theorem 1.2. Let X be a Hausdorff, connected and paracompact space
with a free involution T : X → X. Let A be a non-empty connected and T -
invariant subset of X. Suppose that for some n ≥ 1, Ȟr(A,Z2) = 0 for 1 ≤
r ≤ n− 2 and i∗ : Ȟn−1(X,Z2)→ Ȟn−1(A,Z2) is the null homomorphism,
where i : A ↪→ X is the inclusion map. Then, if ϕ : X ( Rk is an acyclic
multi-valued map and n ≥ k, there exists x ∈ X such that ϕ(x)∩ϕ(T (x)) 6= ∅.

In the particular case when ϕ = f is a single-valued map, we obtain

Corollary 1.3. Let X be a Hausdorff, connected and paracompact space
with a free involution T : X → X. Let A be a non-empty connected and T -
invariant subset of X. Suppose that for some n ≥ 1, Ȟr(A,Z2) = 0 for 1 ≤
r ≤ n− 2 and i∗ : Ȟn−1(X,Z2)→ Ȟn−1(A,Z2) is the null homomorphism,
where i : A ↪→ X is the inclusion map. Then, if f : X → Rk is a map with
n ≥ k, there exists x ∈ X such that f(x) = f(T (x)).

The paper is organized as follows. In Section 2, we prove Theorem 1.1. In
Section 3, we recall definitions, fix notations, state necessary results on multi-
valued maps and prove Theorem 1.2. In Section 4, we show an interesting
example to which Theorem 1.2 can be applied and we finish the paper with
some applications.

Throughout the paper, we assume that all spaces under consideration
are Hausdorff spaces. Ȟ∗( ,Z2) denotes C̆ech cohomology with coefficients
in Z2.

2. Proof of Theorem 1.1. In this section we prove Theorem 1.1. We
need first to prove the following lemma.

Lemma 2.1 (cf. [6]). Let X, Y be Hausdorff and paracompact spaces,
equipped with free involutions T : X → X and S : Y → Y . Let e ∈
Ȟ1(X/T,Z2) and u ∈ Ȟ1(Y/T,Z2) be the Euler classes of the Z2-principal
bundles X → X/T and Y → Y/T , respectively. If en+1 6= 0 and un+1 = 0,
then there is no equivariant map f : (X,T )→ (Y, S).

Proof. Let BZ2 be the classifying space for Z2, and denote by α ∈
Ȟ1(BZ2,Z2) the Euler class of the universal principal Z2-bundle over BZ2.
Since X is a Hausdorff paracompact space, one can take a classifying map
h : X/T → BZ2 for the principal Z2-bundle X → X/T , and from h∗ :
Ȟ1(BZ2,Z2)→ Ȟ1(X/T,Z2) one gets the Euler class

e = h∗(α) ∈ Ȟ1(X/T,Z2)

of X → X/T .
Now suppose f : (X,T ) → (Y, S) is an equivariant map, and let g :

Y/S → BZ2 be a classifying map for Y → Y/S. Then g◦f̄ is also a classifying
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map for X → X/T , and therefore it is homotopic to h; here f̄ : X/T → Y/S
is induced by f . Since u = g∗(α), we have e = h∗(α) = (g ◦ f̄)∗(α) =
f̄∗ ◦ g∗(α) = f̄∗(u), and thus f̄∗(un+1) = en+1 6= 0, which contradicts the
fact that un+1 = 0.

Proof of Theorem 1.1. Let ê ∈ Ȟ1(A/T,Z2) be the Euler class of the
principal Z2-bundle A → A/T and let ī : A/T ↪→ X/T be induced by the
inclusion i : A ↪→ X. We have

ī∗(e) = ê ∈ Ȟ1(A/T,Z2),

where e ∈ Ȟ1(X/T,Z2) is the Euler class of X → X/T .
Now, let us consider the following diagram:

0 // Ȟ0(X/T )

ī∗ ��

p∗ // Ȟ0(X)

i∗ ��

τ // Ȟ0(X/T, )

ī∗ ��

∪ e // Ȟ1(X/T )

ī∗ ��

// · · ·

0 // Ȟ0(A/T )
p∗ // Ȟ0(A)

τ // Ȟ0(A/T )
∪ ê // Ȟ1(A/T ) // · · ·

· · · // Ȟr(X/T )

ī∗ ��

p∗ // Ȟr(X)

i∗ ��

τ // Ȟr(X/T )

ī∗ ��

∪ e // Ȟr+1(X/T )

ī∗ ��

// · · ·

· · · // Ȟr(A/T )
p∗ // Ȟr(A)

τ // Ȟr(A/T )
∪ ê // Ȟr+1(A/T ) // · · ·

where the rows are Gysin exact sequences (see for example [2, Theorem
17.9.2]) and each square commutes by naturality, p is the quotient map and
τ is the transfer homomorphism. Since A is connected, p∗ : Ȟ0(A/T,Z2)→
Ȟ0(A,Z2) is an isomorphism, hence ∪ ê : Ȟ0(A/T,Z2) → Ȟ1(A/T,Z2)
is injective and thus ê = 1 ∪ ê ∈ Ȟ1(A/T,Z2) is nonzero. The fact that
Ȟr(A,Z2) = 0 for 1 ≤ r ≤ n − 1 implies that ∪ ê : Ȟr(A/T,Z2) →
Ȟr+1(A/T,Z2) is an isomorphism for 1 ≤ r ≤ n − 2 and injective for
r = n − 1, hence ên ∈ Ȟn(A/T,Z2) is nonzero. Since ī∗(en) = ên 6= 0,
we see that en ∈ Ȟn(X/T,Z2) is nonzero.

Now, we will show that en+1 ∈ Ȟn+1(X/T,Z2) is nonzero. Suppose
en+1 = en ∪ e = 0. Then en ∈ ker(∪ e) = im(τ) and there exists a nonzero
a ∈ Ȟn(X,Z2) such that τ(a) = en. Therefore, ī∗ ◦ τ(a) = ī∗(en) = ên 6= 0.

On the other hand, since i∗ : Ȟn(X,Z2) → Ȟn(A,Z2) is the null ho-
momorphism and each square in the diagram commutes, it follows that
ī∗ ◦ τ(a) = τ ◦ i∗(a) = 0. Thus en+1 6= 0.

Finally, since Ȟn+1(Y/S,Z2) = 0, we see that un+1 ∈ Ȟn+1(Y/S,Z2) is
zero, and by Lemma 2.1 there is no equivariant map f : (X,T )→ (Y, S).

3. Results on multi-valued maps and proof of Theorem 1.2. Let
X and Y be two spaces and assume that for each point x ∈ X a non-empty
closed subset ϕ(x) of Y is given; in this case, we say that ϕ is a multi-valued
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map from X into Y and we write ϕ : X ( Y . More precisely, a multi-valued
map ϕ : X ( Y can be defined as a subset ϕ ofX×Y for which the following
condition is satisfied: for every x ∈ X the set ϕx = {y ∈ Y | (x, y) ∈ ϕ} is a
non-empty closed subset of Y .

A multi-valued map ϕ : X ( Y is called upper semicontinuous (u.s.c.)
if for every open subset U of Y the set ϕ−1(U) = {x ∈ X | ϕ(x) ⊂ U} is an
open subset of X.

A compact space X is acyclic (with respect to the functor Ȟ∗( ,Z2)) if
Ȟ0(X,Z2) = Z2 and Ȟq(X,Z2) = 0 for all q > 0. In other words, X has the
cohomology of a point.

An u.s.c. multi-valued map ϕ : X ( Y is called acyclic if for every x ∈ X
the set ϕ(x) is an acyclic subset of Y .

Let ϕ : X ( Y be an u.s.c. multi-valued map and consider

Γϕ = {(x, y) ∈ X × Y | y ∈ ϕ(x)},

the graph of ϕ. Associated with ϕ are two projections, p : Γϕ → X and
q : Γϕ → Y , given by p(x, y) = x and q(x, y) = y.

Below, we list some basic properties of u.s.c. multi-valued mappings.

Lemma 3.1. Let X be a connected space and ϕ : X ( Y an u.s.c. multi-
valued map with connected values. Then ϕ(X) =

⋃
x∈X ϕ(x) is a connected

space.

A continuous function p : X → Y is called perfect if it is closed, surjective
and p−1(y) is compact for each y ∈ Y .

Lemma 3.2 ([3, Theorem 5.3]). Let p : X → Y be a perfect function.
If Y is paracompact, so also is X.

Lemma 3.3 ([4, Proposition 32.3]). Let ϕ : X ( Y be an u.s.c. multi-
valued map with compact values. Then the projection p : Γϕ → X is a perfect
function. In particular, if X is paracompact, so also is Γϕ.

Theorem 3.4 ([7]). Let X,Y be Hausdorff paracompact spaces and p :
X → Y a continuous, closed onto map such that p−1(y) is acyclic for every
y ∈ Y . Then the induced homomorphism

p∗ : Ȟ∗(Y,Z2)→ Ȟ∗(X,Z2)

is an isomorphism.

Proof of Theorem 1.2. Let ϕ : X ( Rk be an acyclic multi-valued map.
Define

X̃ = {(x, T (x), u, v) ∈ X2 × R2k | u ∈ ϕ(x), v ∈ ϕ(T (x))},
Ã = {(x, T (x), u, v) ∈ A2 × R2k | u ∈ ϕ(x), v ∈ ϕ(T (x))}.



Relative Borsuk–Ulam Theorems 75

Thus X̃ is the graph of the u.s.c. multi-valued map Φ : {(x, T (x)) | x ∈ X}
→ R2k given by

Φ(x, T (x)) = ϕ(x)× ϕ(T (x))

and Ã is the graph of Φ restricted to {(a, T (a)) | a ∈ A}. By Lemma 3.3,
X̃ and Ã are paracompact spaces. Moreover, since X and A are connected
and Φ(x, T (x)) is connected for each x ∈ X, by Lemma 3.1, X̃ and Ã are
connected. The map T̃ : X̃ → X̃ defined by

T̃ (x, T (x), u, v) = (T (x), x, v, u)

is a free involution on X̃. Moreover, Ã is T̃ -invariant. Now, using Theo-
rem 3.4, one can prove that Ȟr(Ã,Z2) = 0 for 1 ≤ r ≤ n − 2 and j∗ :
Ȟn−1(X̃,Z2) → Ȟn−1(Ã,Z2) is the null homomorphism, where j : Ã ↪→ X̃
is the inclusion map. In fact, let s : X̃ → X be defined by

s(x, T (x), u, v) = x

and s|Ã : Ã→ A be the restriction of s to Ã. Then s and s|Ã are continuous,
closed and onto maps. Moreover, s−1(x) = {(x, T (x))} × ϕ(x) × ϕ(T (x)),
which is acyclic for each x ∈ X. Hence, by Theorem 3.4, s∗ : Ȟ∗(X,Z2) →
Ȟ∗(X̃,Z2) and (s|Ã)∗ : Ȟ∗(A,Z2) → Ȟ∗(Ã,Z2) are isomorphisms. Conse-
quently, Ȟr(Ã,Z2) = 0 for 1 ≤ r ≤ n− 2. Note that i ◦ (s|Ã) = s ◦ j, giving
the commutative diagram

Ȟn−1(X̃,Z2)
j∗ // Ȟn−1(Ã,Z2)

Ȟn−1(X,Z2)
i∗ //

s∗ '

OO

Ȟn−1(A,Z2)

' (s|Ã)∗

OO

Since i∗ : Ȟn−1(X,Z2)→ Ȟn−1(A,Z2) is the null homomorphism and s∗
and (s|Ã)∗ are isomorphisms, it follows that j∗ : Ȟn−1(X̃,Z2)→Ȟn−1(Ã,Z2)
is the null homomorphism.

Finally, suppose that ϕ(x) ∩ ϕ(T (x)) = ∅ for all x ∈ X. Then we have a
well defined equivariant map F : (X̃, T̃ )→ (Sk−1, a) given by

F (x, T (x), u, v) =
u− v
‖u− v‖

,

where a : Sk−1 → Sk−1 is the antipodal map. Since n ≥ k, Ȟn(Sk−1/a,Z2)
= 0, which contradicts Theorem 1.1.

Therefore, ϕ(x) ∩ ϕ(T (x)) 6= ∅ for some x ∈ X.

4. Examples and applications

Example 4.1. Let Tn = T1 ] · · · ] T1 be the n-fold connected sum of
tori T1 = S1 × S1, which is embedded in R3 symmetrically with respect to
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the origin. Let T : Tn → Tn be the antipodal map given by T (x, y, z) =
(−x,−y,−z). If n is even, there exists a loop A = {(x, 0, z) | x2 + z2 = 1} ⊂
Tn homeomorphic to S1, which divides Tn into two components symmetrical
with respect to the origin and is such that T (A) = A. Since i∗ : Ȟ1(Tn,Z2)→
Ȟ1(A,Z2) is the null homomorphism, by Theorem 1.2, for any u.s.c. multi-
valued map ϕ : Tn ( R2 with connected compact values, there exists x ∈
Tn such that ϕ(x) ∩ ϕ(T (x)) 6= ∅. In particular, for any continuous map
f : Tn → R2, there exists x ∈ Tn such that f(x) = f(T (x)).

Remark 4.2. In Example 4.1, let us note that Ȟ1(Tn,Z2) 6= 0, and
therefore [6, Theorem 1 or Theorem A′] cannot be applied to show this result.

4.1. Maximizing simultaneously two related functions. Let f :
X × Y → R, where Y is compact. For each x ∈ X, let fx : Y → R be
defined by fx(y) = f(x, y) for every y ∈ Y . Thus, f defines a family of
maps, {fx : Y → R}x∈X . If X admits a free involution T : X → X, we
can ask if there exists x0 ∈ X such that the maps fx0 and fT (x0) can be
simultaneously maximized, that is, there exists y0 ∈ Y such that

fx0(y0) ≥ fx0(y) and fT (x0)(y0) ≥ fT (x0)(y), for every y ∈ Y.
This problem is related to a Borsuk–Ulam problem for multi-valued maps.

Namely, let α : X → R be defined by
α(x) = max fx(Y ) for each x ∈ X,

and ϕ : X ( Y be the multi-valued map defined by
ϕ(x) = {y ∈ Y | fx(y) = α(x)}.

Then fx0 and fT (x0) can be simultaneously maximized if and only if ϕ(x0)∩
ϕ(T (x0)) 6= ∅.

Let Y ⊂ Rn be a convex subset. A function f : Y → R is said to be
quasiconcave if, for each λ ∈ (0, 1), we have

f(λy1 + (1− λ)y2) ≥ min{f(y1), f(y2)} for all y1, y2 ∈ Y.
In particular, if f : Y → R is quasiconcave and Y is compact, then the set
{y ∈ Y | f(y) = max f(Y )} is a non-empty, compact and convex subset
of Y .

In view of Theorem 1.2 and Example 4.1, we can assert that:
Corollary 4.3. If Y ⊂ R2 is a compact and convex subset of R2 and f :

T2n× Y → R is a continuous function such that fx : Y → R is quasiconcave
for each x ∈ T2n, then there exists x0 ∈ T2n such that fx0 and f−x0 can be
simultaneously maximized.
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