CONVEX AND DISCRETE GEOMETRY

Measure and Helly's Intersection Theorem for Convex Sets

by

N. STAVRAKAS

Presented by Stanisław KWAPIEŃ

In memory of Zdzisław Pawlak

Summary. Let $\mathcal{F} = \{F_{\alpha}\}$ be a uniformly bounded collection of compact convex sets in \mathbb{R}^n . Katchalski extended Helly's theorem by proving for finite \mathcal{F} that dim $(\bigcap \mathcal{F}) \geq d$, $0 \leq d \leq n$, if and only if the intersection of any f(n,d) elements has dimension at least dwhere f(n,0) = n + 1 = f(n,n) and $f(n,d) = \max\{n+1,2n-2d+2\}$ for $1 \leq d \leq n-1$. An equivalent statement of Katchalski's result for finite \mathcal{F} is that there exists $\delta > 0$ such that the intersection of any f(n,d) elements of \mathcal{F} contains a d-dimensional ball of measure δ where f(n,0) = n+1 = f(n,n) and $f(n,d) = \max\{n+1,2n-2d+2\}$ for $1 \leq d \leq n-1$. It is proven that this result holds if the word finite is omitted and extends a result of Breen in which f(n,0) = n+1 = f(n,n) and f(n,d) = 2n for $1 \leq d \leq n-1$. This is applied to give necessary and sufficient conditions for the concepts of "visibility" and "clear visibility" to coincide for continua in \mathbb{R}^n without any local connectivity conditions.

1. Introduction. Katchalski [6] significantly generalized Helly's intersection theorem on convex sets by proving the theorem stated in the abstract. Let $\mathcal{F} = \{F_{\alpha}\}$ be a uniformly bounded collection of compact convex sets in \mathbb{R}^n . Suppose $0 \leq d \leq n, j$ is a positive integer and $\delta > 0$. The collection \mathcal{F} is said to have property (j, d, δ) if any j elements of \mathcal{F} contain a common closed d-dimensional ball of radius δ . Breen [2] proved that if $\mathcal{F} \subseteq \mathbb{R}^n$ is a uniformly bounded collection of compact convex sets then dim $(\bigcap \mathcal{F}) \geq d$ if and only if for some $\delta > 0$, \mathcal{F} has property $(i(n, d), d, \delta)$ where $i(n, d) = 2n, 1 \leq$ $d \leq n-1$, and i(n, 0) = i(n, n) = n+1. Two of the main tools she employed were Katchalski's theorem [6] and an intersection result of Falconer [5].

Our proof was in part motivated by an alternative proof for finite \mathcal{F} outlined by Katchalski in [6] using the Bonnice–Klee theorem [1]. If $\mathcal{F} =$

²⁰⁰⁰ Mathematics Subject Classification: Primary 52A20.

Key words and phrases: Helly's theorem, cone, visibility.

 $\{F_{\alpha}\}$ is a uniformly bounded collection of compact convex sets in \mathbb{R}^{n} , then \mathcal{F} is said to be *H*-closed provided \mathcal{F} is closed in the sense of the Hausdorff metric. If $F \in \mathcal{F}$ the cone generated by F is defined as the set $\{\lambda x \mid \lambda \geq 0 \text{ and } x \in F\}$ and will be denoted by cone F; note that cone F is not necessarily closed. The symbol $C(\mathcal{F})$ denotes $\{\text{cone } F \mid F \in \mathcal{F}\}$. If r > 0 the symbol B(x,r) denotes the closed ball of radius r with center x. Let $\mathcal{C} = \{C_{\alpha}\}$ be a collection of closed convex cones with apex 0_{v} (the origin) in \mathbb{R}^{n} . Suppose $1 \leq d \leq n, j$ is a positive integer, $\delta > 0$, and r > 0. The symbol $\mathcal{B}_{r}(\mathcal{C})$ denotes $\{B_{\alpha} \mid B_{\alpha} = C_{\alpha} \cap B(0_{v}, r), C_{\alpha} \in \mathcal{C}\}$. Also, \mathcal{C} is said to have property (j, d, δ, r) if $\mathcal{B}_{r}(\mathcal{C})$ has property (j, d, δ) . If j is a positive integer and \mathcal{F} is a family of sets then \mathcal{F}^{j} is defined as $\{\bigcap \mathcal{A} \mid \mathcal{A} \subset \mathcal{F}, |\mathcal{A}| = j\}$. Also, if F is a compact convex set, $\operatorname{rad}_{j}(F)$ denotes the nonnegative number with the property that F contains a closed j-dimensional convex ball of radius $\operatorname{rad}_{j}(F) + \kappa$.

We shall make explicit use of the following result of Falconer [5].

PROPOSITION 1. Let $\mathcal{F} = \{F_{\alpha}\}$ be a uniformly bounded H-closed collection of compact convex sets in \mathbb{R}^n . If dim $(\bigcap \mathcal{F}) < n$ then there exist $F_{\alpha_1}, \ldots, F_{\alpha_k}$ such that dim $(\bigcap_{i=1}^k F_{\alpha_i}) = q < n$ where $k \leq 2(n-q)$.

Two linear flats I and J each of dimension 1 or more will be called *skew* if $I \cap J = \emptyset$ and whenever $I_1 \subset I$ and $J_1 \subset J$ are flats of dimension 1 or more then no translate I_1 is contained in I_2 and vice versa. Two convex sets S and L each of dimension 1 or more will be called *skew* if there exist two skew linear flats I and J with $S \subset I$ and $L \subset J$. We shall need the following proposition.

PROPOSITION 2. Let $L \subset \mathbb{R}^n$, $n \ge 4$, be an n-3-dimensional subspace and let $F \subset L$ be a convex set with $0_v \in F$ and $1 \le \dim F \le n-3$. Let S be a convex set S of dimension 2 which is skew to L. Let $G = \operatorname{conv}(S \cup F)$ and suppose that $1 \le m \le n-3$. If dim F = m then dim G = m+3.

Proof. Suppose n = 4. Then m = 1. Since S is skew to L, S does not intersect L nor is S parallel to any nontrivial flat of L, and since dim S = 2we have dim $G \ge 3$. We claim dim $G \ge 4$. Suppose not. Then dim G = 3 and if I is the linear flat generated by S then dim I = 2 and so either I must intersect L or be parallel to a flat in L, each of which is a contradiction. Thus dim G = 4. Thus the assertion is true for n = 4. We now suppose that it is true for n and prove it for n + 1. If m = 1 then G is contained in a copy of \mathbb{R}^4 and the same argument as the one just given yields the assertion. Without loss of generality we may suppose that $2 \le m \le n - 2$. Thus if $2 \le m \le n - 3$ then G is contained in a copy of \mathbb{R}^n and the induction hypothesis gives the assertion. Thus we may suppose m = n - 2. The same argument as given in the first sentence gives $\dim G \ge n$. If $\dim G = n$ then if J is the n-2-dimensional subspace space generated by F and if I is the 2-dimensional linear flat generated by S then in \mathbb{R}^n either I must intersect J or be parallel to a flat in J, each of which is a contradiction. Thus dim G = n + 1 = (n-2) + 3 = m + 3 and the assertion follows.

2. The intersection of cones and convex sets

THEOREM 3. Let $\mathcal{F} = \{F_{\alpha}\}$ be a uniformly bounded collection of Hclosed compact convex sets in \mathbb{R}^n , $n \geq 2$, with $0_v \in \bigcap \mathcal{F}$. Then dim $(\bigcap \mathcal{F}) \geq d \geq 2$ if and only if dim $(\bigcap C(\mathcal{F})) \geq d \geq 2$.

Proof. The necessity is immediate; we consider the sufficiency. Let $k = \dim(\bigcap C(\mathcal{F})) \geq 2$ and define $j = n - \dim(\bigcap C(\mathcal{F})) = n - k$. We first establish the assertion in the case of j = 0, i.e. $\dim(\bigcap C(\mathcal{F})) = k = n$. Suppose that $\dim(\bigcap \mathcal{F}) < n$. Then by Proposition 1 of Falconer there exist $F_{\alpha_1}, \ldots, F_{\alpha_k}$ such that $\dim(\bigcap_{j=1}^k F_{\alpha_j}) = q < n$. Note that $\bigcap C(\mathcal{F}) \subseteq \bigcap_{j=1}^k C(F_{\alpha_j}) = C(\bigcap_{j=1}^k F_{\alpha_j})$, which implies that $\dim(\bigcap C(\mathcal{F})) < \dim(\bigcap_{j=1}^k C(F_{\alpha_j})) = \dim(\bigcap_{j=1}^k F_{\alpha_j}) < n$, a contradiction. Thus the assertion is true for d = n, n = 2, and we may suppose that k < n and $n \geq 3$.

Let P(j) be the conclusion of the theorem for j; the last paragraph shows that P(0) is true. We now suppose that P(j) is true and prove that P(j+1)is true. Since dim $(\bigcap C(\mathcal{F})) \geq 2$ we may choose a hyperplane L with $0_v \in L$ such that L does not support $\bigcap C(\mathcal{F})$. In particular, L cannot support any element of \mathcal{F} , which implies by a routine argument that $L \cap \mathcal{F}$ is H-closed and that if $\mathcal{F}^L = L \cap \mathcal{F}$ then dim $(\bigcap C(\mathcal{F}^L)) = k - 1 \geq 1$. Let V denote the subspace generated by $\bigcap C(\mathcal{F}^L)$. Regarding \mathbb{R}^n as a subset of \mathbb{R}^{n+1} , since $1 \leq k - 1 \leq (n+1) - 3$ we may choose a compact convex set $S \subset \mathbb{R}^{n+1}$ of dimension 2 which is skew to V. Define $\mathcal{G} = \{\operatorname{conv}(\{S\} \cup F_{\alpha}^L) \mid F_{\alpha}^L \in \mathcal{F}^L\}$. Note that if $M = \operatorname{conv}(S \cup \bigcap C(\mathcal{F}^L))$ then $M \subset \bigcap C(\mathcal{G})$. Since S is skew to $V \subset L$ and $1 \leq k - 1 \leq (n+1) - 3$ we see by applying Proposition 2 in \mathbb{R}^{n+1} that dim M = ((k-1)+3) = k+2 and so dim $(\bigcap C(\mathcal{G})) \geq \dim M \geq k+2$. Since

$$(n+1) - \dim\left(\bigcap C(\mathcal{G})\right) = (n+1) - (k+2) = n - k - 1 \le n - k = j,$$

the induction hypothesis on j applied in \mathbb{R}^{n+1} gives dim $(\bigcap \mathcal{G}) \ge k+2$.

We next assert that $\bigcap \mathcal{G} = \operatorname{conv}(S \cup \bigcap \mathcal{F}^L)$. This follows if we show that $\bigcap \mathcal{G} \subset \operatorname{conv}(S \cup \bigcap \mathcal{F}^L)$. Let $x \in \bigcap \mathcal{G}$. If $x \in S \cup \bigcap \mathcal{F}^L$ we are done; if not then for each $F_{\alpha}^L, F_{\beta}^L$ there exist positive scalars $\lambda_{\alpha}, \lambda_{\beta}$ less than 1 and points s_{α}, s_{β} in $S, f_{\alpha} \in F_{\alpha}^L$ and $f_{\beta} \in F_{\beta}^L$ with

$$x = \lambda_{\alpha} s_{\alpha} + (1 - \lambda_{\alpha}) f_{\alpha} = \lambda_{\beta} s_{\beta} + (1 - \lambda_{\beta}) f_{\beta}.$$

Thus $\lambda_{\alpha}s_{\alpha} - \lambda_{\beta}s_{\beta} = (1 - \lambda_{\beta})f_{\beta} - (1 - \lambda_{\alpha})f_{\alpha}$. Since S is skew to V, both $\lambda_{\alpha}s_{\alpha} - \lambda_{\beta}s_{\beta}$ and $(1 - \lambda_{\beta})f_{\beta} - (1 - \lambda_{\alpha})f_{\alpha}$ equal 0_v . Note that $f_{\alpha} \neq 0_v$ for all α : if one $f_{\beta} = 0_v$ then $f_{\alpha} = 0_v$ for all α and then $x = 0_v$ and so $x \in \bigcap \mathcal{F}^L$, a contradiction as $x \notin S \cup \bigcap \mathcal{F}^L$. Thus f_{α} and f_{β} are positive scalar multiples of each other for any α and β , and as \mathcal{F}^L is H-closed we may produce a set $F_{\theta}^L \in \mathcal{F}^L$ where $||f_{\theta}|| = \inf ||f_{\alpha}|| > 0$ over all α and $x = \lambda_{\theta}s_{\theta} + (1 - \lambda_{\theta})f_{\theta}$ with $f_{\theta} \in (\bigcap \mathcal{F}^L)$ and the assertion follows.

Let $s = \dim(\bigcap \mathcal{F}^L)$. Note that $s \ge 1$, for if s = 0 then since $\bigcap \mathcal{G} = \operatorname{conv}(S \cup \bigcap \mathcal{F}^L)$ and dim S = 2 we see that dim $(\bigcap \mathcal{G}) = 3$, which is a contradiction as dim $(\bigcap \mathcal{G}) \ge k + 2 \ge 4$. Further, as $1 \le s = \dim(\bigcap \mathcal{F}^L) \le \dim(\bigcap C(\mathcal{F}^L)) = k - 1$ and $1 \le k - 1 \le (n + 1) - 3$, we see by applying Proposition 2 in \mathbb{R}^{n+1} that $k + 2 \le \dim(\bigcap \mathcal{G}) = \dim(\bigcap \mathcal{F}^L) + 3 = s + 3$ and so $s \ge d - 1$ and $s = \dim(\bigcap \mathcal{F}^L) \ge k - 1$. Thus we may choose a nontrivial closed line segment $h = [0_v, x] \subset \bigcap \mathcal{F}^L \subset \bigcap C(\mathcal{F})$, and as dim $(\bigcap C(\mathcal{F})) \ge 2$ we may choose a hyperplane $L_1 \ne L$ with $0_v \in L_1, h \cap L_1 = 0_v$ and such that L_1 does not support $\bigcap C(\mathcal{F})$. Repeating for L_1 the same construction done for L gives dim $(\bigcap \mathcal{F}^{L_1}) \ge k - 1$. The latter together with the facts that $h \subset \bigcap C(\mathcal{F})$ and $h \cap L_1 = 0_v$ implies that dim $(\bigcap \mathcal{F}) \ge k$, which establishes the theorem.

3. The intersection of convex sets

THEOREM 4. Let $\mathcal{F} = \{F_{\alpha}\}$ be a uniformly bounded collection of compact convex sets in \mathbb{R}^n . Then dim $(\bigcap \mathcal{F}) \ge d$, $0 \le d \le n$, if and only if for some $\delta > 0$, \mathcal{F} has property $(f(n, d), d, \delta)$ where f(n, 0) = n + 1 and f(n, d) =max $\{n + 2, 2n - 2d + 2\}$ for $1 \le d \le n$.

Proof. The necessity is immediate; we consider the sufficiency. We proceed by induction on n. If $n \leq 2, d = 1$, or d = n the conclusion follows from the results of Breen [2] and Falconer [5] respectively. Thus we may suppose that $n \geq 3$ and $d \geq 2$. Without loss of generality by Helly's theorem [11] we may assume that $0_v \in \bigcap \mathcal{F}$. For each $F_\alpha \in \mathcal{F}$ let \mathcal{H}_α be the set of all closed half-spaces H^+ containing F_{α} . It is well known that $F_{\alpha} = \bigcap \mathcal{H}_{\alpha}$ [8] and therefore if $\mathcal{H} = \{H^+ \mid H^+ \in \mathcal{H}_\alpha, F_\alpha \in \mathcal{F}\}$ then $\bigcap \mathcal{F} = \bigcap \mathcal{H}$. As \mathcal{F} has property $(f(n,d), d, \delta)$ so does \mathcal{H} . As \mathcal{F} is uniformly bounded we may enclose the closure of $\bigcup \mathcal{F}$ in the interior of a cube *I*. Then the family \mathcal{P} of polytopes which is the closure of the family $\{H^+ \cap I \mid H^+ \in \mathcal{H}\}$ in the Hausdorff metric, has property $(f(n,d),d,\delta), \bigcap \mathcal{F} = \bigcap \mathcal{H}, \mathcal{P}$ is Hclosed, and each element of $C(\mathcal{P})$ is closed since it is a polytope [7]. Since $\dim(\bigcap \mathcal{F}) \geq \dim(\bigcap \mathcal{P})$ and $\bigcap \mathcal{P} \subset \bigcap \mathcal{F}$, to prove the theorem it suffices to prove dim $(\bigcap \mathcal{P}) \geq d$. Therefore, without loss of generality, we suppose that \mathcal{F} is an *H*-closed family of polytopes, and each element of $\mathcal{C} = C(\mathcal{F})$ is closed. By a corollary of the Bonnice–Klee theorem [1, p. 11], $\dim(\bigcap \mathcal{C}) \geq 1$.

Recall that $\mathcal{B} = \mathcal{B}_r(\mathcal{C}) = \{B_\alpha \mid B_\alpha = C_\alpha \cap B(0_v, r), C_\alpha \in \mathcal{C}\}$ and that if $r = 2 \cdot \operatorname{diam}(\bigcup \mathcal{F})$ then \mathcal{B} has property $(f(n,d),d,\delta)$ as does its closure \mathcal{K} . Since $\operatorname{dim}(\bigcap \mathcal{C}) = \operatorname{dim}(\bigcap \mathcal{K})$ we see that $\operatorname{dim}(\bigcap \mathcal{K}) \geq 1$. Thus we may choose a point $u \in \operatorname{relint}(\bigcap \mathcal{K})$. We may then choose a hyperplane H with $u \in H$, $\bigcap \mathcal{K} \nsubseteq H$, with $\bigcap \mathcal{K}$ intersecting both open half-spaces of H and H does not support $\bigcap \mathcal{K}$. Note that $\bigcap \mathcal{K} \subset E_\beta$ for any $E_\beta \in \mathcal{K}^{f(n,d)}$. Since $\bigcap \mathcal{K} \nsubseteq H$, each $E_\beta \in \mathcal{K}^{f(n,d)}$ must intersect at least one of the open half-spaces of Hsince if not then $\bigcap \mathcal{K} \subset E_\beta \subset H$, a contradiction. But then E_β must intersect both the open half-spaces of H since if not then H supports $\bigcap \mathcal{K}$, a contradiction. This together with the hypothesis that \mathcal{K} has property $(f(n,d), d, \delta)$ implies that $\operatorname{dim}(H \cap E_\beta) \geq d - 1 \geq 1$.

Suppose that $\theta_{\beta} = \operatorname{rad}_{d-1}(H \cap E_{\beta})$ and let $\theta = \inf\{\theta_{\beta} \mid E_{\beta} \in \mathcal{K}^{f(n,d)}\}$. We next assert that $\theta > 0$. Suppose that $\theta = 0$. Then there exists a sequence $\{E_{\beta_i}\}$ in $\mathcal{K}^{f(n,d)}$ such that $\theta_{\beta_i} \to 0$ as $i \to \infty$ and for each i, $E_{\beta_i} = K_{\alpha(1,\beta_i)} \cap K_{\alpha(2,\beta_i)} \cap \cdots \cap K_{\alpha(f(n,d),\beta_i)}$. Without loss of generality (avoiding subsequences) we may suppose that $E_{\beta_i} \to Q$ for some compact convex set Q. Since for each i, $\bigcap \mathcal{K} \subset E_{\beta_i}$, we have $\bigcap \mathcal{K} \subset Q$ and so Q must intersect both open half-spaces of H since $\bigcap \mathcal{K}$ does. Further, since \mathcal{K} has property $(f(n,d),d,\delta)$, each E_{β_i} contains some closed d-dimensional ball of radius δ ; a standard argument in the Hausdorff metric then shows that Q must contain a closed d-dimensional ball of radius δ . Thus dim $Q \ge d$. Since Q must intersect both open half-spaces of H we have dim $(Q \cap H) \ge d-1 \ge 1$ and by a routine argument $E_{\beta_i} \cap H \to Q \cap H$. Since $\theta = 0$ and $\theta_{\beta_i} = \operatorname{rad}_{d-1}(H \cap E_{\beta_i})$, and $E_{\beta_i} \cap H \to Q$, we must have dim $(Q \cap H) \le d-2$, a contradiction. Thus $\theta = \inf_i \theta_i > 0$.

Now $\theta > 0$ implies that if $\mathcal{K}_1 = \{H \cap K_\alpha \mid K_\alpha \in \mathcal{K}\}$ then \mathcal{K}_1 has property $(f(n,d), d-1, \theta)$. Since $f(n-1, d-1) \leq f(n,d)$, \mathcal{K}_1 has property $(f(n-1, d-1), d-1, \theta)$. The induction hypothesis applied in the hyperplane H yields $\dim(\bigcap \mathcal{K}_1) \geq d-1 \geq 1$. Since $\bigcap \mathcal{K}_1 = H \cap \bigcap \mathcal{K}$ and $\bigcap \mathcal{K}$ intersects both open half-spaces of H, this implies that $\dim(\bigcap \mathcal{K}) \geq d \geq 2$. Then since $\dim(\bigcap \mathcal{C}) = \dim(\bigcap \mathcal{B}) \geq \dim(\bigcap \mathcal{K})$ we see that $\dim(\bigcap \mathcal{C}) \geq d \geq 2$ and an application of Theorem 3 establishes the theorem.

4. The equivalence of visibility and clear visibility. If $S \subset \mathbb{R}^n$ is a nonempty set, the symbols S(x), conv S, and Ker S denote, respectively, $\{y \mid [x, y] \subset S\}$, the convex hull of S, and $\{x \mid [x, y] \subset S \; \forall y \in S\}$. If $A \subset S$ and $\varepsilon > 0$ let A_{ε} denote all points in S whose distance from A is less than ε . If K is a nonempty subset of S and $x \in S$, and conv $(\{x\} \cup K) \subset S$, we say that x is visible via S from K. Suppose $0 \le d \le n$, j is a positive integer and $\delta > 0$. A is said to be (j, d, δ) visible if given a set K of j elements of A, each point of K is visible via S from a common d-dimensional ball B_K of radius δ contained in S. Moreover, A is said to be (j, d) clearly visible if given a set K of j elements of A there exists a relatively open subset O_K of S containing K such that each point of O_K is visible via S from a common d-dimensional ball B_K contained in S. Finally, A is said to be (j, d, δ) clearly visible if given a set K of j elements of A there exists a relatively open subset O_K of S containing K such that each point of O_K is visible via S from a common d-dimensional ball B_K of radius δ contained in S.

THEOREM 5. Let $S \subset \mathbb{R}^n$ be a nonconvex continuum. Then S being (j, d) clearly visible is equivalent to S being (j, d, δ) visible for some $\delta > 0$ if and only if $j \ge f(n, d)$ where f(n, 0) = n+1 and $f(n, d) = \max\{n+2, 2n-2d+2\}$ for $1 \le d \le n$.

Proof. We first demonstrate the sufficiency. To prove the equivalence of the two visibility conditions it suffices to show that S being (j, d, δ) visible for some $\delta > 0$ implies S being (j, d) clearly visible since (j, d) clear visibility of S always implies (j, d, δ) visibility of S for some $\delta > 0$ (Breen [3] or Stavrakas [9, Theorem 3]). Since $j \ge f(n, d), S$ is $(f(n, d), d, \delta)$ visible. This coupled with Theorem 4 shows that dim $(\bigcap \{ \operatorname{conv}(S(x)) \mid x \in S \} \ge d$ and Krasnosel'skii's lemma [11] yields $\bigcap \{ \operatorname{conv}(S(x)) \mid x \in S \} \subset \operatorname{Ker} S$, which implies that dim $(\operatorname{Ker} S) = d$. This immediately implies the (j, d) clear visibility of S for any $j \ge 1$.

To prove the necessity, it suffices to construct a continuum S for which j < f(n,d) such that S is (j,d,δ) visible for some $\delta > 0$ and S is not (j,d) clearly visible. To do this in \mathbb{R}^2 let $S = \bigcup_{n=1}^{\infty} \{[0_v, x_n] \mid x_1 = (1,0), x_n = (1,1/n), n = 2,3,\ldots\}$. Note that 1 < f(2,1) = 4, S is (1,1,1/2) visible, but 0_v is not clearly visible from any one-dimensional subset of S and so in particular S is not (1,1) clearly visible.

THEOREM 6. Let $S \subset \mathbb{R}^n$ be a nonconvex continuum with points of local nonconvexity Q. Then the following are equivalent:

- (A) S is $(f(n, d), d, \delta)$ visible for some $\delta > 0$.
- (B) $\dim(\operatorname{Ker} S) = d.$
- (C) S is $(f(n,d), d, \delta)$ clearly visible for some $\delta > 0$.
- (D) Q_{ε} is (f(n,d),d) clearly visible for some $\varepsilon > 0$.
- (E) Q is $(f(n,d), d, \delta)$ clearly visible for some $\delta > 0$.
- (F) Q_{ε} is $(f(n,d), d, \delta)$ visible for some $\varepsilon > 0$ and $\delta > 0$.

Proof. The implications (B) \Rightarrow (C), (C) \Rightarrow (D) and (D) \Rightarrow (E) are immediate. The implication (E) \Rightarrow (F) is established in Stavrakas [9, Theorem 3]. The implication (A) \Rightarrow (B) was established in the first paragraph of the last proof. To prove (F) \Rightarrow (A) we note that in Stavrakas [10] it is proven that $\bigcap \{ \operatorname{conv}(S(x)) \mid x \in Q_{\varepsilon} \} = \bigcap \{ \operatorname{conv}(S(x) \mid x \in S \} \text{ and so the hypothe-} \}$

sis (F) coupled with the same argument in the first paragraph of the proof of Theorem 5 yields the conclusion (B), which immediately implies (A).

We remark that examples given in Breen [3] illustrate for each $d \geq 1$ that the number f(n, d) is best possible in the sense that the above theorem fails if f(n,d) is replaced by a smaller integer. We remark that J. Cel [4] has used a generalized form of Krasnosel'skii's lemma to represent starshaped sets in normed linear spaces.

In conclusion we acknowledge the many and profound accomplishments, in convexity and infinite-dimensional topology, of Victor Klee who passed away this year.

References

- W. Bonnice and V. Klee, The generation of convex hulls, Math. Ann. 152 (1963), 1 1 - 29.
- M. Breen, Krasnosel'skii numbers for bounded finitely starlike sets in \mathbb{R}^d , J. Geom. [2]37 (1990), 48-54.
- -, Improved Krasnosel'skii theorems for the dimension of the kernel of a starshaped [3] set, ibid. 27 (1986), 175–179.
- [4]J. Cel, Representations of starshaped sets in normed linear spaces, J. Funct. Anal. 174(2000) 264-275.
- 5 K. J. Falconer, The dimension of the kernel of a compact starshaped set, Bull. London Math. Soc. 9 (1977), 313–316.
- M. Katchalski, The dimensions of the intersections of convex sets, Israel J. Math. [6]10 (1971), 465–470.
- V. Klee, Some characterizations of convex polyhedra, Acta Math. 100 (1959), 79–107. [7]
- H. H. Schaefer, Topological Vector Spaces, Macmillan, New York, 1966. 8
- [9] N. Stavrakas, Reflexivity and visibility, Bull. Polish Acad. Sci. Math. 41 (1993), 113 - 121.
- [10]—, A reduction theorem for the intersection of closed convex hulls, Houston J. Math. 17 (1991), 271-277.
- F. Valentine, Convex Sets, McGraw-Hill, New York, 1964. [11]

N. Stavrakas

Department of Mathematics University of North Carolina Charlotte, NC 28223, U.S.A. E-mail: nstavrks@uncc.edu

> Received September 3, 2006: received in final form April 11, 2008 (7560)