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FUNCTIONAL ANALYSIS

Remarks on the Bourgain–Brezis–Mironescu
Approach to Sobolev Spaces

by

B. BOJARSKI

Summary. For a function f ∈ Lploc(R
n) the notion of p-mean variation of order 1,

Vp1(f,Rn) is defined. It generalizes the concept of F. Riesz variation of functions on the
real line R1 to Rn, n > 1. The characterisation of the Sobolev space W 1,p(Rn) in terms of
Vp1(f,Rn) is directly related to the characterisation of W 1,p(Rn) by Lipschitz type point-
wise inequalities of Bojarski, Hajłasz and Strzelecki and to the Bourgain–Brezis–Mironescu
approach.

1. Introduction. In the paper Another look at Sobolev spaces [6] a new
approach to Sobolev space theory on (smooth) domains Ω of euclidean
space Rn was proposed. The authors start with the observation that if
f ∈W 1,p(Ω), 1 ≤ p <∞, and ρ ∈ L1(Rn), ρ ≥ 0, then

(1.1)
�

Ω

�

Ω

|f(x)− f(y)|p

|x− y|p
ρ(x− y) dx dy ≤ C‖f‖p

W 1,p‖ρ‖L1

with a constant C depending on p and Ω only. Here the seminorm ‖f‖W 1,p

is defined as

(1.2) ‖f‖p
W 1,p =

�

Ω

|∇f |p dx

where | | denotes the euclidean norm. For a sequence of radial mollifiers
ρk ∈ L1(Rn) with ρk ≥ 0,

	
ρk(x) dx = 1 and

(1.3) ρk(r)→ 0 uniformly in r ≥ r0 for all r0 > 0,

the following theorem is proved (Theorem 2 in [6]).
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Theorem A. Let f ∈ Lp(Ω), 1 < p <∞. If the condition

(1.4) App = lim inf
k→∞

�

Ω

�

Ω

|f(x)− f(y)|p

|x− y|p
ρk(x− y) dx dy <∞

holds for a sequence of mollifiers ρk, then f ∈W 1,p(Ω). Moreover, the limit-
ing value Ap recovers the norm ‖f‖W 1,p : App = Kp,n‖f‖pW 1,p with a constant
Kp,n depending on p and n only.

Conversely, if f ∈ W 1,p(Ω) then the condition (1.4) is satisfied for any
sequence of mollifiers ρk.

The formulation of Theorem A implies the global finiteness condition

(1.5)
�

Ω

�

Ω

|f(x)− f(y)|p

|x− y|p
dx dy <∞.

In this paper (1.5) is assumed to hold throughout.
Theorem A shows that the additional asymptotic condition (1.4) charac-

terizes the Sobolev class W 1,p(Ω).
The condition (1.4) expresses the fact that the total mass of the inte-

grand kernel in (1.5) “has a finite p-trace” on the diagonal ∆ in the cartesian
product Ω ×Ω.

The main purpose of this note is to discuss the relations of the BBM
theory to the description of Sobolev spaces in terms of pointwise Sobolev
inequalities, as developed in a series of papers, mainly in collaboration with
P. Hajłasz and P. Strzelecki, [3], [4], [2], [11], [12] (1).

For the case of (open) subsets of Rn the BHS theory characterizes the
Sobolev spaces Wm,p(Ω) of integer order m, m ≥ 1, and real p > 1 by the
pointwise inequalities

(1.6) |Rm−1f(x; y)| ≤ |x− y|m(af (x) + af (y)), x, y ∈ Ω,
where Rmf(x; y) is the mth order Taylor–Whitney remainder term, centered
at the point y in Ω, of the function f(x), and af ∈ Lp(Ω) (see [2], [5]).

Any function af in the right hand side of (1.6) will be called a mean
maximal m-gradient of f .

Here the mean maximal m-gradient appears as a component of the pair
(Rm−1

f , af ) representing an element of the Sobolev space Wm,p(Ω). For the
case m = 1 it reduces to the simple form

(1.7) |R0f(x; y)| = |f(x)− f(y)| ≤ |x− y|(af (x) + af (y)),
af ∈ Lp(Ω) ⊂ Lp(Rn),

which does not involve derivatives ([11], [14], [15]).

(1) For convenience we use the shorthand BHS, BBM for the cases considered.
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For a detailed definition of p-mean 1-variation Vp1(f,Ω) of a function f ∈
Lploc(Ω) see Section 4 below. Here we only write the approximate formula (2)

(1.8) Vp1(f,Ω) ∼ sup
P

N∑
i=1

|Qi|
�

Qi

�

Qi

|f(x)− f(y)|p

|x− y|p
dx dy

showing how Vp1(f,Ω) is described in terms of the least upper bounds of
finite sums of averaged powers of difference quotients for cubical partitions
(i.e., unions of disjoint coordinate cubes) in Ω.

Our main result—Theorem 4.1 and its converse—characterizes the space
W 1,p(Ω) in terms of Vp1(f,Ω).

Theorem 4.1. If for a (real valued) function f ∈ Lploc(Ω) the p-mean
1-variation Vp1(f,Ω′) is finite for each open Ω′ with compact closure in Ω

(i.e. dist(Ω′, ∂Ω) > 0) then f ∈ W 1,p
loc (Ω) (p > 1). In other words, Vp1(Ω) ⊂

W 1,p(Ω).

The notion of p-mean 1-variation has its predecessors in a broad variety
of “variations” in mathematical analysis and geometry. Two of these, briefly
recalled in Sections 2 and 3, have their sources in the seminal paper of
F. Riesz [23] in Math. Annalen, 1910, and are used in our basic Section 4
and final comments in Section 5.

For simplicity in the following we mainly restrict our attention to the
model case Ω = Rn, [12].

The tools which we propose to use in the discussion of equivalence of
BBM theory (Theorem A) and BHS theory (inequalities (1.6), (1.7)) are the
concepts of mean variations of real valued functions. The concept of p-mean
m-variation of positive integer order, m ≥ 1, seems to be new.

2. F. Riesz variation of functions and measures on the real line R.
For a real valued function F (x), a < x < b, I = [a, b], and a finite collection
P = {Ik}, k = 1, . . . , n, of nonoverlapping subintervals Ik = (ak, bk), Ik ⊂ I,
called a partition in I, the F. Riesz p-variation (p ≥ 1) of F on P is the
quantity

(2.1) RV p(F,P) =
n∑
k=1

|F (bk)− F (ak)|p

(bk − ak)p−1
.

If these quantities are uniformly bounded for all partitions P in I then the
least upper bound

(2.2) RV p(F, I) = sup
P
RV p(F,P) <∞

(2) We use the notation
�
Q
g dx = |Q|−1

	
Q
g dx.
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defines the Riesz p-variation of F on I. For p > 1, (2.2) implies that F is
absolutely continuous on [a, b] and, when normalized by F (a) = 0, has the
representation

(2.3) F (x) =
x�

a

f(t) dt, f ∈ Lp(I).

For p = 1 one only concludes that F has bounded variation.

Theorem (F. Riesz [20]). The function F is in W 1,p(I) (3), p > 1, iff
it has finite p-variation (2.2). Moreover in that case

(2.4) RV p(F, I) =
b�

a

|f |p dx.

The proof of F. Riesz’ theorem, though rather subtle, is very natural
and transparent: it approximates the derivative f(t) by piecewise constant
functions

ϕn(t) =
F (bn,k)− F (an,k)

bn,k − an,k
, t ∈ In,k ≡ [an,k, bn,k],

for a sequence of partitions Pn such that limn→∞maxk |In,k| = 0.
The sequence ϕn(t) converges pointwise to f(t) on a set of full Lebesgue

measure in [a, b]. Fatou’s Lemma and the estimates (2.2) give all what is
needed to finish the proof. For details see [21], [24].

Formulas (2.1) and (2.2), as is well known, have a measure-theoretic
interpretation [13], [21]. If dF denotes the measure dF (Ik) = |F (bk)−F (ak)|
on the real line R, and dµ denotes the Lebesgue measure, dµ([ak, bk]) =
bk − ak, then (2.1) takes the form

(2.5) RV p(F,P) = RV p( dF,P) =
∑
k

µ(Ik)
(
dF (Ik)
dµ(Ik)

)p
.

While the concept of Riesz p-variation (2.1)–(2.2), as it stands, does
not apply in Rn, its measure-theoretic version (2.5) may be immediately
generalized to much more general situations, as we recall next.

3. p-mean variations of abstract measures and L1-functions. The
main reference for this section is the short note of L. D. Kudryavtsev [17] (4).
It is convenient here to use the term partition P = {Ei}, i = 1, . . . , NP ,

(3) Of course, for F. Riesz (1910!) the condition F ∈ W 1,p(I) meant precisely that
the formula (2.3) holds with f ∈ Lp(a, b).

(4) In somewhat more general context of Banach space valued measures the corre-
sponding theory has been initiated by Bochner & Taylor [1] and it has an extensive pre-
sentation in the monograph [9]. In [1] there is no reference to the paper of F. Riesz [23].
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in a measure space (X,Σ, µ) for an arbitrary (finite) collection of disjoint
µ-measurable subsets of X (Ei ∈ Σ).

Let ν be a σ-finite countably additive nonnegative set function on Σ.
For p ≥ 1 and a partition P of E in Σ, E =

⋃
Ei, µ(Ei) > 0, i ≤ NP , the

p-mean variation of ν on P, denoted by Vp(ν,E;P), is defined as

(3.1) Vp(ν,E;P) =
∑
i

µ(Ei)
(
ν(Ei)
µ(Ei)

)p
.

Then the formula

(3.2) Vp(ν,E) = sup
P

Vp(ν,E;P)

where the supremum is taken over all partitions P = {Ei} of E with µ(Ei)
> 0, defines the p-mean variation Vp(ν,E) of ν on E. It is a measure on Σ,
denoted by Vp(ν).

Proposition 3.1 ([17]). If Vp(ν,E) <∞ and p > 1 then the measure ν
is absolutely continuous with respect to µ on E: ν � µ. If p ≥ 1, Vp(ν,E) <
∞ and ν(E′) =

	
E′ g(x) dµ for all measurable E′ ⊂ E then Vp(ν) � µ,

g ∈ Lp(E) and

(3.3) Vp(ν,E) =
�

E

gp(x) dµ.

Proposition 3.1 has a nice formulation in terms of Radon–Nikodým de-
rivatives (5):

(3.4) If
Dν
Dµ

= g(x) a.e., then
DVp(ν)
Dµ

(x) = gp(x) a.e.

This will be used in Sections 4 and 5 below.
p-mean variations of nonnegative L1

loc-functions ρ are defined as p-mean
variations of the associated measures ν(E) =

	
E ρ dµ: Vp(ρ,E) = Vp(ν,E).

For subdomains Ω of Rn p-mean variations Vp(ρ,Ω) can be calculated by
averaging ρ over families of some standard sets—coordinate cubes, balls,
dyadic cubes etc.—covering the domainΩ finely in the sense of Vitali [22, 25].

Corollary 3.1. Vp(ρ,Ω) can be calculated by the formula

(3.5) Vp(ρ,Ω) =
�

Ω

ρp dx = l.u.b.
∑
|Qi|

( �

Qi

ρ dx
)p

with the supremum taken over all finite cubical partitions {Qi}.

Corollary 3.1 illustrates the general important fact that p-mean variations
of measures and functions may be controlled by restricting calculations of

(5) We use the notation of P. Mattila [19].
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averages (3.1) and (3.5) to a subclass of geometrically better organized sub-
sets Q—cubes, balls—than arbitrary measurable subsets Ei. For these the
natural dilations Q→ λQ, λ real, make sense. Then the important coverings
theorems of Vitali or Besicovitch type apply (see [10]).

4. Higher order mean variations. For a cubical partition P = {Qi}
inΩ we define the p-mean gradient of f on P, Vp1(f,P) (or p-mean 1-variation
of f on P) as

(4.1) Vp1(f,P) =
∑
Qi∈P

µ(Qi)
( �

Qi

�

Qi

|f(x)− f(y)|p

|x− y|p
dx dy

)
.

Definition 4.1. The p-mean 1-variation (variation of order 1) of the
function f ∈ Lploc(Ω) on Ω is the least upper bound

(4.2) Vp1(f,Ω) = sup Vp1(f,P)

taken over all cubical partitions P in Ω.

The variation Vp1(f,Ω) and the p-mean gradient Vp1(f,P) have analo-
gous properties of monotonicity under refinements of partitions and lower
semicontinuity for pointwise convergence fn → f as the p-mean variations
Vp(f,Ω) and Vp(f,P).

The linear subspace of functions in Lp(Ω) with finite p-mean 1-variation
will be denoted by Vp1(Ω). It can be made a seminormed Banach space with
the seminorm

‖f‖Vp1 = [Vp1(f,Ω)]1/p.

As recalled in the introduction, in BHS theory the Sobolev spacesW 1,p(Ω)
are characterized by the pointwise inequality

(4.3) |f(x)− f(y)| ≤ |x− y|(a(x) + a(y))

with a = af ∈ Lp(Ω) (see [4, 5, 11, 12, 2]).
The following is a direct consequence of the definition and the inequality

(4.3).

Proposition 4.1. The p-mean 1-variation of f ∈ W 1,p(Ω) satisfying
(4.3) is controlled by the p-mean variation of any of the mean maximal gra-
dients of f ,

(4.4) Vp1(f,E) ≤ 2pVp(a,E), E ⊂ Ω.

In particular, for E = Ω this implies W 1,p(Ω) ⊂ Vp1(Ω).
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Proof. The proof follows from the obvious inequalities
�

E

�

E

|f(x)− f(y)|p

|x− y|p
dx dy ≤

�

E

�

E

(a(x) + a(y))p dx dy ≤ 2p
�

E

ap(x) dx,(4.5)

V1
1(f,P) ≤ 2V1(a,P) and Vp1(f,P) ≤ 2pVp(a,P), p ≥ 1,(4.6)

valid even for measurable partitions P = {E} in Ω.

Other pointwise properties of Sobolev functions are recalled in

Proposition 4.2. Any real valued function f in Lploc(R
n), p ≥ 1, sat-

isfying (4.3) is approximately differentiable and has a generalized Sobolev
gradient ∇f(x) at almost every point x ∈ Rn. Moreover, the Sobolev gradi-
ent ∇f and the approximate gradient ∇appf(x) satisfy the inequality

(4.7) |∇f |(x) = |∇appf(x))| ≤ C(n)a(x) a.e.

with a universal constant C, depending on n only (see [12]).

The converse to Proposition 4.1 is our main result.

Theorem 4.1. If for a (real valued) function f ∈ Lploc(Ω) (p > 1) the
p-mean 1-variation Vp1(f,Ω′) is finite for each open Ω′ with compact closure
in Ω (i.e. dist(Ω′, ∂Ω) > 0) then f ∈ W 1,p

loc (Ω). In other words, Vp1(Ω) ⊂
W 1,p(Ω).

Theorem 4.1 and Proposition 4.1 give the identification Vp1(Ω) = W 1,p(Ω)
for (smooth) subdomains Ω of Rn, p > 1.

Sketch of the proof of Theorem 4.1. The first ingredient of the proof is
the following classical fact of integral geometry.

Proposition 4.3. Let ϕ ∈ C∞0 (Rn) and e be a unit vector in Rn. Then,
for every x ∈ Rn,

(4.8)
�

(y−x)·e≥0

ϕ(y)− ϕ(x)
|y − x|

ρk(y, x) dy → K∇eϕ(x), K =
Γ(n2 )

π1/2Γ(n+1
2 )

and ρk(y, x) is any sequence of functions in L1(Rn ×Rn) approximating the
Dirac δ(x− y). ∇eϕ(x) is the gradient of ϕ in direction e at the point x.

For the case when ρk(y, x) = ρk(y − x) as in (1.3) above, a proof of
Proposition 4.3 is sketched in [6].

We use Proposition 4.3 for a discrete approximation

(4.9) ρk(x, y) =
Nk∑
i=1

χQi,k(x)χQi,k(y)
|Qi,k|

of δ(x − y) at x. For x in a model unit cube Q◦ of Rn it is defined by a
sequence of cubical partitions Pk = {Qi,k}, shrinking to x for k → ∞ (i.e.
x ∈ Qik(x),k for all k, diamQik(x),k → 0 as k →∞).
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If maxi diam |Qi,k| ≤ δ then the support of the kernel ρk in (4.9) has the
diagonal form

Nk⋃
i=1

Qi,k ×Qi,k

and is contained in the tubular neighborhood

(4.10) ∆δ =
{

(x, y) ∈ Q◦ ×Q◦ : |x− y| < δ′
}

for some positive δ′ < 2δ

of the diagonal ∆ of Q◦ ×Q◦ (6).
Another important ingredient of the proof of Theorem 4.1 is the “discrete”

integration by parts procedure which, essentially, is contained in the following
formula for double integrals:

(4.11)
�

Rn

�

Rn

f(x)[ϕ(x)− ϕ(y)]
|x− y|

β(x, y) dy dx

=
�

Rn

�

Rn

[f(y)− f(x)]ϕ(y)β(x, y)
|x− y|

dx dy.

As above, f ∈ L1(Rn), ϕ ∈ C∞0 (Rn) and β(x, y) is a compactly supported
symmetric nonnegative kernel,

(4.12) β(x, y) = β(y, x), β ≥ 0.

(4.11) is obtained by interchanging the variables x and y and using the
symmetry (4.12).

Let us denote the left hand side of (4.11) by IL ≡ IL(f, ϕ) and the
right hand side by IR. We use (4.11) by restricting interior integration (with
respect to y) in IL to the half-space πe(x) given by (y − x) · e ≥ 0 in Rn as
in (4.8). Then from (4.11) we obtain the inequality

IL,πe =
∣∣∣∣ �
Rn

�

πe(x)

f(x)[ϕ(x)− ϕ(y)]
|x− y|

β(x, y) dy dx
∣∣∣∣(4.13)

≤
�

Rn

�

Rn

|f(x)− f(y)|
|x− y|

|ϕ(y)|β(x, y) dx dy.

For p > 1 and 1/p+ 1/q = 1, by the Hölder inequality we have

IL,πe ≤
( �

Rn

�

Rn

|f(x)− f(y)|p

|x− y|p
β(x, y) dx dy

)1/p

(4.14)

×
( �

Rn

�

Rn
|ϕ(y)|qβ(x, y) dx dy

)1/q
.

(6) The converse does not hold and to correct this technical defect we should introduce
the multiple partitions, 2P = {2Qi}, or more generally, λP, λ > 1.
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We apply (4.14) to a sequence βk(x, y) of “discrete” kernels βk(x, y) =
ρk,P(x, y) (4.9) for a sequence of partitions Pk shrinking to x or approximat-
ing the Dirac δ at x as described above.

We have

(4.15)
�

Rn

�

Rn

|f(x)− f(y)|p

|x− y|p
βk(x, y) dx dy

=
N∑
i=1

µ(Qi)
�

Qi

�

Qi

|f(x)− f(y)|p

|x− y|p
dx dy

and

(4.16)
�

Rn

�

Rn
|ϕ(y)|qβk(x, y) dx dy =

N∑
i=1

µ(Qi)
�

Qi

( �

Qi

|ϕ(y)|q dy
)
dx.

In view of (3.1), (4.2), the inequality (4.14) takes the form

(4.17) IL,πe(f, ϕ, βk) ≤ (Vp1(f,P))1/p(Vq(ϕ,P))1/q.

Finally, by definition of the mean variations Vp1 and Vq(ϕ) we get from (4.17)
and Proposition 4.3 for k → ∞ the fundamental inequality for f ∈ Lp(Rn)
and ϕ ∈ C∞0 (Rn),

(4.18)
∣∣∣ �
Rn
f(x)∇eϕ(x) dx

∣∣∣ ≤ (Vp1(f))1/p‖ϕ‖Lq .

By definition of weak Sobolev derivatives (see [25]) this ends our sketch of
the proof of Theorem 4.1.

Finally, let us observe the pointwise inequality

(4.19)
DVp1(f,E)
Dµ

(x) ≤ 2pap(x) a.e.

obtained by “differentiating ” (4.4) and using Proposition 3.1 (formula (3.4)).
A challenging problem is to recover the “optimal” maximal mean gradi-

ent of the function f from its 1-variation Vp1(f,E) as the Radon–Nikodým
derivative, i.e. “inversion” of the inequality (4.19).

5. Final remarks and acknowledgements. Analogous ideas and con-
cepts are applicable for Sobolev spaces Wm,p(Ω) of higher order m > 1. In
the formulas (4.1)–(4.4) above we then have to use the Taylor remainder
terms Rm−1f(x; y) instead of R0f(x; y) = f(x)− f(y).

The condition (1.5) takes the form
�

Ω

�

Ω

|Rm−1f(x; y)|p

|x− y|mp
dx dy <∞.
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The p-mean variations of order m > 1, Vpm(f,P) and Vpm(f,Ω), are defined
in the same way as for m = 1.

In BBM theory and above, the classical duality type argument of
S. L. Sobolev plays a crucial role. As is well known ([2, 4, 5, 12]), in BHS
theory in Rn the use of convolution approximations fε(x) = f ∗ φε is very
convenient. It can also be applied in BBH theory and in the estimates of
p-variations Vpm(f,Rn), m > 1. However, the precise calculations do not
seem to have been elaborated in detail, as yet.

The concept of 1-mean variations for Sobolev functions also reveals some
probabilistic aspects of the Sobolev theory. In particular, random selections
of partitions P in Ω during the evaluation procedures for the p-mean varia-
tions Vp1(f,P) resemble the use of Monte-Carlo methods for numerical esti-
mation of Sobolev norms.

Let me also point out the interesting paper of Y. T. Medvedev [20] gener-
alizing the F. Riesz theorem to Orlicz type spaces Lϕ, ϕ increasing, convex.
Extension of this idea is an interesting research topic.

It would also be useful to understand better the role of fractional maximal
functions in the above theories [16].

Apparently somehow related to the variations Vpm(f,Ω), m ≥ 1, is the
interesting theory of p-variations of Yu. A. Brudnyi [7, 8] (7). In this con-
nection I want to thank S. K. Vodopyanov for pointing out to me the recent
papers of Yu. A. Brudnyi.

Let me also thank the unknown referee for critical remarks and very
useful suggestions of improvement.

This research was partially supported by the Polish Ministry of Science
grant no. N N201 397837 (years 2009–2012).
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