
BULLETIN OF THE POLISH

ACADEMY OF SCIENCES

MATHEMATICS

Vol. 59, No. 1, 2011

GROUP THEORY AND GENERALIZATIONS

Finite Groups with Weakly s-Permutably Embedded and
Weakly s-Supplemented Subgroups

by

Changwen LI

Presented by Andrzej SKOWROŃSKI

Summary. Suppose G is a finite group and H is a subgroup of G. H is called weakly s-
permutably embedded in G if there are a subnormal subgroup T of G and an s-permutably
embedded subgroup Hse of G contained in H such that G = HT and H ∩ T ≤ Hse; H is
called weakly s-supplemented in G if there is a subgroup T of G such that G = HT and
H ∩ T ≤ HsG, where HsG is the subgroup of H generated by all those subgroups of H
which are s-permutable in G. We investigate the influence of the existence of s-permutably
embedded and weakly s-supplemented subgroups on the structure of finite groups. Some
recent results are generalized.

1. Introduction. All groups considered in this paper are finite. A sub-
group H of a group G is said to be s-permutable in G if H permutes with
all Sylow subgroups of G, i.e., HS = SH for any Sylow subgroup S of G.
This concept was introduced by Kegel in [K]. Following Ballester-Bolinches
and Pedraza-Aguilera [BP], we call H s-permutably embedded in G if for
each prime p dividing |H|, a Sylow p-subgroup of H is also a Sylow p-
subgroup of some s-permutable subgroup of G. As a generalization of the
above notions, Y. Li, S. Qiao and Y. Wang [LQW] introduce a new sub-
group embedding property: A subgroup H of a group G is called weakly
s-permutably embedded in G if there are a subnormal subgroup T of G and
an s-permutably embedded subgroup Hse of G contained in H such that
G = HT and H ∩ T ≤ Hse. As another generalization of s-permutable sub-
groups, Skiba [S] introduced the following concept: A subgroup H of a group
G is called weakly s-supplemented in G if there is a subgroup T of G such
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that G = HT and H ∩ T ≤ HsG, where HsG is the subgroup of H gener-
ated by all those subgroups of H which are s-permutable in G. In fact, this
concept is also a generalization of c-supplemented subgroups given in [W].
Skiba proposed in [S] two open questions related to weakly s-supplemented
subgroups. In this paper, we prove some theorems which show that in most
cases (for maximal and minimal subgroups) Question 6.4 in [S] has a posi-
tive solution. There are examples where weakly s-supplemented subgroups
are not weakly s-permutably embedded, and in general the converse is also
false. The aim of this article is to unify and improve some earlier results using
weakly s-permutably embedded and weakly s-supplemented subgroups.

2. Preliminaries

Lemma 2.1 ([LQW, Lemma 2.5]). Let H be a weakly s-permutably em-
bedded subgroup of a group G.

(i) If H ≤ L ≤ G, then H is weakly s-permutably embedded in L.
(ii) If N � G and N ≤ H ≤ G, then H/N is weakly s-permutably

embedded in G/N .
(iii) If H is a π-subgroup and N is a normal π′-subgroup of G, then

HN/N is weakly s-permutably embedded in G/N .

Lemma 2.2 ([S, Lemma 2.10]). Let H be a weakly s-supplemented sub-
group of a group G.

(i) If H ≤ L ≤ G, then H is weakly s-supplemented in L.
(ii) If N �G and N ≤ H ≤ G, then H/N is weakly s-supplemented in

G/N .
(iii) If H is a π-subgroup and N is a normal π′-subgroup of G, then

HN/N is weakly s-supplemented in G/N .

Lemma 2.3 ([LWW, Lemma 2.3]). Suppose that H is s-permutable in G,
and P is a Sylow p-subgroup of H, where p is a prime. If HG = 1, then P
is s-permutable in G.

Lemma 2.4 ([Sc, Lemma A]). If P is a s-permutable p-subgroup of G
for some prime p, then NG(P ) ≥ Op(G).

Lemma 2.5 ([LWW, Lemma 2.4]). Suppose P is a p-subgroup of G con-
tained in Op(G). If P is s-permutably embedded in G, then P is s-permutable
in G.

Lemma 2.6 ([DH, A, 1.2]). Let U , V, and W be subgroups of a group G.
Then the following statements are equivalent:

(i) U ∩ VW = (U ∩ V )(U ∩W );
(ii) UV ∩ UW = U(V ∩W ).
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Lemma 2.7 ([LG, Lemma 2.6]). Let H be a solvable normal subgroup of
a group G (H 6= 1). If no minimal normal subgroup of G which is contained
in H is contained in Φ(G), then the Fitting subgroup F (H) of H is the direct
product of minimal normal subgroups of G which are contained in H.

Lemma 2.8 ([S, Lemma 2.16]). Let F be a saturated formation contain-
ing U , the class of all supersoluble groups. Suppose that G is a group with a
normal subgroup N such that G/N ∈ F . If N is cyclic, then G ∈ F .

Lemma 2.9 ([LL, Lemma 2.3]). Let G be a group and p a prime dividing
|G| with (|G|, p − 1) = 1. If G has cyclic Sylow p-subgroups, then G is
p-nilpotent.

3. Main results

Theorem 3.1. Let P be a Sylow p-subgroup of a group G, where p is a
prime divisor of |G| with (|G|, p − 1) = 1. If every maximal subgroup of P
is either weakly s-permutably embedded or weakly s-supplemented in G, then
G is p-nilpotent.

Proof. Suppose that the theorem is false and let G be a counterexample
of minimal order. We will derive a contradiction in several steps.

(1) G is not a non-abelian simple group.

Suppose G is simple. Let P1 be a maximal subgroup of P . If P1 is weakly
s-permutably embedded in G, then there are a subnormal subgroup T of
G and an s-permutably embedded subgroup (P1)se of G contained in P1

such that G = P1T and P1 ∩ T ≤ (P1)se. Since G is simple, we have T =
G and P1 = (P1)se is s-permutably embedded in G. Thus there is an s-
permutable subgroup K of G such that P1 is a Sylow p-subgroup of K.
Obviously, KG = 1. By Lemma 2.3, P1 is s-permutable in G. Therefore
NG(P1) ≥ Op(G) = G by Lemma 2.4. It follows that P1�G, a contradiction.
Now we may suppose that every maximal subgroup P1 of P is weakly s-
supplemented in G. Then there is a subgroup T of G such that G = P1T
and P1 ∩ T ≤ (P1)sG ≤ Op(G) = 1. By [GS2, Theorem 2.2], we have the
same contradiction.

(2) G has a unique minimal normal subgroup N such that G/N is p-
nilpotent. Moreover Φ(G) = 1.

Let N be a minimal normal subgroup of G. We will show G/N satisfies
the hypothesis of the theorem. Since P is a Sylow p-subgroup of G, PN/N is
a Sylow p-subgroup of G/N . Let M1/N be a maximal subgroup of PN/N .
Then M1 = N(M1 ∩ P ). Let P1 = M1 ∩ P . It follows that P1 ∩ N =
M1 ∩ P ∩N = P ∩N is a Sylow p-subgroup of N . Since

p = |PN/N : M1/N | = |PN : (M1 ∩ P )N | = |P : M1 ∩ P | = |P : P1|,
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P1 is a maximal subgroup of P . If P1 is weakly s-supplemented in G, then
there is a subgroup T of G such that G = P1T and P1 ∩ T ≤ (P1)sG.
Thus G/N = M1/N · TN/N = P1N/N · TN/N . Since (|N : P1 ∩ N |,
|N : T ∩N |) = 1, we have (P1 ∩N)(T ∩N) = N = N ∩G = N ∩ P1T . By
Lemma 2.6, (P1N) ∩ (TN) = (P1 ∩ T )N . It follows that

(P1N/N) ∩ (TN/N) = (P1 ∩ T )N/N ≤ (P1)sGN/N ≤ (P1N/N)sG.

HenceM1/N is weakly s-supplemented inG/N . If P1 is weakly s-permutably
embedded in G, then we can prove M1/N is weakly s-permutably embed-
ded in G/N too. Therefore, G/N satisfies the hypothesis of the theorem.
The choice of G implies that G/N is p-nilpotent. The uniqueness of N and
Φ(G) = 1 are obvious.

(3) Op′(G) = 1.

If Op′(G) 6= 1, then N ≤ Op′(G) by Step (2). Since

G/Op′(G) ∼= (G/N)/(Op′(G)/N)

is p-nilpotent, it follows that G is p-nilpotent, a contradiction.

(4) Op(G) = 1.

If Op(G) 6= 1, Step (2) yields N ≤ Op(G) and Φ(Op(G)) ≤ Φ(G) = 1.
Therefore, G has a maximal subgroup M such that G = MN and G/N ∼= M
is p-nilpotent. Since Op(G) ∩M is normalized by N and M , hence by G,
the uniqueness of N yields N = Op(G). Clearly, P = N(P ∩ M). Since
P ∩M < P , there exists a maximal subgroup P1 of P such that P∩M ≤ P1.
Then P = NP1. By the hypothesis, P1 is either weakly s-permutably em-
bedded or weakly s-supplemented in G. If P1 is weakly s-permutably em-
bedded in G, there are a subnormal subgroup T of G and an s-permutably
embedded subgroup (P1)se of G contained in P1 such that G = P1T and
P1 ∩ T ≤ (P1)se. Thus there is an s-permutable subgroup K of G such
that (P1)se is a Sylow p-subgroup of K. If KG 6= 1, then N ≤ KG ≤ K.
It follows that N ≤ (P1)se ≤ P1, and so P = N(P ∩M) = NP1 = P1,
a contradiction. If KG = 1, by Lemma 2.3, (P1)se is s-permutable in G.
Then (P1)se ≤ Op(G) = N ≤ Op(G) since N is the unique minimal nor-
mal subgroup of G. Since |G : T | is a power of p, Op(G) ≤ T . Hence
P1∩T ≤ (P1)se ≤ Op(G)∩P1 ≤ T ∩P1, and so P1∩T = (P1)se = Op(G)∩P1.
Consequently, G = POp(G) implies that (P1)se � G. By the minimality
of N , we have (P1)se = N or (P1)se = 1. If (P1)se = N , then N ≤ P1 and
P = NP1 = P1, a contradiction. Thus P1 ∩T = (P1)se = 1, and so |T |p = p.
Hence T is p-nilpotent by Lemma 2.9. Let Tp′ be the normal p-complement
of T . Then Tp′ is a normal Hall p′-subgroup of G since T �� G, a con-
tradiction. Thus we may assume P1 is weakly s-supplemented in G. Then
there is a subgroup T of G such that G = P1T and P1 ∩ T ≤ (P1)sG. From
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Lemma 2.4 we have Op(G) ≤ NG((P1)sG). Since (P1)sG is subnormal in G,
we have P1 ∩ T ≤ (P1)sG ≤ Op(G) = N . Hence

((P1)sG)G = ((P1)sG)Op(G)P = ((P1)sG)P ≤ P1.

Therefore (P1)sG = 1, which implies P1 ∩ T = 1 and so |T |p = p. Hence
T is p-nilpotent. Let Tp′ be the normal p-complement of T . Since M is
p-nilpotent, we may suppose M has a normal Hall p′-subgroup Mp′ and
M ≤ NG(Mp′) ≤ G. The maximality of M implies that M = NG(Mp′) or
NG(Mp′) = G. If the latter holds, then Mp′ �G, Mp′ is actually the normal
p-complement of G, which contradicts the choice of G. Hence we must have
M = NG(Mp′). By applying a deep result of Gross [Gr, Main Theorem]
and Feit–Thompson’s theorem, there exists g ∈ G such that T g

p′ = Mp′ .
Hence T g ≤ NG(T g

p′) = NG(Mp′) = M . However, Tp′ is normalized by T ,
so g can be considered as an element of P1. Thus G = P1T

g = P1M and
P = P1(P ∩M) = P1, a contradiction.

(5) G has Hall p′-subgroups and any two Hall p′-subgroups of G are
conjugate in G.

If every maximal subgroup of P is weakly s-permutably embedded in G,
then G is p-nilpotent by [LQW, Theorem 4.7], a contradiction. Thus there
is a maximal subgroup P1 of P such that P1 is weakly s-supplemented in G.
Then there exists a subgroup T of G such that G = P1T and P1 ∩ T
≤ (P1)sG ≤ Op(G) = 1. Then T is p-nilpotent and so T has a normal
p-complement Tp′ . Obviously, Tp′ is also a Hall p′-subgroup of G. A new
application of the result of Gross [Gr, Main Theorem] and Feit–Thompson’s
theorem shows that any two Hall p′-subgroups of G are conjugate in G.

(6) The final contradiction.

If NP < G, then NP satisfies the hypothesis of the theorem. The
choice of G implies that NP is p-nilpotent. Let Np′ be the normal p-
complement of N . It is clear that Np′ � G, so that Np′ = 1 by Step (3)
and N is a non-trivial p-group, contrary to Step (4). Therefore we must
have G = NP . By Step (5), G has Hall p′-subgroups. Then we may sup-
pose that N has a Hall p′-subgroup Np′ . By Frattini’s argument, G =
NNG(Np′) = (P∩N)Np′NG(Np′) = (P∩N)NG(Np′) and so P = P∩G = P∩
(P ∩N)NG(Np′) = (P ∩N)(P ∩NG(Np′)). Since NG(Np′) < G, P ∩NG(Np′)
< P . We take a maximal subgroup P1 of P such that P ∩ NG(Np′) ≤ P1.
Then P = (P ∩N)P1. By the hypothesis, P1 is either weakly s-permutably
embedded or weakly s-supplemented in G. If P1 is weakly s-permutably em-
bedded in G, there are a subnormal subgroup T of G and an s-permutably
embedded subgroup (P1)se of G contained in P1 such that G = P1T and
P1 ∩ T ≤ (P1)se. So there is an s-permutable subgroup K of G such that
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(P1)se is a Sylow p-subgroup of K. If KG 6= 1, then N ≤ KG ≤ K and so
(P1)se∩N is a Sylow p-subgroup of N . We know (P1)se∩N ≤ P1∩N ≤ P∩N
and P ∩N is a Sylow p-subgroup of N , so (P1)se ∩N = P1 ∩N = P ∩N .
Consequently, P = (N ∩ P )P1 = (P1 ∩N)P1 = P1, a contradiction. There-
fore KG = 1. By Lemma 2.3, (P1)se is s-permutable in G and so (P1)se �G.
Hence P1 ∩T ≤ (P1)se ≤ Op(G) = 1. Since |T |p = p, T is p-nilpotent and so
G is p-nilpotent, a contradiction. Therefore we may suppose P1 is weakly s-
supplemented in G. Then there is a subgroup T of G such that G = P1T and
P1∩T ≤ (P1)sG ≤ Op(G) = 1. Since |T |p = p, T is p-nilpotent. Let Tp′ be the
normal p-complement of T . Then Tp′ is a Hall p′-subgroup of G. By Step (5),
Tp′ and Np′ are conjugate in G. Since Tp′ is normalized by T , there exists
g ∈ P1 such that T g

p′ = Np′ . Hence G = (P1T )g = P1T
g = P1NG(T g

p′) =
P1NG(Np′) and P = P ∩ G = P ∩ P1NG(Np′) = P1(P ∩ NG(Np′)) ≤ P1,
a contradiction.

Corollary 3.2. Let p be the smallest prime dividing the order of a
group G, and H a normal subgroup of G such that G/H is p-nilpotent. If
there exists a Sylow p-subgroup P of H such that every maximal subgroup of
P is either weakly s-permutably embedded or weakly s-supplemented in G,
then G is p-nilpotent.

Proof. By Lemmas 2.1 and 2.2, every maximal subgroup of P is either
weakly s-permutably embedded or weakly s-supplemented in H. By Theo-
rem 3.1, H is p-nilpotent. Now, let Hp′ be the normal p-complement of H.
Then Hp′ � G. If Hp′ 6= 1, then it is easy to see that G/Hp′ satisfies all
the hypotheses of our corollary for the normal subgroup H/Hp′ of G/Hp′

by Lemmas 2.1 and 2.2. Now by induction, we see that G/Hp′ is p-nilpotent
and so G is p-nilpotent. Hence we assume Hp′ = 1 and therefore H = P is
a p-group. Since G/H is p-nilpotent, let K/H be the normal p-complement
of G/H. By Schur–Zassenhaus’s theorem, there exists a Hall p′-subgroup
Kp′ of K such that K = HKp′ . By Theorem 3.1, K is p-nilpotent and so
K = H ×Kp′ . Hence Kp′ is a normal p-complement of G. This completes
the proof.

Corollary 3.3. If every maximal subgroup of any Sylow subgroup of a
group G is either weakly s-permutably embedded or weakly s-supplemented
in G, then G is a Sylow tower group of supersolvable type.

Proof. Let p be the smallest prime dividing |G| and P a Sylow p-sub-
group of G. Then every maximal subgroup of P is either weakly s-per-
mutably embedded or weakly s-supplemented in G. By Theorem 3.1, G
is p-nilpotent. Let U be the normal p-complement of G. By Lemmas 2.1
and 2.2, U satisfies the hypothesis of the corollary. It follows by induction
that U , and hence G, is a Sylow tower group of supersolvable type.
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Theorem 3.4. Let F be a saturated formation containing U , the class
of all supersolvable groups. A group G is in F if and only if there is a
normal subgroup H of G such that G/H ∈ F and every maximal subgroup
of any Sylow subgroup of H is either weakly s-permutably embedded or weakly
s-supplemented in G.

Proof. The necessity is obvious. We only need to prove the sufficiency.
Suppose that the assertion is false and let G be a counterexample of min-
imal order. By Lemmas 2.1 and 2.2, every maximal subgroup of any Sy-
low subgroup of H is either weakly s-permutably embedded or weakly s-
supplemented in H. By Corollary 3.3, H is a Sylow tower group of super-
solvable type. Let p be the largest prime divisor of |H| and let P be a Sylow
p-subgroup of H. Then P is normal in G. Consider G/P . It is easy to prove
G/P satisfies the hypothesis of the theorem. By the choice of G we have
G/P ∈ F . Let N be a minimal normal subgroup of G contained in P .

(1) P = N .

If N < P , then (G/N)/(P/N) ∼= G/P ∈ F . We will show that G/N ∈ F .
By Lemmas 2.1 and 2.2, every maximal subgroup of P/N is either weakly
s-permutably embedded or weakly s-supplemented in G/N . By the mini-
mality of G, we have G/N ∈ F . Since F is a saturated formation, N is the
unique minimal normal subgroup of G contained in P and N � Φ(G). By
Lemma 2.7, it follows that P = F (P ) = N , a contradiction.

(2) The final contradiction.

Since N � G, we may take a maximal subgroup N1 of N such that
N1 � Gp, where Gp is a Sylow p-subgroup of G. Then N1 is either weakly
s-permutably embedded or weakly s-supplemented in G. Let T be a supple-
ment of N1 in G. Then G = N1T = NT and N = N ∩N1T = N1(N ∩ T ).
This implies that N ∩ T 6= 1. But since N ∩ T is normal in G, and N is
minimal normal in G, we have N ∩ T = N and so T = G. If N1 is weakly
s-permutably embedded in G, then N1 is s-permutably embedded in G. By
Lemma 2.5, N1 is s-permutable in G. By Lemma 2.4, Op(G) ≤ NG(N1).
Thus N1 � GpO

p(G) = G. It follows that |N | = p and so G ∈ F by
Lemma 2.8, a contradiction. If N1 is weakly s-supplemented in G, then
N1 = (N1)sG. We get the same contradiction.

Theorem 3.5. Let F be a saturated formation containing U . A group G
is in F if and only if there is a normal subgroup E of G such that G/E ∈ F
and every cyclic subgroup 〈x〉 of any Sylow subgroup of E with prime order
or order 4 (if the Sylow 2-subgroups are non-abelian) is either weakly s-
permutably embedded or weakly s-supplemented in G.
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Proof. We need only prove the sufficiency part since the necessity part
is evident. Suppose that the assertion is false and let G be a counterexample
of minimal order.

(1) E is solvable.

Let K be any proper subgroup of E. Then |K| < |G| and K/K ∈ U .
Let 〈x〉 be any cyclic subgroup of any Sylow subgroup of K with prime
order or order 4 (if the Sylow 2-subgroups are non-abelian). It is clear that
〈x〉 is also a cyclic subgroup of a Sylow subgroup of E with prime order or
order 4. By the hypothesis, 〈x〉 is either weakly s-permutably embedded or
weakly s-supplemented in G. By Lemmas 2.1 and 2.2, 〈x〉 is either weakly
s-permutably embedded or weakly s-supplemented in K. This shows that
the hypothesis still holds for (U ,K). By the choice of G, K is supersolvable.
By [W, Theorem 3.11.9], E is solvable.

(2) GF is a p-group, where GF is the F-residual of G. Moreover
GF/Φ(GF ) is a chief factor of G and exp(GF ) = p or exp(GF ) = 4
(if p = 2 and GF is non-abelian).

Since G/E ∈ F , we have GF ≤ E. Let M be a maximal subgroup of G
such that GF *M (that is, M is an F-abnormal maximal subgroup of G).
Then G = ME. We claim that the hypothesis holds for (F ,M). In fact,
M/M ∩ E ∼= ME/E = G/E ∈ F and by an argument as above, we can
prove that the hypothesis holds for (F ,M). By the choice of G, M ∈ F .
Thus (2) holds by [W, Theorem 3.4.2].

(3) 〈x〉 is s-permutable in G for any x ∈ GF .

Let x ∈ GF . Then the order of x is p or 4 by Step (2). By the hypothesis,
〈x〉 is either weakly s-permutably embedded or weakly s-supplemented in G.
If 〈x〉 is weakly s-supplemented in G, then there is a subgroup T of G such
that G = 〈x〉T and 〈x〉 ∩ T ≤ 〈x〉sG. Hence,

GF = GF ∩G = GF ∩ 〈x〉T = 〈x〉(GF ∩ T ).

Since GF/Φ(GF ) is abelian, we have

(GF ∩ T )Φ(GF )/Φ(GF ) �G/Φ(GF ).

Since GF/Φ(GF ) is a chief factor of G, we have GF ∩ T ≤ Φ(GF ) or GF =
(GF ∩ T )Φ(GF ) = GF ∩ T . If GF ∩ T ≤ Φ(GF ), then 〈x〉 = GF � G. In
this case, 〈x〉 is s-permutable in G. If GF = GF ∩ T , then T = G and so
〈x〉 = 〈x〉sG is s-permutable in G. If 〈x〉 is weakly s-permutably embedded
in G, we can get the same result.

(4) |GF/Φ(GF )| = p.

Assume that |GF/Φ(GF )| 6= p and let L/Φ(GF ) be any cyclic subgroup
of GF/Φ(GF ). Let x ∈ L\Φ(GF ). Then L = 〈x〉Φ(GF ). Since 〈x〉 is s-
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permutable in G by Step (3), L/Φ(GF ) is s-permutable in G/Φ(GF ). It
follows from [S, Lemma 2.11] thatGF/Φ(GF ) has a maximal subgroup which
is normal in G/Φ(GF ). However, this is impossible since GF/Φ(GF ) is a chief
factor of G. Thus |GF/Φ(GF )| = p.

(5) The final contradiction.

Since
(G/Φ(GF ))/(GF/Φ(GF )) ∼= G/GF ∈ F ,

we see that G/Φ(GF ) ∈ F by Lemma 2.8. However, Φ(GF ) ≤ Φ(G) and F
is a saturated formation, therefore G ∈ F , a contradiction.

4. Some applications

Corollary 4.1 ([GS3, Theorem 3.4]). Let G be a group and P a Sylow
p-subgroup of G, where p is the smallest prime dividing |G|. If all maximal
subgroups of P are c-normal in G, then G is p-nilpotent.

Corollary 4.2 ([GS1, Theorem 3.4]). Let G be a group and P a Sylow
p-subgroup of G, where p is the smallest prime dividing |G|. If all maximal
subgroups of P are c-supplemented in G, then G is p-nilpotent.

Corollary 4.3 ([W, Theorem 3.1]). Let p be a prime dividing the order
of a group G with (|G|, p− 1) = 1. Suppose that every maximal subgroup of
P is c-supplemented in G and G ∈ Cp′. Then G/Op(G) is p-nilpotent and
G ∈ Dp′.

Corollary 4.4 ([LL, Theorem 3.1]). Let P be a Sylow p-subgroup of a
group G, where p is a prime divisor of |G| with (|G|, p − 1) = 1. If every
maximal subgroup of P is c-normal or s-permutably embedded in G, then G
is p-nilpotent.

Corollary 4.5 ([LW2, Theorem 7]). Let P be a Sylow p-subgroup of a
group G, where p is a prime divisor of |G| with (|G|, p − 1) = 1. If every
maximal subgroup of P is c-supplemented or π-quasinormal in G, then G is
p-nilpotent.

Corollary 4.6 ([LP, Theorem 3.1]). Let P be a Sylow p-subgroup of
a group G, where p is a prime divisor of |G| with (|G|, p − 1) = 1. If ev-
ery maximal subgroup of P is c-supplemented or π-quasinormally embedded
in G, then G is p-nilpotent.

Corollary 4.7 ([WW, Theorem 3.1]). Let p be a prime dividing the
order of a group G with (|G|, p−1) = 1 and H a normal subgroup of G such
that G/H is p-nilpotent. If there exists a Sylow p-subgroup P of H such that
every maximal subgroup of P is c∗-normal in G, then G is p-nilpotent.
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Corollary 4.8 ([LG, Theorem 3.3]). Let H be a normal subgroup of a
group G such that G/H is supersolvable. If every maximal subgroup of any
Sylow subgroup of H is c-normal in G, then G is supersolvable.

Corollary 4.9 ([W, Theorem 3.3]). Let H be a normal subgroup of a
group G such that G/H is supersolvable. If every maximal subgroup of any
Sylow subgroup of H is c-supplemented in G, then G is supersolvable.

Corollary 4.10 ([BP, Theorem 1]). If every maximal subgroup of any
Sylow subgroup of a group G is s-permutably embedded in G, then G is
supersolvable.

Corollary 4.11 ([AH, Theorem 3.3]). Let F be a saturated formation
containing U , the class of all supersolvable groups. If there is a normal sub-
group H of a group G such that G/H ∈ F and every maximal subgroup of
any Sylow subgroup of H is s-permutably embedded in G, then G ∈ F .

Corollary 4.12 ([L, Theorem 3.2]). Let F be a saturated formation
containing U . A group G is in F if and only if there is a normal subgroup H
of G such that G/H ∈ F and every maximal subgroup of any Sylow subgroup
of H is either s-permutably embedded or c-normal in G.

Corollary 4.13 ([GS1, Theorem 4.2]). Let F be a saturated formation
containing U . If there is a normal subgroup H of G such that G/H ∈ F
and every maximal subgroup of any Sylow subgroup of H is c-supplemented
in G, then G ∈ F .

Corollary 4.14 ([LW2, Theorem 5]). Let F be a saturated formation
containing U . If there is a normal subgroup H of G such that G/H ∈ F and
every maximal subgroup of any Sylow subgroup of H is either π-quasinormal
or c-supplemented in G, then G ∈ F .

Corollary 4.15 ([LP, Theorem 3.4]). Let F be a saturated formation
containing U . If there is a normal subgroup H of G such that G/H ∈ F and
every maximal subgroup of any Sylow subgroup of H is either π-quasinor-
mally embedded or c-supplemented in G, then G ∈ F .

Corollary 4.16 ([WW, Theorem 4.1]). Let F be a saturated forma-
tion containing U . If there is a normal subgroup H of a group G such that
G/H ∈ F and every maximal subgroup of any Sylow subgroup of H is c∗-
normal in G, then G ∈ F .

Corollary 4.17 ([BW, Theorem 4.2]). Let F be a saturated formation
containing U . If every cyclic subgroup of GF of prime order or order 4 is
c-normal in G, then G ∈ F .

Corollary 4.18 ([BWG, Theorem 4.1]). If every cyclic subgroup of GU

of prime order or order 4 is c-supplemented in G, then G is supersolvable.
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Corollary 4.19 ([LW1, Theorem 3.3]). If every subgroup of a group G
of prime order or of order 4 is s-quasinormally embedded in G, then G is
supersolvable.
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