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Summary. We construct a set B and homeomorphism f where f and f−1 have property
N such that the symmetric difference between the sets of density points and of f -density
points of B is uncountable.

1. Introduction. The notion of f -density is a fairly new one. The den-
sity of a point, x, of a measurable set, A, is defined as

lim
h→0

m(A ∩ (x− h, x+ h))
2h

.

If this limit exists and is equal to 1, then x is called a density point of A,
and we denote the set of these points Φ(A). In contrast, the f -density of a
set A at a point x, where f is a homeomorphism and both it and f−1 have
property N, is defined as

lim
h→0

m(f(A) ∩ (f(x)− h, f(x) + h))
2h

.

Similarly, x is said to be an f -density point ofA if this limit exists and is equal
to 1, and we call the set of these points Φf (A). A function having property
N is characterized by mapping null sets to null sets, and measurable sets (if
f is continuous) to measurable sets. The property is important to f -density
because it allows us to prove an analogue of the Lebesgue density theorem
for f -density points. We remember that the Lebesgue density theorem says
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that a set and its density points only differ by a null set. Thus, the analogue
for f -density says that a set and its f -density points only differ by a null set.

The symmetric difference between two sets A and B, denoted A4B, is
defined as (A∩Bc)∪ (Ac ∩B). It is fairly simple to construct a set A and f
with the required conditions such that Φ(A)4Φf (A) 6= ∅. It is more difficult,
however, to construct a symmetric difference between Φ(A) and Φf (A) that
is uncountable. One reason for this difficulty is the following theorem:

Theorem 1. If A is a set , and f is a homeomorphism such that f and
f−1 have property N , then Φ(A)4 Φf (A) is a null set.

The theorem follows immediately from the Lebesgue density theorem
(A 4 Φ(A) is null) and its analogue for f -density (A 4 Φf (A) is null) [1].
Thus, the symmetric difference must be both uncountable and null. A well-
known set with these properties is the Cantor set, and so it is natural to
build our construction of an uncountable difference off this set.

Lastly, we define the “overall density” of a set A on an interval I as
m(A ∩ I)
m(I)

.

This fraction is sometimes called “average density”. It is a notion that be-
comes important in proofs below.

2. Description of the set B and function f . Denote by I1 the first
interval removed in the construction of the Cantor set, and let a1 and b1
be the left and right endpoints, respectively, of I1. In I1, construct the set
A1 such that it is a two-sided interval set with density points at a1 and b1.
Specifically, let the left-hand half of I1 consist of the set

∞⋃
n=1

( 1
2n + 1

3n

6
+

1
3
,

1
2n−1

6
+

1
3

)
.

This is merely the standard interval set which has been scaled and translated
to fit inside the left-hand half of the interval I1. Similarly, let the right-hand
half of I1 consist of the mirror-image of the left-hand set. Specifically, this is

∞⋃
n=1

( −1
2n−1

6
+

2
3
,
−1
2n − 1

3n

6
+

2
3

)
.

We define the set A1 as the union of these two interval sets. It has been
proved in [2] that 0 is a right-hand density point of the standard interval
set, and so it is obvious that a1 and b1 are left-hand and right-hand density
points, respectively, of A1.

Denote by I1
2 and I2

2 the next two intervals removed from [0, 1] in the
construction of the Cantor set, and denote by a1

2 and b12 the left-hand and
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right-hand endpoints of I1
2 , and a2

2 by and b22 the left-hand and right-hand
endpoints of I2

2 . Scale and translate the set

E =
∞⋃

n=1

(
1
2n

+
1
4n
,

1
2n−1

)
so that it fits in the left-hand half of the interval I1

2 , which means the trans-
formation of E with the use of the function g(x) = a1

2+ b12−a1
2

2 ·x. Specifically,
this is

∞⋃
n=1

( 1
2n + 1

4n

18
+

1
9
,

1
2n−1

18
+

1
9

)
.

Put the mirror-image set inside the right-hand side of I1
2 . Place the same set

that is in I1
2 inside I2

2 . Denote by A1
2 the set that is inside I1

2 , and by A2
2 the

set that is inside I2
2 .

In a similar way, define all Aj
i for i ∈ N and j ∈ {1, 2, . . . , 2i−1}, where the

Ij
i ’s removed in construction of the Cantor set consist of two-sided interval
sets of the form

(
1
2n + 1

(i+2)n ,
1
2n

)
but scaled and translated to fit inside their

respective intervals. Define the set

B =
∞⋃
i=1

2i−1⋃
j=1

Aj
i .

For the two-sided interval set Aj
i within each Ij

i we introduce the following
notation. The centermost interval of Aj

i is a union of both the right-hand
interval set and the left-hand interval set. Call the right-hand endpoint of
this interval zi,j

0 , and note that zi,j
0 is slightly to the right of the midpoint

of Ij
i . Then denote all successive endpoints of the interval set to the right of

zi,j
0 by zi,j

n where n > 0, and those to the left of zi,j
0 by zi,j

n where n < 0. So
we note that

Aj
i =

∞⋃
n=−∞

(zi,j
2n−1, z

i,j
2n).

Now define
f j

i (zi,j
n ) = zi,j

n+1,

and let f j
i (x) be linear for x ∈ (zi,j

n , zi,j
n+1).

Define

f(x) =
{
f j

i (x) for x ∈ Ij
i where i ∈ N, j = 1, . . . , 2i−1,

x for x ∈ C.
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We note that

[0, 1] = C ∪
∞⋃
i=1

2i−1⋃
j=1

Ij
i ,

so f is defined on all of [0, 1].

3. f is a homeomorphism, and f and f−1 have property N

Theorem 2. f is 1-to-1.

Proof. We first show that on all Ij
i , f

j
i (x) is 1-to-1. By definition of the

set Aj
i and the function f j

i , z
i,j
n < zi,j

n+1 and f j
i (zi,j

n ) < f j
i (zi,j

n+1) for n ∈ Z.
Since these points are connected by linear line segments, the function is
strictly monotone, and therefore 1-to-1.

If x /∈ Ij
i for all i and j, then x ∈ C, and since f(x) = x for the Cantor

set, f(x) is 1-to-1.

Lemma 1. For every interval Ij
i , f(Ij

i ) = Ij
i .

Proof. Let x ∈ Ij
i . Assume without loss of generality that x is in the right-

hand half of Ij
i (i.e., x > zi,j

0 ). So there exists an n such that zi,j
n ≤ x ≤ zi,j

n+1.
By definition of f , f([zi,j

n , zi,j
n+1]) = [zi,j

n+1, z
i,j
n+2] ⊂ Ij

i . So f(Ij
i ) ⊂ Ij

i . Now
we show reverse containment. Let x ∈ Ij

i . Once again, assume without loss
of generality that x is in the right-hand half of Ij

i (i.e., x > zi,j
0 ), and note

that there exists an n such that zi,j
n ≤ x ≤ zi,j

n+1. By definition of f−1,
f−1([zi,j

n , zi,j
n+1]) = [zi,j

n−1, z
i,j
n ] ⊂ Ij

i . So f
−1(Ij

i ) ⊂ Ij
i , and hence f(Ij

i ) = Ij
i .

Theorem 3. f is onto.

Proof. If x /∈ Ij
i for any i and j, then x ∈ C, and so f(x) = x. By this

fact, Lemma 1 above, and [0, 1] = C ∪
⋃∞

i=1

⋃2i−1

j=1 I
j
i , f is onto.

Theorem 4. f is continuous.

Proof. Since f([0, 1]) = [0, 1] and f is monotone, f is continuous.

Theorem 5. f has property N.

Proof. Let S be a null set. Since

S = (S ∩ C) ∪ (S \ C)

we have

f(S) = f((S ∩ C) ∪ (S \ C)) = f(S ∩ C) ∪ f(S \ C).

Since f(x) = x for x ∈ C, we see that f(S ∩ C) is null set. We must
prove that f(S\C) is a null set. Since this part of S is not in C, it is in some
set of Ij

i ’s. Therefore, it is defined using a collection of f j
i ’s. Since these f j

i ’s
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consist of line segments connected at endpoints, f(S \C) is a null set. Since
the union of two nullsets is a nullset, f(S) is a null set, and f has property N.
It is analogous to show that f−1 has property N.

4. C ⊂ Φ(B). We first introduce lemmas which will help us in proving
C ⊂ Φ(B).

Lemma 2. If

Aj
i =

∞⋃
n=−∞

(zi,j
2n−1, z

i,j
2n),

f j
i (zi,j

n ) = zi,j
n+1, I ⊂ I

j
i is an interval , and

m(Aj
i ∩ I)

m(I)
> 1− 1

n

for some n ∈ N \ {1}, then

m(f(Aj
i ) ∩ I)

m(I)
≤ 1
n
.

Proof. Since Aj
i =

⋃∞
n=−∞(zi,j

2n−1, z
i,j
2n) and f j

i (zi,j
n ) = zi,j

n+1 (the intervals
between points are connected by line segments), then

⋃∞
n=−∞(zi,j

2n, z
i,j
2n+1) =

f(Aj
i ) ∼ (Aj

i )
c =

⋃∞
n=−∞[zi,j

2n, z
i,j
2n+1] because f(Aj

i ) and (Aj
i )

c only differ at
the endpoints of the intervals which are a nullset. Thus, if

m(Aj
i ∩ I)

m(I)
> 1− 1

n
,

then
m((Aj

i )
c ∩ I)

m(I)
=
m(f(Aj

i ) ∩ I)
m(I)

≤ 1−
(

1− 1
n

)
=

1
n
.

Lemma 3.

m((Aj
i )

c) =
1

i+2

1− 1
i+2

· 1
3i

=
1

3i(i+ 1)
.

Proof. We note that Aj
i is the two-sided interval set
∞⋃

n=−∞

(
1
2n

+
1

(i+ 2)n
,

1
2n−1

)
scaled to fit inside Ij

i , and the measure of Ij
i is 1

3i . For measurement purposes,
it will be equivalent to just consider a single interval set inside Ij

i . So we see
that

(Aj
i )

c =
∞⋃

n=1

[
1
2n
,

1
2n

+
1

(i+ 2)n

]
,
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and so, before we scale the set, we have

m((Aj
i )

c) =
∞∑

n=1

1
(i+ 2)n

=
1

i+2

1− 1
i+2

=
i+ 2

(i+ 1)(i+ 2)
=

1
i+ 1

.

Then, scaling this interval set, and therefore its measure to fit inside Ij
i ,

we find
m((Aj

i )
c) =

1
3i
· 1
i+ 1

,

to obtain our lemma.

Lemma 4.
m(Aj1

i )

m(Ij1
i )

<
m(Aj2

i+1)

m(Ij2
i+1)

for each i and each j1 ∈ {1, . . . , 2i−1} and j2 ∈ {1, . . . , 2i}.

Proof. From Lemma 3, we have

m(Aj1
i )

m(Ij1
i )

=
m(Ij1

i )−m((Aj1
i )c)

m(Ij1
i )

=
1
3i − 1

3i(i+1)

1
3i

.

The inequality
1
3i − 1

3i(i+1)

1
3i

<

1
3i+1 − 1

3i+1((i+1)+1)

1
3i+1

holds because

i

i+ 1
=

i
3i(i+1)

1
3i

=
i+1

3i(i+1)
− 1

3i(i+1)

1
3i

<

i+2
3i+1(i+2)

− 1
3i+1(i+2)

1
3i+1

=
i+1

3i+1(i+2)

1
3i+1

=
i+ 1
i+ 2

is true for i ∈ N.

Lemma 5. For any interval Ij
i , the interval I∗ such that the ratio

m(Aj
i ∩ I∗)/m(I∗) is at a minimum where I∗ shares an endpoint with Ij

i

is the interval which is 3/4 the measure of Ij
i and shares either endpoint

with Ij
i . Additionally , on this interval I∗, the overall density of Aj

i can be
expressed as follows:

m((Aj
i ) ∩ I∗))

m(I∗)
=

3i2 + 5i
3i2 + 9i+ 6

.

Proof. Let Ij
i be an interval removed during construction of the Cantor

set. For convenience, we examine the left-hand half of Ij
i . Contained in Ij

i is a
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two-sided interval set, Aj
i . We note that I∗ will contain at least the left-hand

half of Ij
i because the way the interval set is defined means

m(Aj
i ∩ (zi,j

2n−1, z
i,j
2n))

m(zi,j
2n−1, z

i,j
2n)

<
m(Aj

i ∩ (zi,j
2n−3, z

i,j
2n−2))

m(zi,j
2n−3, z

i,j
2n−2)

.

Also, since Aj
i consists of mirror-image interval sets, we can deduce from

Lemma 3 that for the left-hand half of Ij
i ,

m(Aj
i ∩ I

j
i left-hand)

m(Ij
i left-hand)

= 1− 1
i+ 1

.

So we must determine if we can make I∗ bigger such that m(Aj
i ∩ I∗)/m(I∗)

is even smaller. The “overall density” of the first 1/2 of the interval set on
the right-hand side is

1
2 −

1
i+2

1
2

.

Since
i

i+ 1
= 1− 1

i+ 1
>

1
2 −

1
i+2

1
2

=
i

i+ 2

for i ≥ 1, we will always obtain a smallerm(Aj
i ∩ I∗)/m(I∗) when we include

the first 1/2 of the right-hand side. So we wonder if I∗ can be made yet larger
such thatm(Aj

i ∩ I∗)/m(I∗) is even smaller. We examine the subsequent 1/4
of the right-hand side of Ij

i . The measure of Aj
i on this part is

1
4 −

1
(i+2)2

1
4

.

Since

1− 1
i+ 1

<

1
4 −

1
(i+2)2

1
4

= 1− 4
(i+ 2)2

for i ≥ 1, m(Aj
i ∩ I∗)/m(I∗) will always be larger if we include this subse-

quent 1/4, and therefore we will not include it.
Thus, when I∗ shares either endpoint with Ij

i , m(Aj
i ∩ I∗)/m(I∗) is at a

minimum when I∗ contains the entirety of the left-hand or right-hand half
and the first 1/2 of the right-hand or left-hand side, respectively. So the
measure of I∗ is 3/4 the measure of Ij

i .
We now obtain the formula in the lemma. For the left-hand side of Ij

i ,
the “overall density” is

m(Aj
i ∩ I

j
i left-hand)

m(Ij
i left-hand)

= 1− 1
i+ 1

,
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and for the first 1/2 of the right-hand side, the “overall density” of Aj
i is

1
2 −

1
i+2

1
2

.

Since the ratio of the measure of the left-hand side of Ij
i to the first 1/2 of

the right-hand side is 2 : 1, we can use a weighted average to obtain the
formula of the “overall density” of Aj

i on I∗:

m(Aj
i ∩ I∗)

m(I∗)
=

2
3
·
(

1− 1
i+ 1

)
+

1
3
·
(

i

i+ 2

)
=

3i2 + 5i
3(i+ 1)(i+ 2)

.

Theorem 6. For any x0 ∈ C, x0 ∈ Φ(B).

Proof. Let x0 ∈ C. If x0 is an endpoint of Ij
I , then it is a density point

of B from one side based on how we defined each Aj
i . Thus, we will prove

that x0 is also a density point from the other side of B. This proof will also
apply when x0 is not the endpoint of any interval Ij

i . We must show

lim
h→0

m(B ∩ (x0 − h, x0 + h))
2h

= 1.

Let ε > 0. We must find H > 0 such that
m(B ∩ [x− h, x+ h])

2h
> 1− ε

for all h < H. We only examine the right side of x, as the argument will be
analogous for the left-hand side. Thus, we examine the interval (x, x+H).

We observe the formula laid out in Lemma 5. Since
3i2 + 5i

3i2 + 9i+ 6
→ 1(−)

as i→∞, we can find i∗ such that

3(i∗)2 + 5i∗

3(i∗)2 + 9i∗ + 6
> 1− ε.

Set H1 = 3
4 ·

1
3i∗ because 1

3i is the measure of Ij
i and 3

4 is the ratio of
the measure of I∗ (the interval containing an endpoint of Ij

i and yielding
the minimum overall density on Ij

i ) to the measure of Ij
i . Set H2 such that

(x0, x0 + H2) does not contain any Ij
i such that i > i∗. This is possible

because, x0 not being an endpoint of any Ij
i , there is a sequence of disjoint

Ij
i ’s whose endpoints both converge to x0, and there are only finitely many
Ij
i ’s such that i < i∗.
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We claim that if H = min{H1, H2}, then
m(B ∩ [x− h, x+ h])

2h
> 1− ε for h < H.

Case 1. Suppose H = H1. Then (x, x+H) does not include any Ij
i such

that i > i∗, and
m(B ∩ [x, x+H])

H
> 1− ε

by Lemma 5. It will suffice to show that this remains true for h < H. Since
any interval about x contains infinitely many Ij

i ’s, the measure of every inter-
val which has a non-empty intersection with [x, x+H) is necessarily smaller
than H, and so from Lemma 4, the overall density of B intersected with
those intervals contained in [x, x+H) will be less than B on the interval Ij

i∗ .
This will remain true as we restrict h, because the interval (x, x + h) will
continue to contain intervals whose measure is smaller than H. In addition,
at most one of those intervals will intersect (x, x+ h) in a way in which the
overall density of B on that interval is at a minimum, but even this over-
all density will still be larger than B on Ij

i∗ because the interval is smaller
than Ij

i∗.

Case 2. SupposeH = H2. In this case, h < H1 and the interval (x, x+h)
does not include any Ij

i such that i > i∗, and therefore

m(B ∩ [x− h, x+ h])
2h

> 1− ε

by Case 1.

Theorem 7. For any x0 ∈ C, x0 /∈ Φf (B).

Proof. This result follows from Lemma 2 and Theorem 5.

Since C is uncountable, Theorems 5 and 6 show that Φ(B)4 Φf (B) is
uncountable.
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