A Characterization of One-Element p-Bases of Rings of Constants

by

Piotr JĘDRZEJEWICZ

Presented by Andrzej SKOWROŃSKI

Summary. Let K be a unique factorization domain of characteristic $p>0$, and let $f \in$ $K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial not lying in $K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$. We prove that $K\left[x_{1}^{p}, \ldots, x_{n}^{p}, f\right]$ is the ring of constants of a K-derivation of $K\left[x_{1}, \ldots, x_{n}\right]$ if and only if all the partial derivatives of f are relatively prime. The proof is based on a generalization of Freudenburg's lemma to the case of polynomials over a unique factorization domain of arbitrary characteristic.

1. Introduction. Nowicki and Nagata in [10] considered various questions about the number of generators of rings of constants of derivations, both in zero and positive characteristic cases. In particular, they proved in [10, Proposition 4.1] that if k is a field of positive characteristic, then the ring of constants of an arbitrary k-derivation of the polynomial k-algebra $k\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated over k. In [10, Proposition 4.2] they proved that if char $k=2$, then the ring of constants of a nonzero k-derivation of $k[x, y]$ is a $k\left[x^{2}, y^{2}\right]$-algebra generated by a single polynomial. They also gave a counter-example in the case of char $k=p>2$. It is natural to ask when the ring of constants of a k-derivation of $k\left[x_{1}, \ldots, x_{n}\right]$, where char $k=p>0$, is generated over $k\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$ by a single element.

The present author presented in [5] a discussion of sufficient conditions and necessary conditions for an element to be such a single generator of a ring of constants. In Theorem 2.3 of [5] the author proved that for a polynomial $f \in K\left[x_{1}, \ldots, x_{n}\right] \backslash K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$, where K is a UFD of characteristic $p>0$,

[^0]the condition
\[

$$
\begin{equation*}
\operatorname{gcd}\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)=1 \tag{*}
\end{equation*}
$$

\]

is sufficient and the condition
$(* *) \quad \operatorname{gcd}\left(f+h, \frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)=1 \quad$ for every $h \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$
is necessary. The conditions $(*)$ and $(* *)$ are necessary and sufficient in the case of characteristic 2 ([5, Theorem 3.7]). The proof was based on the following analog of Freudenburg's lemma.

Proposition 1.1 ([5, 3.6]). Let K be a UFD of characteristic 2. Let $f \in K\left[x_{1}, \ldots, x_{n}\right]$ and let g be a prime element of $K\left[x_{1}, \ldots, x_{n}\right]$ not belonging to $K\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]$. If $g \left\lvert\, \frac{\partial f}{\partial x_{i}}\right.$ for $i=1, \ldots, n$, then $g^{2} \mid f+h$ for some $h \in$ $K\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]$.

The original version of this lemma was presented by Freudenburg for two variables over \mathbb{C} in [3].

Lemma 1.2 (Freudenburg). Given a polynomial $f \in \mathbb{C}[x, y]$, suppose $g \in$ $\mathbb{C}[x, y]$ is an irreducible non-constant divisor of both $\partial f / \partial x$ and $\partial f / \partial y$. Then there exists $c \in \mathbb{C}$ such that g divides $f+c$.

This fact was generalized to polynomials over an arbitrary algebraically closed field of characteristic zero by van den Essen, Nowicki and Tyc in [2, Proposition 2.1].

Proposition 1.3 (van den Essen, Nowicki, Tyc). Let k be an algebraically closed field of characteristic zero. Let P be a prime ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ and $f \in k\left[x_{1}, \ldots, x_{n}\right]$. If for each i the partial derivative $\partial f / \partial x_{i}$ belongs to P, then there exists $c \in k$ such that $f+c \in P$.

The natural analog of Freudenburg's lemma appeared to be, in general, false in characteristic $p>2$ ([5]). The condition $(* *)$ also turned out to be, in general, not sufficient.

In this article we generalize Freudenburg's lemma to polynomials over a UFD of arbitrary characteristic (Theorem 3.1). In positive characteristic it is a weaker version of this lemma than the one mentioned above. This enables us to obtain in Theorem 4.2 the equivalence of some conditions for f to be a single generator of the ring of constants of a derivation, in particular, we obtain the condition $(*)$.
2. Preliminaries. Throughout this paper by a ring we mean a commutative ring with unity and by a domain we mean a commutative ring with unity, without zero divisors.

Let K be a domain. We denote by K_{0} the field of fractions of K, and by K^{*} the set of all invertible elements of K. Two polynomials $f, g \in$ $K\left[x_{1}, \ldots, x_{n}\right]$ are called associated if $f=a g$ for some $a \in K^{*}$; we then write $f \sim g$. A polynomial $f \in K\left[x_{1}, \ldots, x_{n}\right]$ is called square-free if it is not divisible by a square of any polynomial from $K\left[x_{1}, \ldots, x_{n}\right] \backslash K^{*}$. If K is a domain of characteristic $p>0$, then a polynomial $f \in K\left[x_{1}, \ldots, x_{n}\right]$ is called p-free if it is not divisible by any polynomial from $K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right] \backslash K^{*}$.

Let K be a ring and let A be a K-algebra. A K-linear map $d: A \rightarrow A$ is called a K-derivation of A if $d(f g)=d(f) g+f d(g)$ for every $f, g \in A$. The kernel of a K-derivation d is called the ring of constants of d and is denoted by A^{d}.

If the K-algebra A is a domain of characteristic $p>0$, then $A^{p}=\left\{a^{p}\right.$; $a \in A\}$ is a subring of A. Denote by $K A^{p}$ the K-submodule of A generated by A^{p} and observe that $K A^{p}$ is a K-subalgebra of A. The ring of constants of every K-derivation of A is a $K A^{p}$-subalgebra of A. In particular, the ring of constants of every K-derivation of $K\left[x_{1}, \ldots, x_{n}\right]$ is a $K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$ subalgebra of $K\left[x_{1}, \ldots, x_{n}\right]$.

Recall some definitions and facts from [4].
Definition 2.1. Let A be a domain of characteristic $p \geq 0$, and let R be a subring of A. If $p=0$, we put $T^{p}=1$ and $R_{0}\left[T^{p}\right]=R_{0}$. An element $a \in A$ is called separably algebraic over R if $w(a)=0$ for some irreducible polynomial $w(T) \in R_{0}[T] \backslash R_{0}\left[T^{p}\right]$. The set of all elements of A separably algebraic over R is called the separable algebraic closure of R in A and is denoted by \bar{R}^{A}.

Proposition 2.2. Let A be a domain of characteristic $p>0$. Let R be a subring of A such that $A^{p} \subseteq R$. Then $\bar{R}^{A}=R_{0} \cap A$.

The following theorem from [4] concerns rings of constants of K-derivations, where K is a domain. It is a generalization of Nowicki's characterization (9 , Theorem 5.4], [8, Theorem 4.1.4]) and Daigle's observation ([1, Theorem 1.4]); see also [6, Theorem 1.1].

Theorem 2.3. Let A be a finitely generated K-domain, where K is a domain (of arbitrary characteristic). Let R be a K-subalgebra of A. If char $K=p>0$, assume additionally that $A^{p} \subseteq R$. The following conditions are equivalent:
(1) R is the ring of constants of some K-derivation of A,
(2) $\bar{R}^{A}=R$.

The following corollary of the above theorem will be useful in the proof of Theorem 3.1.

Corollary 2.4. Let A be a finitely generated K-domain, where K is a domain. Then the smallest (with respect to inclusion) ring of constants of a K-derivation of A is of the form \bar{B}^{A}, where:
(a) B is the canonical homomorphic image of K in A if char $K=0$,
(b) $B=K A^{p}$ if char $K=p>0$.

In particular, for char $K=p>0$, the smallest ring of constants containing a given element $f \in A$ is of the form

$$
\overline{B[f]}^{A}=B_{0}(f) \cap A=B_{0}[f] \cap A
$$

where $B=K A^{p}$.
The general definition of a p-basis can be found, for example, in [7, p. 269]. In this paper we deal only with the one-element case.

Definition 2.5. Let A, B be domains of characteristic $p>0$ such that $A^{p} \subseteq B$, and let R be a subring of A. An element $f \in A$ is called a oneelement p-basis of R over B if R is a free B-module with basis $1, f, \ldots, f^{p-1}$.

The following fact is an adaptation of Lemma 1.3 from [5]. It will be useful in the proof of Theorem 4.2.

Lemma 2.6. Let K is a domain of characteristic $p>0$. For an arbitrary polynomial $f \in K\left[x_{1}, \ldots, x_{n}\right] \backslash K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$ put

$$
C(f)=K\left(x_{1}^{p}, \ldots, x_{n}^{p}, f\right) \cap K\left[x_{1}, \ldots, x_{n}\right]
$$

Then the following conditions are equivalent:
(i) $K\left[x_{1}^{p}, \ldots, x_{n}^{p}, f\right]$ is the ring of constants of a K-derivation,
(ii) f is a one-element p-basis of $C(f)$,
(iii) $C(f)=K\left[x_{1}^{p}, \ldots, x_{n}^{p}, f\right]$,
(iv) for every $w_{0}, w_{1}, \ldots, w_{p-1} \in K\left(x_{1}^{p}, \ldots, x_{n}^{p}\right)$, if

$$
w_{0}+w_{1} f+\cdots+w_{p-1} f^{p-1} \in K\left[x_{1}, \ldots, x_{n}\right]
$$

then $w_{0}, w_{1}, \ldots, w_{p-1} \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$.
3. An analog of Freudenburg's lemma. In this section we prove the following analog of the lemma of Freudenburg.

Theorem 3.1. Let K be a UFD, and let P be a prime ideal of the polynomial algebra $K\left[x_{1}, \ldots, x_{n}\right]$. Consider a polynomial $f \in K\left[x_{1}, \ldots, x_{n}\right]$ such that $\partial f / \partial x_{i} \in P$ for $i=1, \ldots, n$.
(a) If char $K=0$, then there exists an irreducible polynomial $W(T) \in$ $K[T]$ such that $W(f) \in P$.
(b) If char $K=p>0$, then there exist $b, c \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$ such that $\operatorname{gcd}(b, c) \sim 1, b \notin P$ and $b f+c \in P$.
The proof is based on the following observation.

Lemma 3.2. Let K be a domain, let I be an ideal of $K\left[x_{1}, \ldots, x_{n}\right]$ and let δ be a K-derivation of the factor algebra $A=K\left[x_{1}, \ldots, x_{n}\right] / I$. Then there exists a K-derivation d of $K\left[x_{1}, \ldots, x_{n}\right]$ such that $\delta(\bar{f})=\overline{d(f)}$ for every $f \in k\left[x_{1}, \ldots, x_{n}\right]$, where \bar{f} denotes the coset of f in A.

Proof. Put $\delta\left(\overline{x_{i}}\right)=\overline{h_{i}}$, where $h_{i} \in K\left[x_{1}, \ldots, x_{n}\right]$, for $i=1, \ldots, n$. Define a K-derivation d of $K\left[x_{1}, \ldots, x_{n}\right]$ such that $d\left(x_{i}\right)=h_{i}$ for $i=1, \ldots, n$. Then, by a straightforward computation, one can verify that $\delta(\bar{f})=\overline{d(f)}$ for every $f \in k\left[x_{1}, \ldots, x_{n}\right]$.

Now we can prove Theorem 3.1.
Proof of Theorem 3.1. Note that if d is a K-derivation of $K\left[x_{1}, \ldots, x_{n}\right]$, then

$$
d(f)=\frac{\partial f}{\partial x_{1}} d\left(x_{1}\right)+\cdots+\frac{\partial f}{\partial x_{n}} d\left(x_{n}\right)
$$

so $d(f) \in P$.
Consider the factor algebra $A=K\left[x_{1}, \ldots, x_{n}\right] / P$. Since P is a prime ideal, A is a domain. If δ is an arbitrary K-derivation of A, then, by Lemma 3.2 there exists a K-derivation d of $K\left[x_{1}, \ldots, x_{n}\right]$ such that $\delta(\bar{f})=\overline{d(f)}=\overline{0}$, since $d(f) \in P$. We conclude that \bar{f} belongs to the ring of constants of every K-derivation of A.

If char $K=0$, then, by Corollary 2.4 (a), $\bar{f} \in \bar{B}^{A}$, where B is the canonical homomorphic image of K in A. Hence $U(\bar{f})=\overline{0}$ for some polynomial $U(T) \in$ $B_{0}[T] \backslash B_{0}$. Let $U(T)=\overline{a_{n}} T^{n}+\cdots+\overline{a_{1}} T+\overline{a_{0}}$, where $a_{n}, \ldots, a_{1}, a_{0} \in K_{0}$, and put $W(T)=a_{n} T^{n}+\cdots+a_{1} T+a_{0}$. We may assume that the polynomial $W(T)$ belongs to $K[T]$ and is irreducible in $K[T]$. We deduce that $W(f) \in P$.

If char $K=p>0$, then $\bar{f} \in\left(K A^{p}\right)_{0} \cap A$, by Corollary 2.4(b) and Proposition 2.2. Therefore $\bar{b} \cdot \bar{f}=\overline{-c}$ for some $b, c \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right], b \notin P$, where we may assume that $\operatorname{gcd}(b, c) \sim 1$. We infer that $b f+c \in P$.

In a special case when P is a principal ideal, we obtain a stronger result.
Proposition 3.3. Let K be a UFD. Consider $f, g \in K\left[x_{1}, \ldots, x_{n}\right] \backslash K$ such that g is irreducible and g divides $\partial f / \partial x_{i}$ for $i=1, \ldots, n$. If char $K=$ $p>0$, assume additionally that $f, g \notin K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$.
(a) If char $K=0$, then there exists an irreducible polynomial $W(T) \in$ $K[T]$, such that g^{2} divides $W(f)$.
(b) If char $K=p>0$, then there exist $b, c \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$ such that g^{2} divides $b f+c, g$ does not divide b and $\operatorname{gcd}(b, c) \sim 1$.

Proof. (a) Applying Theorem 3.1 to the prime ideal $P=(g)$, we obtain $W(f)=g h$ for some $h \in K\left[x_{1}, \ldots, x_{n}\right]$. Since $g \notin K$, we have $\frac{\partial g}{\partial x_{i}} \neq 0$ for some i, and then $g \nmid \frac{\partial g}{\partial x_{i}}$. Taking the partial derivative with respect to x_{i} of
both sides of the equality $W(f)=g h$ we obtain

$$
W^{\prime}(f) \frac{\partial f}{\partial x_{i}}=h \frac{\partial g}{\partial x_{i}}+g \frac{\partial h}{\partial x_{i}},
$$

so $g \left\lvert\, h \frac{\partial g}{\partial x_{i}}\right.$. Hence $g \mid h$ and $g^{2} \mid W(f)$.
(b) We use the same arguments as in case (a) with a polynomial $W(T)=$ $b T+c \in K^{\prime}[T]$, where $K^{\prime}=K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$.

Note that as a consequence of the above proposition we obtain a characterization of polynomials with relatively prime partial derivatives. In the case of characteristic zero we have the following theorem.

Theorem 3.4. Let K be a field of characteristic 0 , and let $f \in K\left[x_{1}, \ldots\right.$ $\ldots, x_{n} \backslash \backslash K$. The following conditions are equivalent:
(i) $\operatorname{gcd}\left(\partial f / \partial x_{1}, \ldots, \partial f / \partial x_{n}\right) \sim 1$,
(ii) for every irreducible polynomial $W(T) \in K[T]$, the polynomial $W(f)$ is square-free.
4. One-element p-bases. In this section we obtain a characterization of one-element p-bases of rings of constants of K-derivations of $K\left[x_{1}, \ldots, x_{n}\right]$, where K is a UFD of characteristic $p>0$.

If $f=\sum_{i_{1}, \ldots, i_{n} \geq 0} a_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}$, where $a_{i_{1}, \ldots, i_{n}} \in K$, then we set

$$
f_{(p)}=\sum_{\substack{i_{1}, \ldots, i_{n}>0 \\ p\left|i_{1}, \ldots, p\right| i_{n}}} a_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}
$$

We can improve Proposition 3.3 from [5 in the following way.
Proposition 4.1. Let K be a UFD of characteristic $p>0$. Let $f \in$ $K\left[x_{1}, \ldots, x_{n}\right]$ and $g \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$. If $g \left\lvert\, \frac{\partial f}{\partial x_{i}}\right.$ for $i=1, \ldots, n$, then $g \mid f-f_{(p)}$.

Proof. By [5, Proposition 3.3], under these assumptions we have $g \mid f+h$ for some $h \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$, so $f+h=g w$, where $w \in K\left[x_{1}, \ldots, x_{n}\right]$. Since $g \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$, it is easy to check that $(g w)_{(p)}=g w_{(p)}$. Then $f_{(p)}+h=$ $(f+h)_{(p)}=g w_{(p)}$, and we obtain $f-f_{(p)}=g\left(w-w_{(p)}\right)$, that is, $g \mid f-f_{(p)}$.

Now, we can prove the main theorem.
Theorem 4.2. Let K be a UFD of characteristic $p>0$, let $f \in K\left[x_{1}, \ldots\right.$ $\left.\ldots, x_{n}\right] \backslash K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$. The following conditions are equivalent:
(i) $\operatorname{gcd}\left(\partial f / \partial x_{1}, \ldots, \partial f / \partial x_{n}\right) \sim 1$,
(ii) $K\left[x_{1}^{p}, \ldots, x_{n}^{p}, f\right]$ is the ring of constants of a K-derivation,
(iii) for every $b, c \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$ such that $b \neq 0$ and $\operatorname{gcd}(b, c) \sim 1$, the polynomial $b f+c$ is square-free and p-free,
(iv) the polynomial $f-f_{(p)}$ is p-free and, for every $b, c \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$ such that $b \neq 0$ and $\operatorname{gcd}(b, c) \sim 1$, the polynomial $b f+c$ is square-free.

Proof. The implication $(\mathrm{i}) \Rightarrow$ (ii) was proved in [5, Theorem 2.3]. The implication (iii) \Rightarrow (iv) is obvious.
(ii) \Rightarrow (iii). Assume that $K\left[x_{1}^{p}, \ldots, x_{n}^{p}, f\right]$ is the ring of constants of some K-derivation of $K\left[x_{1}, \ldots, x_{n}\right]$ and consider $b, c \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$ such that $b \neq 0$ and $\operatorname{gcd}(b, c) \sim 1$. If $h \mid b f+c$ for some $h \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right] \backslash K^{*}$, then $(b / h) f+c / h \in K\left[x_{1}, \ldots, x_{n}\right]$, where $b / h, c / h \in K\left(x_{1}^{p}, \ldots, x_{n}^{p}\right)$. By Lemma 2.6 we deduce that $b / h, c / h \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$, so $h \mid b$ and $h \mid c$, a contradiction.

Suppose that $g^{2} \mid b f+c$ for some $g \in K\left[x_{1}, \ldots, x_{n}\right] \backslash K^{*}$. If $p=2$, then $g^{2} \in$ $K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$, and this is the case we have just considered. Assume that $p>2$ and put $r=(p+1) / 2$. Note that $g^{p} \mid g^{2 r}$ and $g^{2 r} \mid(b f+c)^{r}$, so $g^{p} \mid(b f+c)^{r}$. We have $(b f+c)^{r}=b^{r} f^{r}+\cdots+c^{r}$, so $\left(b^{r} / g^{p}\right) f^{r}+\cdots+c^{r} / g^{p} \in K\left[x_{1}, \ldots, x_{n}\right]$. Since $r<p$, we deduce by Lemma 2.6 that $b^{r} / g^{p}, c^{r} / g^{p} \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$, so $g \mid b$ and $g \mid c$, a contradiction.
$\neg(\mathrm{i}) \Rightarrow \neg($ iv $)$. Assume that $\operatorname{gcd}\left(\partial f / \partial x_{1}, \ldots, \partial f / \partial x_{n}\right) \nsim 1$ and consider an irreducible polynomial $g \in K\left[x_{1}, \ldots, x_{n}\right]$ such that $g \left\lvert\, \frac{\partial f}{\partial x_{i}}\right.$ for $i=1, \ldots, n$. If g belongs to $K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$, then $g \mid f-f_{(p)}$ by Proposition 4.1. If g does not belong to $K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$, then, by Proposition 3.3, $g^{2} \mid b f+c$ for some $b, c \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$ such that $b \neq 0$ and $\operatorname{gcd}(b, c) \sim 1$. In both cases condition (iv) does not hold.

References

[1] D. Daigle, Locally nilpotent derivations, lecture notes for the September School of Algebraic Geometry (Lukęcin, 2003) (unpublished), aix1.uottawa.ca/~ddaigle/.
[2] A. van den Essen, A. Nowicki and A. Tyc, Generalizations of a lemma of Freudenburg, J. Pure Appl. Algebra 177 (2003), 43-47.
[3] G. Freudenburg, A note on the kernel of a locally nilpotent derivation, Proc. Amer. Math. Soc. 124 (1996), 27-29.
[4] P. Jędrzejewicz, A note on rings of constants of derivations in integral domains, Colloq. Math. 122 (2011), 241-245.
[5] -, One-element p-bases of rings of constants of derivations, Osaka J. Math. 46 (2009), 223-234.
[6] -, Rings of constants of p-homogeneous polynomial derivations, Comm. Algebra 31 (2003), 5501-5511.
[7] H. Matsumura, Commutative Algebra, 2nd ed., Benjamin, Reading, MA, 1980.
[8] A. Nowicki, Polynomial derivations and their rings of constants, Nicolaus Copernicus University, Toruń, 1994, www.mat.umk.pl/~anow/.
[9] -, Rings and fields of constants for derivations in characteristic zero, J. Pure Appl. Algebra 96 (1994), 47-55.
[10] A. Nowicki and M. Nagata, Rings of constants for k-derivations in $k\left[x_{1}, \ldots, x_{n}\right]$, J. Math. Kyoto Univ. 28 (1988), 111-118.

Piotr Jędrzejewicz
Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
87-100 Toruń, Poland
E-mail: pjedrzej@mat.umk.pl

[^0]: 2010 Mathematics Subject Classification: Primary 13N15; Secondary 12E05. Key words and phrases: derivation, ring of constants, p-basis.

