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Summary. Applying results of the infinitary Ramsey theory, namely the dichotomy prin-
ciple of Galvin–Prikry, we show that for every sequence (αj)∞j=1 of scalars, there exists a
subsequence (αkj )∞j=1 such that either every subsequence of (αkj )∞j=1 defines a universal
series, or no subsequence of (αkj )∞j=1 defines a universal series. In particular examples we
decide which of the two cases holds.

Introduction. The theory of universal series was initiated by Fekete
(1914) (cf. [P]), followed by Menchoff (1945) [M] (on universal trigonomet-
ric series) and Seleznev (1951) [Se]. Later, in the results by Luh (1970) [L]
and Chui–Parnes (1971) [CP], the approximation by the partial sums of a
universal power series holds outside the closure of the domain of definition.
Nestoridis (1996) [N] strengthened these results, obtaining approximation
on the boundary as well. There are further results on universal Faber, Ja-
cobi, Dirichlet and Laurent series, and on harmonic expansions. We refer
the reader to the two survey papers by Grosse-Erdmann (1999) [G-E] and
Kahane (2000) [K].

According to an abstract theory of universality presented in [NP] and
[BGNP], the existence of universal series is equivalent to a condition of
simultaneous double approximation by a finite linear combination in a family
of simple functions forming a vector space. The abstract theory covers most
of the previously known cases and leads to simplification of known proofs,
since the condition of double approximation follows from various classical
approximation theorems (of Mergelyan, Runge, Weierstrass, Walsh etc.). At
the same time the abstract approach produces several new cases of universality,
such as those defined by means of the normal distribution, or in PDE’s.
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The theory of Ramsey infinitary combinatorics contains the dichotomy
results by Nash-Williams (1965) [N-W] for open partitions, Galvin–Prikry
(1973) [GP] for Borel partitions, Silver (1970) [Si] for partitions determined
by analytic sets, and the result of Ellentuck (1974) [E]. Extensions involv-
ing Schreier sets have been given by Farmaki (2004) [F], and by Farmaki–
Negrepontis (2006) [FN1], (2008) [FN2]. These results, or others of the same
type, have found important applications in various branches of mathemat-
ics, notably in Banach space theory; we refer the reader to the survey paper
by Gowers (2003) [G].

In the present note we apply the Ramsey infinitary combinatorics to
the theory of universal series. The meeting point is the fact, shown by an
appeal to Baire’s category theorem, that under very general conditions, the
set of universal series is either empty, or a (dense) Gδ set in a suitable
space ([G-E], [NP], [BGNP]). It is precisely this fact that makes it possible
to employ the Galvin–Prikry dichotomy theorem (stated in Theorem 1.7
below) to prove that every scalar sequence possesses a subsequence, all of
whose subsequences are in the universal class U , defined in Section 1 below,
or all are in the complement of U in the space of all scalar sequences.

In Section 1 we give the definitions of the class U , and of some classes
of universal sequences more complicated than U . In Section 2 we prove our
main dichotomy result (Theorem 2.1) for these special classes of universal
sequences. The fact that these classes are exactly (dense) Gδ subsets of spe-
cific Polish spaces, and not only residual, allows for the use of the dichotomy
principle of Galvin–Prikry for suitable partitions. Crucial to the proof is the
highly non-trivial result, attributed to Lusin and Suslin, mentioned in The-
orem 1.6 below, according to which any 1-1 continuous image of a Borel set
is Borel. In Section 3 we examine some particular concrete examples of uni-
versal series, for which we verify the general dichotomy principle in a direct,
elementary way, without recourse to Ramsey theory (and to Theorem 2.1),
deciding in addition which alternative actually holds.

There are a number of interesting questions on which we have no answer.
It would be desirable to have an effective criterion to decide which alterna-
tive of the dichotomy holds in every specific instance, in particular, when
hereditary universality actually holds.

1. Preliminaries and notation. We denote by N = {0, 1, 2, . . .} the
set of natural numbers, R the set of real numbers, and C the set of complex
numbers.

If M is an infinite subset of N, we denote by [M ] the set of all infinite
subsets of M , considering them as strictly increasing sequences, and if s is
a non-empty finite subset of N, we set
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[s,M ] = {s ∪ L ∈ [N] : L ∈ [M ] and max s < minL} if s 6= ∅,
[∅,M ] = [M ].

Universal series. Fix a sequence (Xk, %k)k≥1 of separable, metrizable
topological vector spaces over the field K = R or C, equipped with transla-
tion-invariant metrics %k, and fix sequences (xkn)∞n=0 ⊆ Xk for every k ≥ 1.

Definition 1.1. A sequence (αn)∞n=0 ∈ KN belongs to the class U if for
every k ≥ 1 the set {

∑n
j=0 αjx

k
j : n ∈ N} is dense in Xk.

If U 6= ∅, each (αn)∞n=0 ∈ U is said to generate an unrestricted universal
series.

Of special interest is the case where some elements of the class U satisfy
certain restrictions. The restricted universal series are defined as follows:

We fix a vector subspace A of KN, and assume that A is equipped
with a complete metrizable vector space topology, induced by a translation-
invariant metric d, such that

(i) the projections pm : A→ K, (αn)∞n=0 7→ am, are continuous for every
m ∈ N,

(ii) c00 = {(αn)∞n=0 ∈ KN : {n ∈ N : αn 6= 0} is finite} is a dense subset
of A.

Definition 1.2. A sequence α = (αn)∞n=0 ∈ A belongs to the class UA
if, for every k ≥ 1 and every x ∈ Xk, there exists a sequence (λn)∞n=1 ⊆ N
such that

%k

( λn∑
j=0

αjx
k
j , x
)
→ 0 and d

( λn∑
j=0

αjej , α
)
→ 0 as n→∞,

where e0 = (1, 0, 0, . . .), e1 = (0, 1, 0, . . .), e2 = (0, 0, 1, 0, . . .), . . . .

Remark 1.3. In Definition 1.2, we can assume, without loss of general-
ity, that λn < λn+1 for all n ∈ N.

Definition 1.4. For every k ≥ 1, let T kn : A→ Xk, n ∈ N, be a sequence
of continuous functions, and let α = (αn)∞n=0 ∈ A. By definition:

(1) α ∈ F1 if, for every k ≥ 1 and every x ∈ Xk, there exists a sequence
(λn)∞n=1 ⊆ N such that

%k(T kλn
(α), x)→ 0 as n→∞.

(2) α ∈ F2 if, for every k ≥ 1 and every x ∈ Xk, there exists a sequence
(λn)∞n=1 ⊆ N such that

%k(T kλn
(α), x)→ 0 and d

( λn∑
j=0

αjej , α
)
→ 0 as n→∞.
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(3) α ∈ F3 if, for every k ≥ 1 and every x ∈ Xk, there exists a sequence
(λn)∞n=1 ⊆ N such that

%k(T kλn
(α), x)→ 0, d

( λn∑
j=0

αjej , α
)
→ 0, %k

( λn∑
j=0

αjx
k
j , x
)
→ 0

as n→∞.

We refer the reader to [G-E], [NP] and [BGNP] for definitions, results,
and interesting examples on the classes U , UA, and also for the proof of the
following Proposition 1.5. A sketch of the proof is included for completeness.

Proposition 1.5. Under the previous assumptions, the classes U ∩ A,
UA, F1, F2 and F3 are Gδ subsets of the space A. In particular , for A = KN,
the class U is a Gδ subset of the space KN with the product topology.

Sketch of the proof. Let (ykn)∞n=0 be a dense sequence in Xk for every
k ≥ 1. For n, l, r, k ∈ N with r, k ≥ 1, consider the sets

E(n, l, r, k) =
{
α = (αn)∞n=0 ∈ A : %k

( n∑
j=0

αjx
k
j , y

k
l

)
< 1/r

}
,

D(n, r) =
{
α = (αn)∞n=0 ∈ A : d

( n∑
j=0

αjej , α
)
< 1/r

}
,

C(n, l, r, k) = {α = (αn)∞n=0 ∈ A : %k(T kn (α), ykl ) < 1/r}.
Under our assumptions on A, the sets E(n, l, r, k), D(n, r), C(n, l, r, k) are
open in A, and

U ∩A =
⋂
l,r,k

∞⋃
n=0

E(n, l, r, k),

UA =
⋂
l,r,k

∞⋃
n=0

(E(n, l, r, k) ∩D(n, r)),

F1 =
⋂
l,r,k

∞⋃
n=0

C(n, l, r, k),

F2 =
⋂
l,r,k

∞⋃
n=0

(C(n, l, r, k) ∩D(n, r)),

F3 =
⋂
l,r,k

∞⋃
n=0

(C(n, l, r, k) ∩D(n, r) ∩ E(n, l, r, k)).

Borel and analytic sets. Let X, Y be Polish spaces (i.e. topological Haus-
dorff spaces, each homeomorphic to a complete, metric, separable space),
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f : X → Y a continuous function, and B a Borel subset of X. The image
C = f(B) is not always a Borel subset of Y , in fact all such subsets C of Y
constitute the class of analytic subsets of Y . Moreover, the analytic subsets
of Y are characterized as the results of the Suslin operation on the class of
closed subsets of Y (see [Ke]).

We will use the following highly non-trivial result about Borel sets. A
proof can be found in Theorem 15.1 of [Ke].

Theorem 1.6 (Lusin, Suslin). Let X, Y be Polish spaces and f : X → Y
a continuous function. If B is a Borel subset of X, and f restricted to B is
one-to-one, then f(B) is a Borel subset of Y .

Infinitary combinatorics. Galvin and Prikry [GP] proved the following
fundamental combinatorial result for infinite sequences of natural numbers.

Theorem 1.7. Let R be a family of infinite subsets of the space [N],
endowed with the relative topology in the space NN with the product topology.
Assume that R is a Borel subset of [N], and let s be a finite subset of N and
M an infinite subset of N. Then there exists L ∈ [M ] such that

either [s, L] ⊆ R, or [s, L] ⊆ [N] \ R.

Silver [Si] proved an analogous result in the more general case where R
is an analytic subset of [N], and Ellentuck [E] formulated a still more general
result.

2. The dichotomy principle. Combining the Galvin and Prikry com-
binatorial result of Theorem 1.7 with the result of Lusin and Suslin about
Borel sets (Theorem 1.6), we can prove a general dichotomy for classes of
universal series.

Theorem 2.1. Let A be a vector subspace of KN (K = R or C) which
is equipped with a complete metrizable vector space topology , induced by a
translation-invariant metric d, and satisfies properties (i) and (ii) of Sec-
tion 1, and let G be a Borel subset of A. Then for every sequence (αn)∞n=0

in K, every finite subset s of N and every infinite subset M of N there exists
an infinite subset L of M such that either

• all subsequences (αin)∞n=0 of (αn)∞n=0 with (in)∞n=1 ∈ [s, L] belong to G,
or
• all subsequences (αin)∞n=0 of (αn)∞n=0 with (in)∞n=0 ∈ [s, L] belong to

KN \ G.

In particular , the conclusion holds if we replace the class G by each of the
classes U ∩ A, UA, F1, F2 and F3 (defined in Section 1). For A = KN the
conclusion holds for G = U = U ∩A as well.
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Proof. We set R = {I = (in)∞n=0 ∈ [N] : (αin)∞n=0 ∈ G}, and we claim
that R is a Borel subset of [N], endowed with the relative product topology
of NN.

Indeed, the function f : [N]→ KN with f((in)∞n=0) = (αin)∞n=0 is contin-
uous if KN is endowed with the product topology. Notice that R = f−1(G).

The set G is a Borel subset of KN. Indeed, the identity function g :
A→ KN with g(α) = α is continuous, since by property (i), the projections
pm : A→ K, (αn)∞n=0 → am, are continuous for every m ∈ N. Certainly KN is
a Polish space, and also A is a Polish space, since it is a complete metrizable
space with property (ii). Hence G = g(G) is a Borel subset of KN, according
to the Lusin–Suslin Theorem 1.6.

Since the function f : [N] → KN is continuous, the set R = f−1(G) is a
Borel subset of [N].

Now, we can apply the Galvin–Prikry Theorem 1.7 for the family R. It
follows that there exists L ∈ [M ] such that either [s, L] ⊆ R, or [s, L] ⊆
[N] \ R. Hence, the subsequences (αin)∞n=0 of (αn)∞n=0 with (in)∞n=0 ∈ [s, L]
either all belong to the class G, in case [s, L] ⊆ R, or all belong to KN \ G,
in case [s, L] ⊆ [N] \ R.

In particular, taking for G each of the classes U ∩A, UA, F1, F2 and F3,
since all these classes, according to Proposition 1.5, are Gδ subsets of A,
we have the conclusion for each of these classes. In particular, applying the
arguments for G = U and A = KN with the product topology, we have the
conclusion for the class U .

Corollary 2.2. Let (Xk)k≥1 be a sequence of separable, metrizable
topological vector spaces over the field K = R or C, equipped with translation-
invariant metrics %k for every k ≥ 1, let A be a vector subspace of KN,
equipped with a complete metrizable vector space topology , induced by a
translation-invariant metric d, and satisfying properties (i) and (ii) of Sec-
tion 1, and let sequences (xkn)∞n=0 be in Xk for every k ≥ 1. Then, for every
sequence (αn)∞n=0 in K and G equal to one of the classes U ∩A, UA, F1, F2

or F3, there exists a subsequence (αln)∞n=0 of (αn)∞n=0 such that either

• all the subsequences of (αln)∞n=0 belong to G, or
• all the subsequences of (αln)∞n=0 belong to KN \ G.

Proof. We apply Theorem 2.1 in the case s = ∅.
Theorem 2.1 can be stated in a more general form, assuming the partition

family to be analytic instead of Borel.

Theorem 2.3. Let A be a vector subspace of KN (where K = R or C),
equipped with a complete metrizable vector space topology , induced by a
translation-invariant metric d and satisfying properties (i) and (ii) of Sec-
tion 1, and let D be an analytic subset of A. Then for every sequence (αn)∞n=0



A Dichotomy Principle for Universal Series 99

in K, every finite subset s of N, and every infinite subset M of N, there
exists an infinite subset L of M such that either

• all subsequences (αin)∞n=0 of (αn)∞n=0 with (in)∞n=0 ∈ [s, L] belong to D,
or
• all subsequences (αin)∞n=0 of (αn)∞n=0 with (in)∞n=0 ∈ [s, L] belong to

KN \ D.

Proof. We note that the family R = {I = (in)∞n=0 ∈ [N] : (αin)∞n=0 ∈ D}
is an analytic subset of [N] endowed with the relative product topology of
NN.

Indeed, the set D = g(D) is an analytic subset of KN with the product
topology, as the identity function g : A → KN is continuous and D is an
analytic subset of the Polish space A. Since the function f : [N] → KN

with f((in)∞n=0) = (αin)∞n=0 is continuous, we see that R = f−1(D) is an
analytic subset of [N]. This last conclusion can be proved easily by using the
characterization of the analytic subsets of a Polish space X, as those that
result from the Suslin operation on the class of closed subsets of X.

Now, we apply the result by Silver [Si], or by Ellentuck [E] (in place of
the Galvin–Prikry Theorem 1.7, replacing the Borel partition by a partition
determined by an analytic set). So, there exists L ∈ [M ] such that either
[s, L] ⊆ D, or [s, L] ⊆ [N] \ D. This finishes the proof.

Remark 2.4. At present, we have no use for the more general results
in Theorem 2.1, on partitions determined by an analytic set, but it appears
that the full force of the Galvin–Prikry theorem for Borel partitions is em-
ployed in the proof of our main result 2.1. If this is indeed the case, then
Theorem 2.1 is the only “natural theorem” that uses the full strength of the
Galvin–Prikry partition theorem. (Cf. the relevant remark after Theorem
5.7 in Gowers’s survey paper [G].)

Remark 2.5. For a fixed strictly increasing sequence µ = (µn)∞n=1 in N,
we can define the classes Uµ, Uµ∩A, UµA, Fµ1 , Fµ2 , Fµ3 analogously to U , U∩A,
UA, F1, F2, F3, with the only difference that the sequence (λn)∞n=1 ⊆ N in
Definitions 1.2 and 1.4 has to be a subsequence of µ. All the results which
we proved for U , U ∩ A, UA, F1, F2, F3 also hold for Uµ, Uµ ∩ A, UµA, Fµ1 ,
Fµ2 and Fµ3 .

3. Particular cases and examples. In this section we examine some
particular cases of universality in relation with Corollary 2.2; in addition,
concrete examples are used to show that the classes UA and KN \UA, as well
as U ∩ A and KN \ (U ∩ A), are not always hereditary (where a class F in
KN is hereditary if every subsequence of any sequence in F belongs to F).
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Fix a separable Banach space X and a sequence (xn)∞n=0 in X. We con-
sider the particular case of Definition 1.1, where Xk = X and xkn = xn for
all k = 1, 2, . . . . In this case we prove the following.

Proposition 3.1. Let X be a Banach space, and (xj)∞j=0 ⊆ X with
xj 6= 0 for every j ∈ N. Set A = c0 or A = lp with 0 < p < ∞, and let
(αn)∞n=0 ∈ A. Then there exists a subsequence (αln)∞n=0 of (αn)∞n=0 with no
subsequences in U ∩A = UA.

Proof. Let (αln)∞n=0 be a subsequence of (αn)∞n=0 with

|αln | ≤
1

(n+ 1)2%(xj , 0)
for every n ∈ N and j = 0, . . . , n.

For every subsequence (αkln
)∞n=0 of (αln)∞n=0 we have kln ≥ n for every

n ∈ N, and consequently ‖αkln
xn‖ ≤ 1/(ln + 1)2, which implies that the

series
∑∞

n=0 αkln
xn converges in X. Therefore (αkln

)∞n=0 does not belong to
U ∩A = UA.

Proposition 3.2. Let 1 < R <∞, set D(0, R) = {z ∈ C : |z| < R} and

A =
{

(αn)∞n=0 :
∞∑
n=0

αnz
n converges in D(0, R)

}
,

and endow A with the metric d which is the image, under the bijective map
g : A → H(D(0, R)) with g((αn)∞n=0) =

∑∞
n=0 αnz

n, of the standard met-
ric d̃ on H(D(0, R)), compatible with the topology of uniform convergence
on compact subsets of D(0, R). Also assume (cf. [N], [NP] and [BGNP])
that there exists a sequence (Xk, %k)k≥1 of separable, metrizable topological
vector spaces over C, and sequences (xkn)∞n=0 ⊆ Xk for every k ≥ 1, such
that U ∩ A = UA is the class of universal Taylor series, namely the class
of all sequences (αn)∞n=0 ∈ A for which for every compact set K ⊆ C with
K ∩D(0, R) = ∅ and C \K connected , and for every function h : K → C,
continuous on K and holomorphic in the interior of K, there exists a se-
quence (λn)∞n=1 ⊆ N with

∑λn
j=0 αjz

j n→ h(z) uniformly on K. Then, for
every sequence (αn)∞n=0 ∈ A, there exists a subsequence (αln)∞n=0 of (αn)∞n=0

with no subsequences in U ∩A = UA.

Proof. Set K = {R}. We can have X1 = C = {f : K → C}, %1 the usual
metric on C and x1

j = zj |K for every j ∈ N. Since (αn)∞n=0 ∈ A and R > 1,
it is easily seen that αn → 0, hence we can choose (ln)∞n=0 ⊆ N with

|αln | ≤
1

(n+ 1)2Rj
=

1
(n+ 1)2%(x1

j , 0)
for every n ∈ N and j = 0, . . . , n.

The rest of the proof is similar to that of Proposition 3.1.
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Proposition 3.3. Let X be a separable Banach space and (xj)∞j=0 ⊆ X
with xj 6= 0 for every j ∈ N. Then for every sequence (αn)∞n=0 ∈ KN, we
have the following cases:

(a) if (αn)∞n=0 has zero or infinity as accumulation points, then it has a
subsequence with no subsequences in U ;

(b) if (αn)∞n=0 has a subsequence converging to some c ∈ K with c 6= 0,
and (1, 1, . . .) ∈ U , then it has a subsequence with all subsequences
in U ;

(c) if (αn)∞n=0 has a subsequence converging to some c ∈ K with c 6= 0,
and (1, 1, . . .) /∈ U , then it has a subsequence with no subsequences
in U .

Proof. If (αn)∞n=0 has a subsequence converging to zero, then, as in the
proof of Proposition 3.1, we can construct a subsequence (αln)∞n=0 with no
subsequences in U .

Let (αn)∞n=0 have a subsequence converging to some c ∈ K with c 6= 0.
Then we can find a subsequence (αln)∞n=0 with

|αln − c| ≤
1

(n+ 1)2%(xj , 0)
for every n ∈ N and j = 0, . . . , n.

Hence,
∑∞

n=0(αkln
−c)xn converges in X for every subsequence (αkln

)∞n=0 of
(αln)∞n=0. Therefore, in case (c, c, . . .) ∈ U all the subsequences of (αln)∞n=0

belong to U , and in case (c, c, . . .) /∈ U no one does. But (c, c, . . .) ∈ U if and
only if (1, 1, . . .) ∈ U .

Finally, it remains to examine the case where (αn)∞n=0 has a subsequence
converging to infinity. Then we can find a subsequence (αln)∞n=0 such that
for all n ∈ {1, 2, . . .} and all F ⊆ N with F ⊆ {0, . . . , n− 1} we have∥∥∥(∑

j∈F
αljxj

)
+ αlnxn

∥∥∥ ≥ 1,

by choosing ln ∈ N with ‖αlnxn‖ ≥ 1 + ‖
∑

j∈F αljxj‖ for every such F .
Hence, for every subsequence (αkln

)∞n=0 of (αln)∞n=0 the set {
∑N

n=0 αkln
xn :

N ∈ N} avoids the open set {x ∈ X : ‖x‖ < 1}, so it is not dense in X.
Thus (αkln

)∞n=0 /∈ U .
This completes the proof.

The following theorem extends Corollary 2.2 to the class U ∩ A in the
particular case where A is a hereditary family, thus providing a criterion for
all the subsequences to be in U ∩A or in its complement.

Theorem 3.4. Let X be a separable Banach space, (xj)∞j=0 ⊆ X with
xj 6= 0 for every j ∈ N, and A a hereditary vector subspace of KN (with
K = R or C), equipped with a complete metrizable vector space topology ,
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induced by a translation-invariant metric d, and satisfying properties (i)
and (ii) of Section 1. Then for every sequence (αn)∞n=0 in K we have the
following cases:

(a) if (1, 1, . . .) ∈ U and (αn)∞n=0 has a subsequence in A converging to
some c ∈ K with c 6= 0, then (αn)∞n=0 has a subsequence with all
subsequences in U ∩A;

(b) if either (1, 1, . . .) /∈ U , or (1, 1, . . .) ∈ U and (αn)∞n=0 has no subse-
quence in A converging to some c ∈ K with c 6= 0, then (αn)∞n=0 has
a subsequence with no subsequences in U ∩A.

Moreover , if (αn)∞n=0 has a subsequence converging to zero or to infinity ,
then (αn)∞n=0 has a subsequence with no subsequences in U ∩A.

Proof. If (1, 1, . . .) /∈ U , then, according to Proposition 3.3, (αn)∞n=0 has
a subsequence with no subsequences in U and therefore none in U ∩A.

If (1, 1, . . .) ∈ U and (αn)∞n=0 has a subsequence converging to zero or to
infinity, then, according to Proposition 3.3, (αn)∞n=0 has a subsequence with
no subsequences in U and therefore none in U ∩A.

If (1, 1, . . .) ∈ U and (αn)∞n=0 has all its accumulation points in K \ {0},
then, according to Proposition 3.3, it has a subsequence (αln)∞n=0 with all
subsequences in U . Now, if one subsequence (αlkn

)∞n=0 belongs to the class
A, then all its subsequences belong to U ∩ A, since A is hereditary, and if
no subsequence of (αln)∞n=0 belongs to A, then none belongs to U ∩A.

Remark 3.5. (1) In order to give an example of a sequence in U∩A with
a subsequence not in U , we apply Proposition 3.1 for A = c0 and we notice
that U ∩ c0 6= ∅ in the case of universal trigonometric series in the sense of
Men’shov ([KN], [BGNP]), as well as in the case of universal Taylor series in
the open unit disk in the sense of Luh ([L]) and Chui–Parnes ([CP]), where
the universal approximation is not required on the boundary ([KKN], [MN],
[BGNP]).

For another example, start with a sequence (xn)∞n=0 in a Banach space
X such that the set {

∑N
n=0 x2n : N ∈ N} is dense in X. Then the sequence

(1, 0, 1, 0, . . .) belongs to U and obviously its subsequence (0, 0, 0, 0, . . .) does
not.

(2) In order to give an example of a sequence not in U with a subsequence
in U , we start with a sequence (xn)∞n=0 dense in a Banach space X and we
consider the sequence (yn)∞n=0 ⊆ X where y0 = x0 and y2n−1 = y2n = xn for
every n ≥ 1, which is also dense in X. Fix (zn)∞n=0 ⊆ X, where z0 = y0 = x0

and zn = yn − yn−1 for every n ≥ 1. Then z2n = 0 and z2n−1 = yn − yn−1

for every n ≥ 1.
The sequence (αn)∞n=0 ⊆ R with α2n+1 = 0 and α2n = 1 for every n ∈ N

does not belong to U . Indeed, for every N ∈ N we have
∑N

n=0 αnzn = y0. On
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the other hand, the subsequence (α2n)∞n=0 belongs to U , since
∑2N

n=0 α2nzn =∑2N
n=0 zn = yN for every N ∈ N and (yN )∞N=0 ⊆ X is dense in X.
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