MEASURE AND INTEGRATION

The Young Measure Representation for Weak Cluster Points of Sequences in M-spaces of Measurable Functions

by

Hông Thái NGUYÊN and Dariusz PĄCZKA

Presented by Czesław OLECH

Summary. Let $\langle X, Y \rangle$ be a duality pair of M-spaces X, Y of measurable functions from $\Omega \subset \mathbb{R}^n$ into \mathbb{R}^d. The paper deals with Y-weak cluster points ϕ of the sequence $\phi(\cdot, z_j(\cdot))$ in X, where $z_j : \Omega \to \mathbb{R}^m$ is measurable for $j \in \mathbb{N}$ and $\phi : \Omega \times \mathbb{R}^m \to \mathbb{R}^d$ is a Carathéodory function. We obtain general sufficient conditions, under which, for some negligible set A_ϕ, the integral $I(\phi, \nu_x) := \int_{\mathbb{R}^m}^{\nu} \phi(x, \lambda) \, d\nu_x(\lambda)$ exists for $x \in \Omega \setminus A_\phi$ and $\phi(x) = I(\phi, \nu_x)$ on $\Omega \setminus A_\phi$, where $\nu = \{\nu_x\}_{x \in \Omega}$ is a measurable-dependent family of Radon probability measures on \mathbb{R}^m.

1. Notations and some basic facts on Young measures. Let μ denote a complete separable σ-finite σ-additive positive measure on a σ-algebra \mathfrak{A} of subsets of a set Ω. Measurability will always mean \mathfrak{A}-measurability. Let E be a separable Banach space. We will denote by $L^\infty(\Omega, E; \mu)$, or briefly $L^\infty(E)$, the Banach space (of all equivalence classes) of essential E-norm-bounded measurable functions $u : \Omega \to E$ with norm $\|u\|_{L^\infty} := \text{ess sup}_{x \in \Omega} \|u(x)\|_E$. Let $L^1(\Omega, E; \mu)$, or briefly $L^1(E)$, denote the Bochner–Lebesgue space (of all equivalence classes) of μ-integrable strongly measurable functions from Ω into E.

Let $\mathcal{M}(\mathbb{R}^m)$ be the Banach space of bounded signed Radon measures on \mathbb{R}^m and $C_0(\mathbb{R}^m)$ be the Banach space of all continuous functions $f : \mathbb{R}^m \to \mathbb{R}$ with $\lim_{|\lambda| \to \infty} f(\lambda) = 0$ equipped with the sup-norm, where $|\cdot|$ denotes the Euclidean norm in \mathbb{R}^m. It is known that $(C_0(\mathbb{R}^m))^* \cong \mathcal{M}(\mathbb{R}^m)$. Let $L^\infty(\mathcal{M}(\mathbb{R}^m))$ denote the Banach space (of all equivalence classes) of $C_0(\mathbb{R}^m)$-valued measurable functions.

2000 Mathematics Subject Classification: 28A33, 46E27, 46E30, 46E40, 47H30.

Key words and phrases: Young measure representation, weak cluster points of sequences in non-L^p-type spaces of measurable functions, M-spaces, Banach lattices and non-solid generalized Orlicz spaces, Köthe–Bochner spaces.
weakly measurable functions \(\nu : \Omega \to \mathcal{M}(\mathbb{R}^m) \) with norm \(\|\nu\|_{\infty} := \|x \mapsto |\nu_x|(\mathbb{R}^m)|_{L^\infty} < \infty \), where \(|\nu_x|(\mathbb{R}^m) \) is the total variation of \(\nu_x \) on \(\mathbb{R}^m \) and, for abbreviation, we write \(L^\infty \) (resp. \(\nu_x \)) instead of \(L^\infty(\mathbb{R}) \) (resp. \(\nu(x) \)). It is known that \(L^\infty_\infty(\mathcal{M}(\mathbb{R}^m)) \) can be interpreted as dual space \((L^1(C_0(\mathbb{R}^m)))^* \) via the injection \(\nu \mapsto \langle \cdot, \nu \rangle \mu \), where \(\langle h, \nu \rangle \mu := \int_\Omega \langle v(x), h(x) \rangle d\mu(x) \) for all \(h \in L^1(C_0(\mathbb{R}^m)) \). Given a measurable function \(z : \Omega \to \mathbb{R}^m \), define the \textit{parametrized Dirac measure} \(\delta_z \in L^\infty_\infty(\mathcal{M}(\mathbb{R}^m)) \) by

\[
x \in \Omega \mapsto \delta_z(x) := \delta_{z(x)} \quad \text{(the Dirac measure supported at } z(x) \text{).}
\]

An element \(\nu \in L^\infty_\infty(\mathcal{M}(\mathbb{R}^m)) \) is called a Young parametrized measure if \(\nu_x(\mathbb{R}^m) = 1 \) \(\mu \)-a.e. Define \((\phi \circ z)(x) := \phi(z(x)) \). A function \(f : \Omega \times \mathbb{R}^m \to E \) is said to be Carathéodory if \(f(\cdot, u) \) is measurable for every \(u \in \mathbb{R}^m \) and \(f(x, \cdot) \) is continuous for almost all \(x \in \Omega \).

The formulations and proofs of the main results of the present paper are based on the following fundamental theorem [2, 3] about the Young measure representation in case of the pair \((X, Y) = (L^1(\mathbb{R}), L^\infty(\mathbb{R})) \) (see Theorem 1.1; cf. [20, p. 98–100], [8, Section 8.1, pp. 518–525], [5, 21]).

Theorem 1.1 (The Young measure representation; Ball [3], Balder [2]). Suppose that a sequence of measurable functions \(z_j : \Omega \to \mathbb{R}^m \) satisfies the global tightness condition with respect to \(\mu \):

\[
(\text{GB}) \quad \lim_{L \to \infty} \sup_{j \in \mathbb{N}} \mu\{x \in \Omega : |z_j(x)| \geq L\} = 0.
\]

Then there exist a subsequence \(z_{j_k} \) and a Young measure \(\nu = \{\nu_x\}_{x \in \Omega} \) such that \(\delta_{z_{j_k}} \) is \(L^1(C_0(\mathbb{R}^m)) \)-weakly convergent to \(\nu \) in \(L^\infty_\infty(\mathcal{M}(\mathbb{R}^m)) \). Moreover, given a Carathéodory function \(\psi : \Omega \times \mathbb{R}^m \to \mathbb{R} \), the following statements hold.

1. **(Y1)** If \(\psi \circ z_{j_k} \) is \(L^\infty(\mathbb{R}) \)-weakly convergent to \(\bar{\psi} \) in \(L^1(\mathbb{R}) \), then, for some \(\mu \)-negligible set \(A_\psi \subset \mathcal{A} \), the integral \(\int_{\mathbb{R}^m} \psi(x, \lambda) d\nu_x(\lambda) \in \mathbb{R} \) exists for \(x \in \Omega \setminus A_\psi \) and

\[
(1.1) \quad \bar{\psi}(x) = \int_{\mathbb{R}^m} \psi(x, \lambda) d\nu_x(\lambda) \quad \text{on } \Omega \setminus A_\psi.
\]

2. **(Y2)** If \(\psi \circ z_{j_k} \) is sequentially \(L^\infty(\mathbb{R}) \)-weakly pre-compact in \(L^1(\mathbb{R}) \), then, for some \(\mu \)-negligible set \(A_\psi \subset \mathcal{A} \), the integral \(I(\psi, \nu_x) := \int_{\mathbb{R}^m} \psi(x, \lambda) d\nu_x(\lambda) \in \mathbb{R} \) exists for all \(x \in \Omega \setminus A_\psi \) and \(\psi \circ z_{j_k} \) is \(L^\infty(\mathbb{R}) \)-weakly convergent to \(\tilde{\psi} \in L^1(\mathbb{R}) \), where \(\tilde{\psi}(x) := I(\psi, \nu_x) \) for \(x \in \Omega \setminus A_\psi \) and \(\tilde{\psi}(x) := 0 \) otherwise.

The generalization of Theorem 1.1 for the \(L^{\Psi^*}(\mathbb{R}) \)-weak limit of \(\tau \circ z_{j_k} \) in the Orlicz space \(L^{\Psi}(\mathbb{R}) \) is proved by P. Málek et al. [11, Th. 4.2.1, pp. 171–176] in the case when \(\Psi \) and \(\Psi^* \) are complementary non-power Orlicz functions, \(\Psi \) satisfies the \(\triangle_2 \)-condition [12], and \(\tau : \mathbb{R}^m \to \mathbb{R} \) is continuous.
2. Formulation of results. A linear space $Z \subset L^0(\mathbb{R}^m)$ is called an M-space if the inclusions $z \in Z$ and $\alpha \in L^\infty(\mathbb{R})$ imply that $\alpha z \in Z$ [16, 18]. If $m = 1$ then it is easy to check that M-spaces Z are just vector lattices. The Köthe associate space Z' of an M-space Z is defined e.g. in [7, 9] for $m = 1$, and in [15, 14, 18] for $m \geq 2$. By [16, Theorem 3.1], equivalently in case $m \geq 2$, Z' is defined by

$$Z' = \{ z' \in L^0(\mathbb{R}^m) : z'(x) \in \text{vsupp} Z(x) \text{ } \mu\text{-a.e.}, \langle z, z' \rangle_\mu \in \mathbb{R}, \forall z \in Z \}.$$

Here $\langle z, z' \rangle_\mu := \int_{\Omega}(z(x), z'(x))d\mu(x)$, where (\cdot, \cdot) denotes the Euclidean scalar product on \mathbb{R}^m, and the so-called vector support vsupp Z can be equivalently defined by

$$\text{vsupp} Z(x) := \{ z_1(x), z_2(x), \ldots \} \text{ } \mu\text{-a.e.}$$

for some sequence $z_n \in Z$ such that $z \in Z \Rightarrow z(x) \in \{ z_1(x), z_2(x), \ldots \} \text{ } \mu\text{-a.e.}$ If $Z, Y \subset L^0(\mathbb{R}^m)$ are M-spaces and $Y \subset Z'$, then $\langle Z, Y \rangle$ is a duality pair with respect to $(z, z')_\mu (z \in Z, z' \in Y)$, and we write $\langle Z, Y \rangle_\mu$.

Let $\langle Z, Y \rangle$ be a duality pair of vector spaces. A set $\mathcal{N} \subset Z$ is called sequentially Y-weakly pre-compact in Z (or conditionally sequentially Y-weakly compact in Z) if each sequence $z_j \in \mathcal{N}$ has some Y-weak Cauchy subsequence $z_{j(k)}$. The space Z is called sequentially Y-weakly complete if each Y-weak Cauchy sequence is Y-weakly convergent in Z.

Theorem 2.1. Let $X, Y \subset L^0(\mathbb{R}^d)$ be M-spaces, supp $X = \Omega$, vsupp $X(x) = \text{vsupp} Y(x) \text{ } \mu\text{-a.e.}$, and $Y \subset X'$, where X' is the Köthe associate space of X with respect to μ. Suppose that a sequence $z_j \in L^0(\mathbb{R}^m)$ satisfies (GB) with respect to μ, and a Carathéodory function $\phi : \Omega \times \mathbb{R}^m \to \mathbb{R}^d$ satisfies $\phi(x, \mathbb{R}^m) \subset \text{vsupp} X(x) \text{ } \mu\text{-a.e.}$ Moreover, let $z_{j(k)}$ and ν be as in Theorem 1.1. Then the following statements hold.

(Y3) If $\phi \circ z_{j(k)}$ is Y-weakly convergent to ϕ in X, then, for some μ-negligible set $A_\phi \in \mathcal{A}$, the integral $\int_{\mathbb{R}^m} \phi(x, \lambda) d\nu_x(\lambda)$ exists in vsupp $X(x)$ for $x \in \Omega \setminus A_\phi$ and

\begin{equation}
\overline{\phi}(x) = \int_{\mathbb{R}^m} \phi(x, \lambda) d\nu_x(\lambda) \quad \text{on } \Omega \setminus A_\phi.
\end{equation}

(Y4) If $X = Y'$ and $\phi \circ z_{j(k)}$ is sequentially Y-weakly pre-compact in X, then, for some μ-negligible set $A_\phi \in \mathcal{A}$, the integral $I(\phi, \nu_x) := \int_{\mathbb{R}^m} \phi(x, \lambda) d\nu_x(\lambda)$ exists in vsupp $X(x)$ for all $x \in \Omega \setminus A_\phi$ and $\phi \circ z_{j(k)}$ is Y-weakly convergent to ϕ in X, where $\phi(x) := I(\phi, \nu_x)$ for $x \in \Omega \setminus A_\phi$ and $\overline{\phi}(x) := 0$.

Condition 2.2 (Local tightness condition, [11, p. 171], [20]). A sequence $z_j \in L^0(\mathbb{R}^m)$ satisfies
(LB) \[\limsup_{L \to \infty} \mu \{ x \in C_q : |z_j(x)| \geq L \} = 0 \quad (\forall q \in \mathbb{N}) \]

for a nondecreasing sequence \(C_q \in \mathcal{A} \) with \(\mu(C_q) < \infty \) and \(\bigcup_{q \in \mathbb{N}} C_q = \Omega \).

Theorem 2.3. Let \(\mu(\Omega) = \infty \) and let \(X, Y \) and \(\phi \) be as in Theorem 2.1. If a sequence \(z_j \in L^0(\mathbb{R}^m) \) satisfies (LB) with respect to \(\mu \), then the statements (Y3)–(Y4) of Theorem 2.1 remain true.

A normed space \(Z \subseteq L^0(\mathbb{R}^m) \) with norm \(\| \cdot \|_Z \) is called a normed M-space if the inclusions \(z \in Z \) and \(\alpha \in L^\infty(\mathbb{R}) \) imply that \(\alpha z \in Z \) and \(\|\alpha z\|_Z \leq \|\alpha\|_{L^\infty} \|z\|_Z \) [16, 18]. The regular part \(Z^\circ \) of a normed M-space \(Z \) is defined to be the normed M-subspace of all elements \(z \in Z \) satisfying \(\lim_{\mu_* \circ (D) \to 0} \|\chi_D z\|_Z = 0 \), where \(\mu_* := \mu \) if \(\mu(\Omega) < \infty \) and \(\mu_* \) is a fixed finite positive measure equivalent to \(\mu \) if \(\mu(\Omega) = \infty \), and \(\chi_D \) denotes the characteristic function of \(D \in \mathcal{A} \).

Proposition 2.4. Let \(X, Y \subseteq L^0(\mathbb{R}^d) \) be M-spaces with \(X \subseteq Y' \), where \(Y' \) is the Köthe associate space of \(Y \) with respect to \(\mu \). Suppose that a sequence \(z_j \in L^0(\mathbb{R}^m) \) and a Carathéodory function \(\phi : \Omega \times \mathbb{R}^m \to \mathbb{R}^d \) satisfy one of the following conditions:

1. (SC1) There exist nondecreasing continuous functions \(g, \gamma : [0, \infty) \to [0, \infty) \) such that
 - (a) \(\lim_{t \to \infty} g(t) = \infty \) and \(\lim_{t \to \infty} \gamma(t)/g(t) = 0 \);
 - (b) \(\{(g \circ z_j)u_0\}_{j \in \mathbb{N}} \) is \(Y \)-weakly bounded in \(X \), where \(u_0 : \Omega \to (0, \infty) \) is measurable, \(u_0 Y \subseteq L^1(\mathbb{R}^d) \), and \(v\text{supp}(X(\cdot)) = v\text{supp}(Y(\cdot)) \) \(\mu \)-a.e.;
 - (c) \(|\phi(x, \lambda)| \leq \gamma(|\lambda|)u_0(x) \) for \(\mu \)-almost all \(x \in \Omega \) and all \(\lambda \in \mathbb{R}^m \);
2. (SC2) There exists a Banach M-space \(\Gamma \) with \(Y \subseteq \Gamma^\circ \), \((\Gamma^\circ)'^\prime \subseteq X \) and \(\sup_{j \in \mathbb{N}} \|\phi \circ z_j\|_{(\Gamma^\circ)'} < \infty \).

Then the sequence \(\phi \circ z_j \) is sequentially \(Y \)-weakly pre-compact in \(X \).

Remark 2.5. Proposition 2.4/(SC1) is a generalization of [20, Proposition 6.5] (where \(Y = L^1(\mathbb{R}) \) with \(\mu(\Omega) < \infty \)).

In the case of \(\phi : \Omega \times \mathbb{R}^m \to E \) with \(\dim E = \infty \), results analogous to Theorems 2.1 and 2.3 can be proved but only for a pair \((X, Y) \) of Köthe–Bochner spaces \(X, Y \) of \(E/-/E^* \)-valued functions (see Theorem 2.6). Given a separable Banach space \(E \) and a vector lattice \(K \subseteq L^0(\mathbb{R}) \), the Köthe–Bochner space \(K(E) \) is defined as the space (of equivalence classes) of strongly measurable \(E \)-valued functions \(z \) such that \(\|z(\cdot)\|_E \in K \).

Theorem 2.6. Let \(K, \tilde{K} \subseteq L^0(\mathbb{R}) \) be vector lattices, \(E \) be a Banach space and \(E^* \) be its dual. Assume that:
(a) \(\text{supp } K = \text{supp } \tilde{K} = \Omega \) and \(\tilde{K} \subset K' \), where \(K' \) is the Köthe associate space of \(K \) with respect to \(\mu \);
(b) \(E \) is separable and reflexive with \(\dim E = \infty \).

If \(\phi : \Omega \times \mathbb{R}^m \to E \) is a Carathéodory function and a sequence \(z_j \in L^0(\mathbb{R}^m) \) satisfies either (GB) or (LB), then the statements (Y3)–(Y4) of Theorem 2.1 remain true for the Köthe–Bochner spaces \(X = K(E) \) and \(Y = \tilde{K}(E^*) \) provided (2.1) (resp. \(\tilde{\phi} \)) is substituted by

\[
(2.2) \quad \tilde{\phi}(x) = (P)- \int_{\mathbb{R}^m} \phi(x, \lambda) \, d\nu_x(\lambda) \quad \text{on } \Omega \setminus A_\phi
\]

(resp. \(\hat{\phi}(x) = (P)- \int_{\mathbb{R}^m} \phi(x, \lambda) \, d\nu_x(\lambda) \) for \(x \in \Omega \setminus A_\phi \)), where, for \(x \in \Omega \setminus A_\phi \), the above integral exists as the Pettis integral of the function \(\phi(x, \cdot) : \mathbb{R}^m \to E \) with respect to the measure \(\nu_x \).

Proposition 2.7. Let \(z_j \in L^0(\mathbb{R}^m) \) \((j \in \mathbb{N}) \). Then (LB) with respect to \(\mu \) follows from the condition:

(LK) For \(q \in \mathbb{N} \) there exist a normed lattice with monotone norm \(K(q) \subset L^0(\mathbb{R}) \) and a continuous nondecreasing function \(g_q : [0, \infty) \to [0, \infty) \)

such that \(\lim_{t \to \infty} g_q(t) = \infty \) and \(\sup_{j \in \mathbb{N}} \| \chi_{C_q} g_q(|z_j(\cdot)|) \|_{K(q)} < \infty \) for a nondecreasing sequence \(C_q \in \mathcal{A} \) with \(\mu(C_q) < \infty \) and \(\bigcup_{q \in \mathbb{N}} C_q = \Omega \).

Remark 2.8. Proposition 2.7 is an extension of the statement in [3, Remark 1, p. 209] (where \(K(q) = L^1(\mathbb{R}) \)).

Remark 2.9. If \(Z \subset L^0(\mathbb{R}^m) \) is a normed \(M \)-space and \(\sup_{j \in \mathbb{N}} \| z_j \|_Z < \infty \), then (LB) holds. Indeed, by [9, Corollary of Theorem IV.3.1], [23] \((m = 1) \) and [16, Theorem 2.1/(3)] \((m \geq 2) \), the sequence \(z_j \) is bounded in \(L^0(\mathbb{R}^m) \) equipped with the quasi-norm \(\| z \|_{L^0(\mathbb{R}^m)} := \int_{\Omega} \frac{|z(x)|}{1 + |z(x)|} \, d\mu(x) \).

Hence, by [9, Section III.1.3–III.1.4], this sequence is bounded in \(\mu \) on any \(C_q \), and so (LB) follows. In particular, \(Z \) can be assumed to be either a Banach lattice of scalar-valued functions (a solid space) or a non-solid generalized Orlicz space (see, e.g., [1, 12, 17]) of \(\mathbb{R}^m \)-valued functions with \(m \geq 2 \).

3. Proofs of results of Section 2

Proof of Theorem 2.1. We divide this proof into Steps 3.1–3.2.

Step 3.1 (Proof of (Y3)). Given \(y \in Y \), define \(\phi_y : \Omega \times \mathbb{R}^m \to \mathbb{R} \) by \(\phi_y(x, \lambda) := (y(x), \phi(x, \lambda)) \). As \(Y \) is an \(M \)-space we have \(\alpha y \in Y \) for every \(\alpha \in L^\infty(\mathbb{R}) \), and from \(Y \subset X' \) we infer that

\[
\langle \phi \circ z_{jk}, \alpha y \rangle_\mu = \langle \phi_y \circ z_{jk}, \alpha \rangle_\mu \in \mathbb{R}.
\]

By Theorem 1.1/(Y2) for \(\phi_y \) together with the assumption for \(\phi \circ z_{jk} \), we
deduce that
\[\langle \phi \circ z_{jk}, \alpha y \rangle_{\mu} = \langle \phi_y \circ z_{jk}, \alpha \rangle_{\mu} \rightarrow \langle \tilde{\phi}, \alpha y \rangle_{\mu} = \langle \tilde{\phi}_y, \alpha \rangle_{\mu} \in \mathbb{R} \]
for all \(\alpha \in L^\infty(\mathbb{R}) \), where, for some \(\tilde{D}_{\phi_y} \in \mathfrak{A} \) with \(\mu(\Omega \setminus \tilde{D}_{\phi_y}) = 0 \), the integral
\[\int_{\mathbb{R}^m} \phi_y(x, \lambda) \, d\nu_x(\lambda) \in \mathbb{R} \]
exists for \(x \in \tilde{D}_{\phi_y} \), and \(\phi_y(x) := \int_{\mathbb{R}^m} \phi_y(x, \lambda) \, d\nu_x(\lambda) \)
for \(x \in \tilde{D}_{\phi_y} \) and \(\tilde{\phi}_y(x) := 0 \) otherwise. Hence,
\[\langle \tilde{\phi}, \chi_{D}y \rangle_{\mu} = \langle \tilde{\phi}_y, \chi_{D} \rangle_{\mu} = \int_{D} \left[\int_{\mathbb{R}^m} (y(x), \phi(x, \lambda)) \, d\nu_x(\lambda) \right] \, d\mu(x) \in \mathbb{R} \quad (D \in \mathfrak{A}, D \subseteq \tilde{D}_{\phi_y}). \]

On the other hand, \(\langle \tilde{\phi}, \chi_{DY}y \rangle_{\mu} = \int_{D} (y(x), \tilde{\phi}(x)) \, d\mu(x) \) for any \(D \in \mathfrak{A} \) with \(D \subseteq \tilde{D}_{\phi_y} \). By the Radon–Nikodym theorem, we deduce that for \(y \in Y \) there exists \(D_{\phi_y} \in \mathfrak{A} \) such that \(D_{\phi_y} \subseteq \tilde{D}_{\phi_y} \), \(\mu(\tilde{D}_{\phi_y} \setminus D_{\phi_y}) = 0 \), and
\[(y(x), \tilde{\phi}(x)) = \int_{\mathbb{R}^m} (y(x), \phi(x, \lambda)) \, d\nu_x(\lambda) \in \mathbb{R} \quad (\forall x \in D_{\phi_y}). \]

Now, we consider \(X \subseteq L^0(\Omega, \mathbb{R}^d) \) and \(Y \subseteq X' \) for \(d > 1 \) (the case \(d = 1 \) can be handled analogously upon using [9, Corollary IV.3.2] for \(\text{supp} Y = \text{supp} X = \Omega \)). By [16, Theorem 3.1], there exists a sequence of representative families \(G_q = \{u_{1q}, \ldots, u_{dq}\} \) of the \(M \)-space \(Y \) such that the sets \(\text{supp} G_q \in \mathfrak{A} \) are mutually disjoint, and
\[\begin{align*}
(1) \quad & \mu(\text{supp} Y \setminus \bigcup_{q=1}^\infty \text{supp} G_q) = 0; \\
(2) \quad & |u_{1q}(x)| = \cdots = |u_{dq}(q)(x)| = 1 \text{ and } |u_{iq}(x)| = 0 \quad (i \notin \{1, \ldots, d(q)\}) \text{ for } x \in \text{supp} G_q \text{ and } d(q) = \dim \text{vsupp} Y(x) \text{ on } \text{supp} G_q.
\end{align*} \]

By the definition [16] of the representative family \(G_q \), we have \(u_{iq} \in Y \) and the linear hull of \(\{u_{1q}(x), \ldots, u_{dq}(x)\} \) coincides with \(\text{vsupp} Y(x) \) for \(x \in \text{supp} G_q \). Hence, by (3.1), for \(\chi_{\text{supp} G_q} u_{pq} \in Y \) (1 \(\leq p \leq d(q) \)) there exists \(D_{pq} \in \mathfrak{A} \) such that \(D_{pq} \subseteq \text{supp} G_q \), \(\mu(\text{supp} G_q \setminus D_{pq}) = 0 \), and
\[\langle \chi_{\text{supp} G_q} (x) u_{pq}(x), \tilde{\phi}(x) \rangle = \int_{\mathbb{R}^m} \langle \chi_{\text{supp} G_q} (x) u_{pq}(x), \phi(x, \lambda) \rangle \, d\nu_x(\lambda) \in \mathbb{R} \]
for \(x \in D_{pq} \). By the assumption, there exists \(D_0 \in \mathfrak{A} \) with \(\mu(\Omega \setminus D_0) = 0 \) such that \(\tilde{\phi}(x), \phi(x, \lambda) \in \text{vsupp} X(x) = \text{vsupp} Y(x) \) for all \(x \in D_0 \) and for all \(\lambda \in \mathbb{R}^m \). Hence, for \(x \in D_0 \cap \bigcap_{p=1}^{d(q)} D_{pq} \) and 1 \(\leq p \leq d(q) \), the integral \(\int_{\mathbb{R}^m} \phi(x, \lambda) \, d\nu_x(\lambda) \) exists in the finite-dimensional Euclidean space \(\text{vsupp} Y(x) = \text{vsupp} X(x) \) and
\[\langle u_{pq}(x), \tilde{\phi}(x) \rangle = \left(u_{pq}(x), \int_{\mathbb{R}^m} \phi(x, \lambda) \, d\nu_x(\lambda) \right) \in \mathbb{R}. \]
Therefore,
\[
\overline{\phi}(x) = \int_{\mathbb{R}^m} \phi(x, \lambda) \, d\nu_x(\lambda) \in \text{v supp } X(x)
\]
for \(x \in D\phi := \bigcup_{q=1}^{\infty} [D_0 \cap \bigcap_{p=1}^{d(q)} D_{pq}] \), and \(\mu(\Omega \setminus D\phi) = 0 \). Hence the statement (Y3) follows for \(A\phi := \Omega \setminus D\phi \).

Step 3.2 (Proof of (Y4)). Observe that, as \(X = Y' \), there exist a subsequence \(j(k) \) of \(j_k \) and \(\tilde{\phi} \in X \) such that \(\phi \circ z_{j(k)} \) is \(Y \)-weakly convergent to \(\tilde{\phi} \) in \(X \), due to the \(Y \)-weak completeness theorem of J. Diuonné [7] (if \(X \) is a normed lattice with \(Y = X' \)); W. Luxemburg and A. Zaanen [10], P. P. Zabrejko [23, Theorem 32] (if \(X \) is a normed lattice); H. Nakano [13] \((d = 1 \text{ with } Y = X') \); O. Burkinshaw and P. Dodds [4, Corollary 4.2 of Theorem 4.1] \((d = 1 \text{ and } \text{[15, Theorem 2.8/(1)], [18] (d \geq 2)})\).

By Theorem 2.1/(Y3) applied to \(\phi \circ z_{j(k)} \), we can find \(A\phi \in \mathfrak{A} \) such that \(\mu(A\phi) = 0 \) and the integral \(\int_{\mathbb{R}^m} \phi(x, \lambda) \, d\nu_x(\lambda) \) exists in \(\text{v supp } X(x) \) for \(x \in \Omega \setminus A\phi \).

We proceed to show that \(\phi \circ z_{j_k} \) is \(Y \)-weakly convergent to \(\tilde{\phi} \) in \(X \), where \(\tilde{\phi}(x) := \int_{\mathbb{R}^m} \phi(x, \lambda) \, d\nu_x(\lambda) \) for \(x \in \Omega \setminus A\phi \) and \(\tilde{\phi}(x) := 0 \) otherwise.

On the contrary, suppose that \(\phi \circ z_{j_k} \) is not \(Y \)-weakly convergent to \(\tilde{\phi} \) in \(X \). Then there exist \(\varepsilon > 0, h_0 \in Y \) and a subsequence \(q_k \) of \(j_k \) such that \(|\langle \phi \circ z_{q_k}, h_0 \rangle - \langle \tilde{\phi}, h_0 \rangle| > \varepsilon > 0 \). By the above \(Y \)-weak completeness theorem together with Theorem 2.1/(Y3), for the sequence \(\phi \circ z_{q_k} \), we can find a subsequence \(i_k \) of \(q_k \), \(\hat{\phi} \in X \) and \(A\hat{\phi} \in \mathfrak{A} \) such that \(\langle \phi \circ z_{i_k}, h \rangle \to \langle \hat{\phi}, h \rangle (\forall h \in Y) \), \(\mu(A\hat{\phi}) = 0 \), the integral \(\int_{\mathbb{R}^m} \phi(x, \lambda) \, d\nu_x(\lambda) \) exists in \(\text{v supp } X(x) \) for \(x \in \Omega \setminus A\hat{\phi} \), and \(\hat{\phi}(x) = \int_{\mathbb{R}^m} \phi(x, \lambda) \, d\nu_x(\lambda) \) on \(\Omega \setminus A\hat{\phi} \). Therefore, \(\hat{\phi} \) and \(\tilde{\phi} \) define the same element (equivalence class) in \(X \), and \(\langle \hat{\phi}, h_0 \rangle = \langle \tilde{\phi}, h_0 \rangle \). Hence, we get a contradiction.

Proposition 3.1 ([15, Lemma 4.2.2]). Let \(\mu(\Omega) = \infty \). Then, for a sequence \(z_j \in L^0(\mathbb{R}^m) \), the condition (LB) holds with respect to \(\mu \) if and only if the condition (GB) holds with respect to \(\mu_* \).

Proof of Theorem 2.3. By Proposition 3.1, (LB) for \(\mu \) and \(z_j \) implies (GB) for \(\mu_* \) and \(z_j \). So, we may apply Theorem 2.1 for \(z_j \) with respect to \(\mu_* \). Recall that if \(\mu(\Omega) = \infty \) then the measure \(\mu \) is called separable (see [9, 23]) provided \(\mu_* \) is separable, which is equivalent to separability of \(L^0(\mathbb{R}^m) \). We divide the proof into Steps 3.3–3.4.

Step 3.3 (Proof of (Y3)). Denote by \(\alpha_* \in L^1((0, \infty)) \) the Radon–Nikodym derivative \(d\mu_* / d\mu \). Define
\[
\tilde{Y} := \{ z^* : \alpha_* z^* \in Y \},
\]
\[
\tilde{Y}_{\mu_*} := \{ z \in L^0(\mathbb{R}^m) : z(x) \in \text{v supp } \tilde{Y}(x) \text{ \(\mu_* \)-a.e., } \langle z, z^* \rangle_{\mu_*} \in \mathbb{R}, \forall z^* \in \tilde{Y} \},
\]
where \(\langle z, z' \rangle_{\mu_*} := \int_{\Omega} (z(x), z'(x)) d\mu_*(x) \). Then \(\tilde{Y}_{\mu_*}' \) is in fact the Köthe associate space of \(\tilde{Y} \) with respect to \(\mu_* \). Observe that, for \(\alpha_* z' = z' \in Y \),
\[
\langle z, z' \rangle_{\mu_*} = \int_{\Omega} (z(x), z'(x)/\alpha_*(x)) d\mu(x) = \langle z, z' \rangle_{\mu}.
\]

As \(\zeta \in L^1(\Omega, C_0(\mathbb{R}^m); \mu) \) if and only if \(\tilde{\zeta} := \zeta/\alpha_* \in L^1(\Omega, C_0(\mathbb{R}^m); \mu_*), \) we have
\[
\langle \nu, \tilde{\zeta} \rangle_{\mu_*} := \int_{\Omega} \int_{\mathbb{R}^m} \tilde{\zeta}(x, \lambda) d\nu_x(\lambda) d\mu_*(x) = \langle \nu, \zeta \rangle_{\mu}.
\]
Hence, \(\delta_{z_{jk}} \) is \(L^1(\Omega, C_0(\mathbb{R}^m); \mu_*) \)-weakly convergent to \(\nu \) in \(L^\infty_\omega(\Omega, M(\mathbb{R}^m); \mu_*) \) and \(\phi \circ z_{jk} \) is \(\tilde{Y} \)-weakly convergent to \(\tilde{\phi} \) in \(X \) with respect to the duality pair \(\langle X, \tilde{Y} \rangle_{\mu_*} \). By Theorem 2.1/(Y3), there exists \(A_\phi \in \mathfrak{A} \) such that \(\mu_*(A_\phi) = 0 \), the integral \(\int_{\mathbb{R}^m} \phi(x, \lambda) d\nu_x(\lambda) \) exists in \(\text{vsupp} \ X(x) \) for all \(x \in \Omega \setminus A_\phi \), and (2.1) holds for all \(x \in \Omega \setminus A_\phi \). As \(\mu \) is equivalent to \(\mu_* \), we see that \(\mu(A_\phi) = 0 \).

Step 3.4 (Proof of (Y4)). Observe that \(X = Y' \) implies \(X = \tilde{Y}_{\mu_*}' \). Since the sequence \(\phi \circ z_{jk} \) is sequentially \(Y \)-weakly pre-compact in \(X \), we conclude that \(\phi \circ z_{jk} \) is sequentially \(\tilde{Y} \)-weakly pre-compact in \(X \) with respect to the duality pair \(\langle X, \tilde{Y} \rangle_{\mu_*} \). By Theorem 2.1/(Y4), there exists \(A_\phi \in \mathfrak{A} \) such that \(\mu_*(A_\phi) = 0 \), the integral \(\int_{\mathbb{R}^m} \phi(x, \lambda) d\nu_x(\lambda) \) exists in \(\text{vsupp} \ X(x) \) for all \(x \in \Omega \setminus A_\phi \), and \(\phi \circ z_{jk} \) is \(\tilde{Y} \)-weakly convergent to \(\tilde{\phi} \) in \(X \) with respect to \(\langle \cdot, \cdot \rangle_{\mu_*} \), where \(\tilde{\phi}(x) := \int_{\mathbb{R}^m} \phi(x, \lambda) d\nu_x(\lambda) \) for \(x \in \Omega \setminus A_\phi \) and \(\tilde{\phi}(x) := 0 \) otherwise. Since \(\mu \) is equivalent to \(\mu_* \), we conclude that \(\mu(A_\phi) = 0 \) and \(\phi \circ z_{jk} \) is \(Y \)-weakly convergent to \(\tilde{\phi} \) in \(X \).

Proof of Proposition 2.4. We divide this proof into Steps 3.5–3.6.

Step 3.5. Assume that (SC1) holds. We claim that the sequence \(\phi \circ z_j \) is \(Y \)-absolutely bounded in \(X \), i.e.

\[
(3.2) \quad y \in Y \Rightarrow \lim_{\mu_*(D) \to 0} \sup_{j \in \mathbb{N}} \int_D |(y(x), (\phi \circ z_j)(x))| d\mu(x) = 0,
\]

\[
\sup_{j \in \mathbb{N}} \int_{\Omega} |(y(x), (\phi \circ z_j)(x))| d\mu(x) < \infty.
\]

Indeed, we deduce that
\[
\int_D |(y(x), (\phi \circ z_j)(x))| d\mu(x) \leq \int_D |y(x)| \gamma(|z_j(x)|) u_0(x) d\mu(x) \leq \left(\int_{D \cap \{ \gamma(|z_j(\cdot)|) \leq l \}} |y(x)| \gamma(|z_j(x)|) u_0(x) d\mu(x) + \int_{D \cap \{ \gamma(|z_j(\cdot)|) \geq l \}} |y(x)| \gamma(|z_j(x)|) u_0(x) d\mu(x) \right)
\]

\[
\leq l \int_D |y(x)| u_0(x) d\mu(x) + \int_{\{ \gamma(|z_j(\cdot)|) \geq l \}} |y(x)| \gamma(|z_j(x)|) u_0(x) d\mu(x).
\]
Since γ is nondecreasing, we can choose $m_l \to \infty$ such that $\{t \geq 0 : \gamma(t) \geq l\} \subset \{t \geq 0 : t \geq m_l\}$. Then
\[
\int_{\{\gamma(|z_j(\cdot)|) \geq l\}} |y(x)|\gamma(|z_j(x)|)u_0(x) \, d\mu(x) \\
\leq \int_{\{\gamma(|z_j(\cdot)|) \geq m_l\}} |y(x)|\gamma(|z_j(x)|)u_0(x) \, d\mu(x) \\
\leq \frac{1}{M_l} \int_{\{\gamma(|z_j(\cdot)|) \geq m_l\}} |y(x)|g(|z_j(x)|)u_0(x) \, d\mu(x) \\
\leq \frac{1}{M_l} \int_\Omega |y(x)|g(|z_j(x)|)u_0(x) \, d\mu(x) \leq \frac{C}{M_l} \to 0
\]
as $l \to \infty$ uniformly in j, where $C \in (0, \infty)$, $g(t) \geq M_l \gamma(t)$ for $t \geq m_l$, and $M_l \to \infty$ as $l \to \infty$. Hence, for any $\varepsilon > 0$ there exists l_0 such that
\[
\int_{\{\gamma(|z_j(\cdot)|) \geq l_0\}} |y(x)|\gamma(|z_j(x)|)u_0(x) \, d\mu(x) \leq \varepsilon \quad \forall j \in \mathbb{N}.
\]
As $y \in Y$ and $u_0Y \subset L^1(\mathbb{R}^d)$ we have $\lim_{\mu_*(D) \to 0} \int_D |y(x)|u_0(x) \, d\mu(x) = 0$. Therefore, there exists $\delta > 0$ such that $\mu_*(D) < \delta$ implies
\[
\int_D |y(x)u_0(x)| \, d\mu(x) \leq \frac{\varepsilon}{l_0}.
\]
Hence, we infer that
\[
\mu_*(D) < \delta \Rightarrow \int_D |(y(x), (\phi \circ z_j)(x))| \, d\mu(x) \leq l_0 \frac{\varepsilon}{l_0} + \varepsilon = 2\varepsilon.
\]
So, the first part of (3.2) follows. The second part of (3.2) follows by the same arguments.

Since $\text{vsupp} X(x) = \text{vsupp} Y(x)$ μ-a.e. and $X \subset Y'$, (3.2) implies that the sequence $\phi \circ z_{j_k}$ is sequentially Y-weakly pre-compact in X, due to the Y-weak pre-compactness theorem of J. Dieudonné [7] (if X is a normed lattice with $X = X'', Y = X'$); W. Luxemburg and A. Zaanen [10], P. P. Zabrejko [23, Theorem 33] (if X is a normed lattice); H. Nakano [13] ($m = 1$ with $X = X'', Y = X''$); O. Burkinshaw and P. Dodds [4, Theorem 3.4, Proposition 2.4] ($m = 1$), and [15, Theorem 2.8/(2)], [18] ($m \geq 2$).

Step 3.6. Assume that (SC2) holds. It is known that $(\Gamma^\infty)'$ can be interpreted as the dual space $(\Gamma^\infty)^*$ by the injection $z' \mapsto \langle \cdot, z' \rangle_{\mu}$ (see, e.g., [1, 23], [9, Theorems VI.1.4 and IV.3.6] ($d = 1$), [15, Corollary 2.2, Proposition 2.2], [18] ($d \geq 2$)). By [9, Theorem IV.3.3] ($m = 1$) and [16, Theorem 2.5], [15, 18] ($m \geq 2$), the separability of μ implies the separability of Γ^∞. Hence, by the Alaoglu–Bourbaki theorem together with [9, Theorem V.7.6], the Γ^∞-weak
topology on any closed ball of \((\Gamma^o)^*\) is compact and metrizable. Therefore, for any sequence \(a_i\) in the \((\Gamma^o)'\)-norm-bounded set \(\{\phi \circ z_{jk}\}_{k \in \mathbb{N}}\) there exist a subsequence \(p(i)\) of the sequence \(i\) and \(a \in (\Gamma^o)'\) such that \(a_{p(i)}\) is \((\Gamma^o)'\)-weakly convergent to \(a\) in \((\Gamma^o)'\). Since \(Y \subset \Gamma^o\) and \((\Gamma^o)' \subset X\), \(a_{p(i)}\) is \((\Gamma^o)'\)-weakly convergent to \(a\) in \(X\). Hence, \(a_{p(i)}\) is a \(Y\)-weak Cauchy sequence in \(X\). Thus, the statement of Proposition 2.4/(SC2) follows.

Proof of Theorem 2.6. It suffices to modify Step 3.1 of the proof of Theorem 2.1/(Y3). Since \(\text{supp} \tilde{K} = \Omega\), by [9, Corollary IV.3.2] there exists a sequence of disjoint sets \(\Omega_q \in \mathfrak{A}\) such that \(\chi_{\Omega_q} \in \tilde{K}\) and \(\mu(\Omega \setminus \bigcup_{q=1}^{\infty} \Omega_q) = 0\). Since \(E\) is a separable reflexive space, so is \(E^*\). Hence, there exists \(\{\tilde{u}_p\}_{p \in \mathbb{N}}\) dense in \(E^*\). By (3.1) for \(\chi_{\Omega_q} \tilde{u}_p \in Y\), for some \(\tilde{D}_{pq} \in \mathfrak{A}\), \(\tilde{D}_{pq} \subset \Omega_q\) and \(\mu(\Omega_q \setminus \tilde{D}_{pq}) = 0\) and \(\langle \chi_{\Omega_q}(x)\tilde{u}_p, \phi(x, \lambda) \rangle = \int_{\mathbb{R}^m} \langle \chi_{\Omega_q}(x)\tilde{u}_p, \phi(x, \lambda) \rangle \, d\nu_x(\lambda) \in \mathbb{R}\) for \(x \in \tilde{D}_{pq}\). Therefore, for \(x \in \bigcap_{p \in \mathbb{N}} \tilde{D}_{pq}\),
\[
\langle \tilde{u}_p, \phi(x) \rangle = \int_{\mathbb{R}^m} \langle \tilde{u}_p, \phi(x, \lambda) \rangle \, d\nu_x(\lambda) \in \mathbb{R}.
\]

Put \(\psi(x, \lambda) := \|\phi(x, \lambda)\|_E\). Since \(\text{supp} K = \text{supp} \tilde{K} = \Omega\) and the sequence \(\phi \circ z_{jk}\) is \(\tilde{K}(E^*)\)-weakly pre-compact in \(K(E)\), by M. Talagrand [22, Corollary 9 of Theorem 6] and M. Nowak [19, Theorem 3.3] we deduce that the sequence \(\psi \circ z_{jk}\) is \(\tilde{K}\)-weakly pre-compact in \(K\). By Theorem 2.1/(Y4) for \(\psi \circ z_{jk}\), there exists \(D_\psi \in \mathfrak{A}\) such that \(\mu(\Omega \setminus D_\psi) = 0\) and the integral \(\int_{\mathbb{R}^m} \psi(x, \lambda) \, d\nu_x(\lambda) \in \mathbb{R}\) exists for all \(x \in D_\psi\).

Fix \(u^* \in E^*\). Then we can choose a sequence \(\hat{u}_i := \tilde{u}_{p(i)}\) from the dense set \(\{\tilde{u}_p\}_{p \in \mathbb{N}}\) with \(\|\hat{u}_i - u^*\|_{E^*} \to 0\) as \(i \to \infty\). Hence, \(x \in \bigcap_{p=1}^{\infty} \tilde{D}_{pq} \cap D_\psi\) implies that \(\langle \hat{u}_i, \phi(x, \lambda) \rangle \to \langle u^*, \phi(x, \lambda) \rangle\) for all \(\lambda \in \mathbb{R}^m\), \(\langle \hat{u}_i, \phi(x) \rangle \to \langle u^*, \phi(x) \rangle\), and \(\|\hat{u}_i, \phi(x, \lambda)\| \leq \sup_{i \in \mathbb{N}} \|\hat{u}_i\|_{E^*} \psi(x, \lambda) < \infty\). Hence, by the Lebesgue dominated convergence theorem, we infer that
\[
\int_{\mathbb{R}^m} \langle \hat{u}_i, \phi(x, \lambda) \rangle \, d\nu_x(\lambda) \to \int_{\mathbb{R}^m} \langle u^*, \phi(x, \lambda) \rangle \, d\nu_x(\lambda) \in \mathbb{R}
\]
as \(i \to \infty\) for \(x \in \bigcap_{p=1}^{\infty} \tilde{D}_{pq} \cap D_\psi\). Hence, \(x \in \bigcap_{p=1}^{\infty} \tilde{D}_{pq} \cap D_\psi\) implies that \(\langle u^*, \phi(x) \rangle = \int_{\mathbb{R}^m} \langle u^*, \phi(x, \lambda) \rangle \, d\nu_x(\lambda) \in \mathbb{R}\) for all \(u^* \in E^*\). Therefore, for \(x \in \bigcap_{p=1}^{\infty} \tilde{D}_{pq} \cap D_\psi\), the Pettis integral \((P)\)-\(\int_{\mathbb{R}^m} \phi(x, \lambda) \, d\nu_x(\lambda) \in E\) exists and coincides with \(\overline{\phi}(x)\) [6, p. 53]. So, we obtain
\[
\left(x \in D_\phi := \bigcup_{q=1}^{\infty} \bigcap_{p=1}^{\infty} \tilde{D}_{pq} \cap D_\psi \right) \Rightarrow \overline{\phi}(x) = (P)-\int_{\mathbb{R}^m} \phi(x, \lambda) \, d\nu_x(\lambda) \in E,
\]
and \(\mu(\Omega \setminus D_\phi) = 0\). Hence, the statement (Y3) of Theorem 2.6 follows for \(A_\phi := \Omega \setminus D_\phi\). □
Hence, \(\lim \parallel \chi_{C_q} g_q(z_j(\cdot)) \parallel_{K(q)} \leq \parallel \chi_{C_q \cap D^j_q} g_q(z_j(\cdot)) \parallel_{K(q)} \geq \parallel \chi_{C_q \cap D^j_q} g_q(L) \parallel_{K(q)} = g_q(L) \parallel \chi_{C_q \cap D^j_q} L \parallel_{K(q)}. \)

Hence, \(\lim_{L \to \infty} \sup_{j \in \mathbb{N}} \parallel \chi_{C_q \cap D^j_q} \parallel_{K(q)} = 0. \) By Lemma 3.2, for all \(\varepsilon > 0 \) there exists \(r_q(\varepsilon) > 0 \) such that, given \(j \in \mathbb{N} \), if \(\parallel \chi_{C_q \cap D^j_q} \parallel_{K(q)} \leq r(\varepsilon) \) then \(\parallel \chi_{C_q \cap D^j_q} \parallel_{L^0(\Omega, \mathbb{R})} = \frac{1}{2} \mu_*(C_q \cap D^j_q) \leq \varepsilon. \) Therefore, there exists \(L^q_\varepsilon \) such that \(L \geq L^q_\varepsilon \) implies that \(\parallel \chi_{C_q \cap D^j_q} \parallel_{K(q)} \leq r(\varepsilon) \) for all \(j \in \mathbb{N}. \) It follows that \(\frac{1}{2} \mu_*(C_q \cap D^j_q) \leq \varepsilon \) for all \(j \in \mathbb{N} \) and all \(L \geq L^q_\varepsilon. \) This gives (GB) for \(\mu_* \) and \(z_j \) on \(C_q \subset \Omega. \) By Proposition 3.1, (LB) follows for \(\mu \) and \(z. \)

Acknowledgements. We are grateful to the referee for many constructive remarks used for preparing the revised version.

References

120 H. T. Nguyêñ and D. Pączka

Hô`ng Thái Nguyêñ
Institute of Mathematics
Szczecin University
Wielkopolska 15
70-451 Szczecin, Poland
E-mail: nguyenthaimathuspl@yahoo.com

Dariusz Pączka
Institute of Mathematics
Szczecin University of Technology
Al. Piastów 48
70-311 Szczecin, Poland
E-mail: paczka@ps.pl

Received October 3, 2007;
received in final form July 23, 2008 (7621)