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Summary. Let F = {Fα} be a uniformly bounded collection of compact convex sets
in Rn. Katchalski extended Helly’s theorem by proving for finite F that dim(

T
F) ≥ d,

0 ≤ d ≤ n, if and only if the intersection of any f(n, d) elements has dimension at least d
where f(n, 0) = n+ 1 = f(n, n) and f(n, d) = max{n+ 1, 2n− 2d+ 2} for 1 ≤ d ≤ n− 1.
An equivalent statement of Katchalski’s result for finite F is that there exists δ > 0 such
that the intersection of any f(n, d) elements of F contains a d-dimensional ball of measure
δ where f(n, 0) = n+1 = f(n, n) and f(n, d) = max{n+1, 2n−2d+2} for 1 ≤ d ≤ n−1.
It is proven that this result holds if the word finite is omitted and extends a result of Breen
in which f(n, 0) = n+ 1 = f(n, n) and f(n, d) = 2n for 1 ≤ d ≤ n− 1. This is applied to
give necessary and sufficient conditions for the concepts of “visibility” and “clear visibility”
to coincide for continua in Rn without any local connectivity conditions.

1. Introduction. Katchalski [6] significantly generalized Helly’s inter-
section theorem on convex sets by proving the theorem stated in the abstract.
Let F = {Fα} be a uniformly bounded collection of compact convex sets
in Rn. Suppose 0 ≤ d ≤ n, j is a positive integer and δ > 0. The collection
F is said to have property (j, d, δ) if any j elements of F contain a common
closed d-dimensional ball of radius δ. Breen [2] proved that if F ⊆ Rn is a uni-
formly bounded collection of compact convex sets then dim(

⋂
F) ≥ d if and

only if for some δ > 0, F has property (i(n, d), d, δ) where i(n, d) = 2n, 1 ≤
d ≤ n− 1, and i(n, 0) = i(n, n) = n+1. Two of the main tools she employed
were Katchalski’s theorem [6] and an intersection result of Falconer [5].

Our proof was in part motivated by an alternative proof for finite F
outlined by Katchalski in [6] using the Bonnice–Klee theorem [1]. If F =
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{Fα} is a uniformly bounded collection of compact convex sets in Rn, then
F is said to be H-closed provided F is closed in the sense of the Hausdorff
metric. If F ∈ F the cone generated by F is defined as the set {λx | λ ≥ 0
and x ∈ F} and will be denoted by coneF ; note that coneF is not necessarily
closed. The symbol C(F) denotes {coneF | F ∈ F}. If r > 0 the symbol
B(x, r) denotes the closed ball of radius r with center x. Let C = {Cα} be
a collection of closed convex cones with apex 0v (the origin) in Rn. Suppose
1 ≤ d ≤ n, j is a positive integer, δ > 0, and r > 0. The symbol Br(C)
denotes {Bα | Bα = Cα ∩B(0v, r), Cα ∈ C}. Also, C is said to have property
(j, d, δ, r) if Br(C) has property (j, d, δ). If j is a positive integer and F is
a family of sets then F j is defined as {

⋂
A | A ⊂ F , |A| = j}. Also, if

F is a compact convex set, radj(F ) denotes the nonnegative number with
the property that F contains a closed j-dimensional convex ball of radius
radj(F ) and for any κ > 0 the set F does not contain a j-dimensional ball
of radius radj(F ) + κ.

We shall make explicit use of the following result of Falconer [5].

Proposition 1. Let F = {Fα} be a uniformly bounded H-closed col-
lection of compact convex sets in Rn. If dim(

⋂
F) < n then there exist

Fα1 , . . . , Fαk such that dim(
⋂k
j=1 Fαj ) = q < n where k ≤ 2(n− q).

Two linear flats I and J each of dimension 1 or more will be called skew
if I ∩ J = ∅ and whenever I1 ⊂ I and J1 ⊂ J are flats of dimension 1 or
more then no translate I1 is contained in I2 and vice versa. Two convex sets
S and L each of dimension 1 or more will be called skew if there exist two
skew linear flats I and J with S ⊂ I and L ⊂ J. We shall need the following
proposition.

Proposition 2. Let L ⊂ Rn, n ≥ 4, be an n − 3-dimensional subspace
and let F ⊂ L be a convex set with 0v ∈ F and 1 ≤ dimF ≤ n− 3. Let S be
a convex set S of dimension 2 which is skew to L. Let G = conv(S ∪F ) and
suppose that 1 ≤ m ≤ n− 3. If dimF = m then dimG = m+ 3.

Proof. Suppose n = 4. Then m = 1. Since S is skew to L, S does not
intersect L nor is S parallel to any nontrivial flat of L, and since dimS = 2
we have dimG ≥ 3. We claim dimG ≥ 4. Suppose not. Then dimG = 3 and
if I is the linear flat generated by S then dim I = 2 and so either I must
intersect L or be parallel to a flat in L, each of which is a contradiction.
Thus dimG = 4. Thus the assertion is true for n = 4. We now suppose that
it is true for n and prove it for n + 1. If m = 1 then G is contained in a
copy of R4 and the same argument as the one just given yields the assertion.
Without loss of generality we may suppose that 2 ≤ m ≤ n − 2. Thus if
2 ≤ m ≤ n − 3 then G is contained in a copy of Rn and the induction
hypothesis gives the assertion. Thus we may suppose m = n− 2. The same
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argument as given in the first sentence gives dimG ≥ n. If dimG = n
then if J is the n − 2-dimensional subspace space generated by F and if
I is the 2-dimensional linear flat generated by S then in Rn either I must
intersect J or be parallel to a flat in J , each of which is a contradiction.
Thus dimG = n+ 1 = (n− 2) + 3 = m+ 3 and the assertion follows.

2. The intersection of cones and convex sets

Theorem 3. Let F = {Fα} be a uniformly bounded collection of H-
closed compact convex sets in Rn, n ≥ 2, with 0v ∈

⋂
F . Then dim(

⋂
F) ≥

d ≥ 2 if and only if dim(
⋂
C(F)) ≥ d ≥ 2.

Proof. The necessity is immediate; we consider the sufficiency. Let k =
dim(

⋂
C(F)) ≥ 2 and define j = n−dim(

⋂
C(F)) = n−k.We first establish

the assertion in the case of j = 0, i.e. dim(
⋂
C(F)) = k = n. Suppose that

dim(
⋂
F) < n. Then by Proposition 1 of Falconer there exist Fα1 , . . . , Fαk

such that dim(
⋂k
j=1 Fαj ) = q < n. Note that

⋂
C(F) ⊆

⋂k
j=1C(Fαj ) =

C(
⋂k
j=1 Fαj ), which implies that dim(

⋂
C(F)) < dim(

⋂k
j=1C(Fαj )) =

dim(
⋂k
j=1 Fαj ) < n, a contradiction. Thus the assertion is true for d = n,

n = 2, and we may suppose that k < n and n ≥ 3.
Let P (j) be the conclusion of the theorem for j; the last paragraph shows

that P (0) is true. We now suppose that P (j) is true and prove that P (j+1)
is true. Since dim(

⋂
C(F)) ≥ 2 we may choose a hyperplane L with 0v ∈ L

such that L does not support
⋂
C(F). In particular, L cannot support any

element of F , which implies by a routine argument that L ∩ F is H-closed
and that if FL = L ∩ F then dim(

⋂
C(FL)) = k − 1 ≥ 1. Let V denote the

subspace generated by
⋂
C(FL). Regarding Rn as a subset of Rn+1, since

1 ≤ k − 1 ≤ (n + 1) − 3 we may choose a compact convex set S ⊂ Rn+1 of
dimension 2 which is skew to V. Define G = {conv({S} ∪ FLα ) | FLα ∈ FL}.
Note that if M = conv(S ∪

⋂
C(FL)) then M ⊂

⋂
C(G). Since S is skew to

V ⊂ L and 1 ≤ k−1 ≤ (n+1)−3 we see by applying Proposition 2 in Rn+1

that dimM = ((k − 1) + 3) = k + 2 and so dim(
⋂
C(G)) ≥ dimM ≥ k + 2.

Since

(n+ 1)− dim
(⋂

C(G)
)

= (n+ 1)− (k + 2) = n− k − 1 ≤ n− k = j,

the induction hypothesis on j applied in Rn+1 gives dim(
⋂
G) ≥ k + 2.

We next assert that
⋂
G = conv(S ∪

⋂
FL). This follows if we show that⋂

G ⊂ conv(S ∪
⋂
FL). Let x ∈

⋂
G. If x ∈ S ∪

⋂
FL we are done; if not

then for each FLα , FLβ there exist positive scalars λα, λβ less than 1 and points
sα, sβ in S, fα ∈ FLα and fβ ∈ FLβ with

x = λαsα + (1− λα)fα = λβsβ + (1− λβ)fβ.
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Thus λαsα − λβsβ = (1 − λβ)fβ − (1 − λα)fα. Since S is skew to V , both
λαsα − λβsβ and (1 − λβ)fβ − (1 − λα)fα equal 0v. Note that fα 6= 0v for
all α: if one fβ = 0v then fα = 0v for all α and then x = 0v and so x ∈

⋂
FL,

a contradiction as x /∈ S∪
⋂
FL. Thus fα and fβ are positive scalar multiples

of each other for any α and β, and as FL is H-closed we may produce a set
FLθ ∈ FL where ‖fθ‖ = inf ‖fα‖ > 0 over all α and x = λθsθ + (1 − λθ)fθ
with fθ ∈ (

⋂
FL) and the assertion follows.

Let s = dim(
⋂
FL). Note that s ≥ 1, for if s = 0 then since

⋂
G =

conv(S ∪
⋂
FL) and dimS = 2 we see that dim(

⋂
G) = 3, which is a

contradiction as dim(
⋂
G) ≥ k + 2 ≥ 4. Further, as 1 ≤ s = dim(

⋂
FL) ≤

dim(
⋂
C(FL)) = k − 1 and 1 ≤ k − 1 ≤ (n + 1) − 3, we see by applying

Proposition 2 in Rn+1 that k+ 2 ≤ dim(
⋂
G) = dim(

⋂
FL) + 3 = s+ 3 and

so s ≥ d− 1 and s = dim(
⋂
FL) ≥ k − 1. Thus we may choose a nontrivial

closed line segment h = [0v, x] ⊂
⋂
FL ⊂

⋂
C(F), and as dim(

⋂
C(F)) ≥ 2

we may choose a hyperplane L1 6= L with 0v ∈ L1, h ∩ L1 = 0v and such
that L1 does not support

⋂
C(F). Repeating for L1 the same construction

done for L gives dim(
⋂
FL1) ≥ k−1. The latter together with the facts that

h ⊂
⋂
C(F) and h ∩ L1 = 0v implies that dim(

⋂
F) ≥ k, which establishes

the theorem.

3. The intersection of convex sets

Theorem 4. Let F = {Fα} be a uniformly bounded collection of compact
convex sets in Rn. Then dim(

⋂
F) ≥ d, 0 ≤ d ≤ n, if and only if for some

δ > 0, F has property (f(n, d), d, δ) where f(n, 0) = n + 1 and f(n, d) =
max{n+ 2, 2n− 2d+ 2} for 1 ≤ d ≤ n.

Proof. The necessity is immediate; we consider the sufficiency. We pro-
ceed by induction on n. If n ≤ 2, d = 1, or d = n the conclusion follows
from the results of Breen [2] and Falconer [5] respectively. Thus we may sup-
pose that n ≥ 3 and d ≥ 2. Without loss of generality by Helly’s theorem
[11] we may assume that 0v ∈

⋂
F . For each Fα ∈ F let Hα be the set of

all closed half-spaces H+ containing Fα. It is well known that Fα =
⋂
Hα

[8] and therefore if H = {H+ | H+ ∈ Hα, Fα ∈ F} then
⋂
F =

⋂
H.

As F has property (f(n, d), d, δ) so does H. As F is uniformly bounded we
may enclose the closure of

⋃
F in the interior of a cube I. Then the fam-

ily P of polytopes which is the closure of the family {H+ ∩ I | H+ ∈ H}
in the Hausdorff metric, has property (f(n, d), d, δ),

⋂
F =

⋂
H, P is H-

closed, and each element of C(P) is closed since it is a polytope [7]. Since
dim(

⋂
F) ≥ dim(

⋂
P) and

⋂
P ⊂

⋂
F , to prove the theorem it suffices

to prove dim(
⋂
P) ≥ d. Therefore, without loss of generality, we suppose

that F is an H-closed family of polytopes, and each element of C = C(F) is
closed. By a corollary of the Bonnice–Klee theorem [1, p. 11], dim(

⋂
C) ≥ 1.
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Recall that B = Br(C) = {Bα | Bα = Cα ∩ B(0v, r), Cα ∈ C} and that if
r = 2 · diam(

⋃
F) then B has property (f(n, d), d, δ) as does its closure K.

Since dim(
⋂
C) = dim(

⋂
K) we see that dim(

⋂
K) ≥ 1. Thus we may choose

a point u ∈ relint(
⋂
K). We may then choose a hyperplane H with u ∈ H,⋂

K * H, with
⋂
K intersecting both open half-spaces of H and H does not

support
⋂
K. Note that

⋂
K ⊂ Eβ for any Eβ ∈ Kf(n,d). Since

⋂
K 6⊂ H,

each Eβ ∈ Kf(n,d) must intersect at least one of the open half-spaces of H
since if not then

⋂
K ⊂ Eβ ⊂ H, a contradiction. But then Eβ must intersect

both the open half-spaces of H since if not then H supports
⋂
K, a contra-

diction. This together with the hypothesis that K has property (f(n, d), d, δ)
implies that dim(H ∩ Eβ) ≥ d− 1 ≥ 1.

Suppose that θβ = radd−1(H ∩ Eβ) and let θ = inf{θβ | Eβ ∈ Kf(n,d)}.
We next assert that θ > 0. Suppose that θ = 0. Then there exists a se-
quence {Eβi} in Kf(n,d) such that θβi → 0 as i → ∞ and for each i,
Eβi = Kα(1,βi)∩Kα(2,βi)∩· · ·∩Kα(f(n,d),βi).Without loss of generality (avoid-
ing subsequences) we may suppose that Eβi → Q for some compact convex
set Q. Since for each i,

⋂
K ⊂ Eβi , we have

⋂
K ⊂ Q and so Q must intersect

both open half-spaces of H since
⋂
K does. Further, since K has property

(f(n, d), d, δ), each Eβi contains some closed d-dimensional ball of radius δ;
a standard argument in the Hausdorff metric then shows that Q must con-
tain a closed d-dimensional ball of radius δ. Thus dimQ ≥ d. Since Q must
intersect both open half-spaces of H we have dim(Q∩H) ≥ d−1 ≥ 1 and by
a routine argument Eβi∩H → Q∩H. Since θ = 0 and θβi = radd−1(H∩Eβi),
and Eβi ∩H → Q, we must have dim(Q∩H) ≤ d− 2, a contradiction. Thus
θ = infi θi > 0.

Now θ > 0 implies that if K1 = {H ∩ Kα | Kα ∈ K} then K1 has
property (f(n, d), d− 1, θ). Since f(n− 1, d− 1) ≤ f(n, d), K1 has property
(f(n−1, d−1), d−1, θ). The induction hypothesis applied in the hyperplane
H yields dim(

⋂
K1) ≥ d− 1 ≥ 1. Since

⋂
K1 = H ∩

⋂
K and

⋂
K intersects

both open half-spaces of H, this implies that dim(
⋂
K) ≥ d ≥ 2. Then since

dim(
⋂
C) = dim(

⋂
B) ≥ dim(

⋂
K) we see that dim(

⋂
C) ≥ d ≥ 2 and an

application of Theorem 3 establishes the theorem.

4. The equivalence of visibility and clear visibility. If S ⊂ Rn is
a nonempty set, the symbols S(x), convS, and KerS denote, respectively,
{y | [x, y] ⊂ S}, the convex hull of S, and {x | [x, y] ⊂ S ∀y ∈ S}. If A ⊂ S
and ε > 0 let Aε denote all points in S whose distance from A is less than ε.
If K is a nonempty subset of S and x ∈ S, and conv({x} ∪K) ⊂ S, we say
that x is visible via S from K. Suppose 0 ≤ d ≤ n, j is a positive integer and
δ > 0. A is said to be (j, d, δ) visible if given a set K of j elements of A, each
point of K is visible via S from a common d-dimensional ball BK of radius δ
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contained in S. Moreover, A is said to be (j, d) clearly visible if given a set K
of j elements of A there exists a relatively open subset OK of S containing
K such that each point of OK is visible via S from a common d-dimensional
ball BK contained in S. Finally, A is said to be (j, d, δ) clearly visible if given
a set K of j elements of A there exists a relatively open subset OK of S
containing K such that each point of OK is visible via S from a common
d-dimensional ball BK of radius δ contained in S.

Theorem 5. Let S ⊂ Rn be a nonconvex continuum. Then S being (j, d)
clearly visible is equivalent to S being (j, d, δ) visible for some δ > 0 if and
only if j ≥ f(n, d) where f(n, 0) = n+1 and f(n, d) = max{n+2, 2n−2d+2}
for 1 ≤ d ≤ n.

Proof. We first demonstrate the sufficiency. To prove the equivalence of
the two visibility conditions it suffices to show that S being (j, d, δ) visible for
some δ > 0 implies S being (j, d) clearly visible since (j, d) clear visibility of S
always implies (j, d, δ) visibility of S for some δ > 0 (Breen [3] or Stavrakas [9,
Theorem 3]). Since j ≥ f(n, d), S is (f(n, d), d, δ) visible. This coupled with
Theorem 4 shows that dim(

⋂
{conv(S(x)) | x ∈ S} ≥ d and Krasnosel’skĭı’s

lemma [11] yields
⋂
{conv(S(x)) | x ∈ S} ⊂ KerS, which implies that

dim(KerS) = d. This immediately implies the (j, d) clear visibility of S for
any j ≥ 1.

To prove the necessity, it suffices to construct a continuum S for which
j < f(n, d) such that S is (j, d, δ) visible for some δ > 0 and S is not
(j, d) clearly visible. To do this in R2 let S =

⋃∞
n=1{[0v, xn] | x1 = (1, 0),

xn = (1, 1/n), n = 2, 3, . . .}. Note that 1 < f(2, 1) = 4, S is (1, 1, 1/2)
visible, but 0v is not clearly visible from any one-dimensional subset of S
and so in particular S is not (1, 1) clearly visible.

Theorem 6. Let S ⊂ Rn be a nonconvex continuum with points of local
nonconvexity Q. Then the following are equivalent :

(A) S is (f(n, d), d, δ) visible for some δ > 0.
(B) dim(KerS) = d.
(C) S is (f(n, d), d, δ) clearly visible for some δ > 0.
(D) Qε is (f(n, d), d) clearly visible for some ε > 0.
(E) Q is (f(n, d), d, δ) clearly visible for some δ > 0.
(F) Qε is (f(n, d), d, δ) visible for some ε > 0 and δ > 0.

Proof. The implications (B)⇒(C), (C)⇒(D) and (D)⇒(E) are immedi-
ate. The implication (E)⇒(F) is established in Stavrakas [9, Theorem 3].
The implication (A)⇒(B) was established in the first paragraph of the last
proof. To prove (F)⇒(A) we note that in Stavrakas [10] it is proven that⋂
{conv(S(x)) | x ∈ Qε} =

⋂
{conv(S(x) | x ∈ S} and so the hypothe-
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sis (F) coupled with the same argument in the first paragraph of the proof
of Theorem 5 yields the conclusion (B), which immediately implies (A).

We remark that examples given in Breen [3] illustrate for each d ≥ 1 that
the number f(n, d) is best possible in the sense that the above theorem fails
if f(n, d) is replaced by a smaller integer. We remark that J. Cel [4] has used
a generalized form of Krasnosel’skĭı’s lemma to represent starshaped sets in
normed linear spaces.

In conclusion we acknowledge the many and profound accomplishments,
in convexity and infinite-dimensional topology, of Victor Klee who passed
away this year.

References

[1] W. Bonnice and V. Klee, The generation of convex hulls, Math. Ann. 152 (1963),
1–29.

[2] M. Breen, Krasnosel’skii numbers for bounded finitely starlike sets in Rd, J. Geom.
37 (1990), 48–54.

[3] —, Improved Krasnosel’skii theorems for the dimension of the kernel of a starshaped
set, ibid. 27 (1986), 175–179.

[4] J. Cel, Representations of starshaped sets in normed linear spaces, J. Funct. Anal.
174 (2000) 264–275.

[5] K. J. Falconer, The dimension of the kernel of a compact starshaped set, Bull. Lon-
don Math. Soc. 9 (1977), 313–316.

[6] M. Katchalski, The dimensions of the intersections of convex sets, Israel J. Math.
10 (1971), 465–470.

[7] V. Klee, Some characterizations of convex polyhedra, Acta Math. 100 (1959), 79–107.
[8] H. H. Schaefer, Topological Vector Spaces, Macmillan, New York, 1966.
[9] N. Stavrakas, Reflexivity and visibility, Bull. Polish Acad. Sci. Math. 41 (1993),

113–121.
[10] —, A reduction theorem for the intersection of closed convex hulls, Houston J. Math.

17 (1991), 271–277.
[11] F. Valentine, Convex Sets, McGraw-Hill, New York, 1964.

N. Stavrakas
Department of Mathematics
University of North Carolina
Charlotte, NC 28223, U.S.A.
E-mail: nstavrks@uncc.edu

Received September 3, 2006;
received in final form April 11, 2008 (7560)


