Reducibility of Symmetric Polynomials

by
A. SCHINZEL

To Donald G. Lewis on his 80th birthday

Summary. A necessary and sufficient condition is given for reducibility of a symmetric polynomial whose number of variables is large in comparison to degree.

Let K be a field and $\tau_{i}\left(x_{1}, \ldots, x_{m}\right)$ the i th elementary symmetric polynomial of the variables x_{1}, \ldots, x_{m}. We shall show

Theorem 1. Let $F \in K\left[y_{1}, \ldots, y_{n}\right] \backslash K$ and $n>\max \{4, \operatorname{deg} F+1\}$, $\tau_{i}=\tau_{i}\left(x_{1}, \ldots, x_{n}\right)$. Then $F\left(\tau_{1}, \ldots, \tau_{n}\right)$ is reducible in $K\left[x_{1}, \ldots, x_{n}\right]$ if and only if either F is reducible over K, or

$$
F=c N_{K(\alpha) / K}\left(\alpha^{n}+\sum_{j=1}^{n} \alpha^{n-j} y_{j}\right), \quad c \in K^{*}, \alpha \text { algebraic over } K
$$

Theorem 2. Let $F \in K\left[y_{1}, \ldots, y_{n}\right] \backslash K$ be isobaric with respect to weights $1, \ldots, n$ (y_{i} of weight i) and $n>\operatorname{deg} F+1$. Then $F\left(\tau_{1}, \ldots, \tau_{n}\right)$ is reducible over K if and only if either F is reducible over K, or $F=c y_{n}, c \in K^{*}$, or $n=4$, char $K \neq 3, K$ contains a primitive cubic root of 1 and

$$
F=a\left(y_{2}^{2}-3 y_{1} y_{3}+12 y_{4}\right), \quad a \in K^{*}
$$

The last part of Theorem 2 shows that the 4 in the formulation of Theorem 1 cannot be replaced by 3 . The example given at the end of the paper shows that $\operatorname{deg} F+1$ cannot be replaced by $\operatorname{deg} F$.

For a polynomial $f \in K\left[x_{1}, \ldots, x_{n}\right]$ and a permutation $\sigma \in \mathfrak{S}_{n}$ we set

$$
f^{\sigma}=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

The proof of Theorem 1 is based on three lemmas.

LEMMA 1. For $n \geq 5$ the alternating group \mathfrak{A}_{n} is generated by products $(a b)(c d)$ of two transpositions with a, b, c, d distinct.

Proof. See [1, p. 342].
Lemma 2. Assume that $C \in K\left[x_{1}, \ldots, x_{n}\right]$ is invariant with respect to \mathfrak{A}_{n}, but not symmetric. Then for $n \geq 3$,

$$
\operatorname{deg}_{x_{n}} C \geq n-1
$$

Proof. By the theorem of P. Samuel (see [2, p. 13])

$$
C=A+B D_{n}
$$

where $A, B \in K\left[x_{1}, \ldots, x_{n}\right]$ are symmetric, $B \neq 0$ and

$$
D_{n}=\frac{1}{2}\left(\prod_{i<j}\left(x_{i}-x_{j}\right)+\prod_{i<j}\left(x_{i}+x_{j}\right)\right)
$$

For $n \geq 3$ we have $\operatorname{deg}_{x_{n}} D_{n} \geq n-1$, hence $\operatorname{deg}_{x_{n}} C \geq n-1$, except possibly when $\operatorname{deg}_{x_{n}} A=\operatorname{deg}_{x_{n}} B D_{n}$. In that case, let $\alpha=\operatorname{deg}_{x_{n}} A, \beta=\operatorname{deg}_{x_{n}} B$, and let a, b be the leading coefficients of A and B with respect to x_{n}. The coefficient of $x_{n}^{\beta+n-1}$ in C equals

$$
c=a+b D_{n-1}
$$

and since D_{n-1} is not symmetric, $c \neq 0$, thus again

$$
\operatorname{deg}_{x_{n}} C \geq n-1
$$

Lemma 3. If $f \in K\left[x_{1}, \ldots, x_{n}\right] \backslash \bigcup_{i=1}^{n} K\left[x_{i}\right]$ is irreducible over K and not symmetric, then

$$
\begin{equation*}
\operatorname{deg}_{x_{n}} \underset{\sigma \in \mathfrak{S}_{n}}{\text { l.c.m. }} f^{\sigma} \geq n-1 \tag{1}
\end{equation*}
$$

Proof. Let f depend on exactly r variables, where $1 \leq r<n$. The case $r=1$ is excluded by the conditions that f irreducible and $f \neq c x_{i}$. For every subset R of $\{1, \ldots, n\}$ of cardinality r and containing n there exists $\sigma \in \mathfrak{S}_{n}$ such that f^{σ} depends on the variables $x_{i}(i \in R)$ exclusively. For different sets R the forms f^{σ} are projectively different and hence coprime. For $1<r<n$ the number of sets R in question is $\binom{n-1}{r-1} \geq n-1$, thus (1) holds.

Consider now the case $r=n$ and let

$$
\mathcal{G}=\left\{\sigma \in \mathfrak{S}_{n}: f^{\sigma} / f \in K\right\}, \quad \mathcal{H}=\left\{\sigma \in \mathfrak{S}_{n}: f^{\sigma}=f\right\}
$$

By Bertrand's theorem (see [1, pp. 348-352]) we have either $\mathcal{G}=\mathfrak{S}_{n}$ or $\mathcal{G}=\mathfrak{A}_{n}$ or $\left[\mathfrak{S}_{n}: \mathcal{G}\right] \geq n$. In the first case, if $f^{\tau}=f$ for each transposition τ, then $f^{\sigma}=f$ for all $\sigma \in \mathfrak{S}_{n}$, since \mathfrak{S}_{n} is generated by transpositions, thus f is symmetric, contrary to assumption. Therefore, there exists a transposition $\tau=(i j), i \neq j$, such that

$$
f^{\tau}=c f, \quad c \neq 1
$$

Since $\tau^{2}=\mathrm{id}$, we have $c^{2}=1$, thus char $K \neq 2, c=-1$, and $x_{i}=x_{j}$ implies $f=0$. Since f is irreducible,

$$
f=a\left(x_{i}-x_{j}\right), \quad a \in K
$$

and it is easy to see that

$$
\operatorname{deg}_{x_{n}} \underset{\sigma \in \mathfrak{S}_{n}}{\text { l.c.m. }} f^{\sigma} \geq n-1
$$

Consider now the case $\mathcal{G}=\mathfrak{A}_{n}$. By Lemma $1, \mathfrak{A}_{n}$ is generated by the products $\pi=(a b)(c d)$, where a, b, c, d are distinct. Since $\pi^{2}=\mathrm{id}$, we have $f^{\pi}=c f$, where $c^{2}=1$. It follows that $\left(f^{2}\right)^{\sigma}=f^{2}$ for all $\sigma \in \mathfrak{A}_{n}$. On the other hand, $\mathcal{H}<\mathcal{G}$ gives either $\mathcal{H}=\mathfrak{A}_{n}$ or $\left[\mathfrak{S}_{n}: \mathcal{H}\right] \geq n$.

If $\mathcal{H}=\mathfrak{A}_{n}$, then by Lemma 2 , $\operatorname{deg}_{x_{n}} f \geq n-1$, hence (1) holds. If $\left[\mathfrak{S}_{n}: \mathcal{H}\right] \geq n$, then f^{2} cannot be symmetric, hence by Lemma 2 ,

$$
\operatorname{deg}_{x_{n}} f^{2} \geq n-1
$$

thus

$$
\operatorname{deg}_{x_{n}} f \geq\left\lceil\frac{n-1}{2}\right\rceil
$$

Now, by the definition of \mathcal{G} it follows that for $\tau=(12)$ we have $f^{\tau} / f \notin K$, hence $\left(f^{\tau}, f\right)=1$, thus

$$
\operatorname{deg}_{x_{n}}\left[f, f^{\tau}\right] \geq 2\left\lceil\frac{n-1}{2}\right\rceil \geq n-1
$$

and (1) holds.
It remains to consider the case $\left[\mathfrak{S}_{n}: \mathcal{G}\right] \geq n$. Then among the polynomials f^{σ} there are at least n projectively distinct, hence coprime. Since each of them is of degree at least 1 in $x_{n},(1)$ follows.

Proof of Theorem 1. Necessity. If $F\left(\tau_{1}, \ldots, \tau_{n}\right)$ is reducible over K, then

$$
\begin{equation*}
F\left(\tau_{1}, \ldots, \tau_{n}\right)=f_{1} f_{2} \tag{2}
\end{equation*}
$$

where $f_{\nu} \in K\left[x_{1}, \ldots, x_{n}\right] \backslash K(\nu=1,2)$ and f_{1} is irreducible over K.
Clearly

$$
\operatorname{deg}_{x_{n}} \underset{\sigma \in \mathfrak{S}_{n}}{\text { l.c.m. }} f_{1}^{\sigma} \leq \operatorname{deg} F<n-1
$$

If f_{1} is not symmetric and $f_{1} \notin K\left[x_{i}\right](1 \leq i \leq n)$, this contradicts Lemma 3, thus either

$$
\begin{equation*}
f_{1} \text { is symmetric } \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{1} \in K\left[x_{i}\right] \quad \text { for some } i \tag{4}
\end{equation*}
$$

In the case $(3), f_{\nu}=F_{\nu}\left(\tau_{1}, \ldots, \tau_{n}\right), \nu=1,2$, where $F_{\nu} \in K\left[y_{1}, \ldots, y_{n}\right] \backslash K$, and it follows from (2) that

$$
F\left(\tau_{1}, \ldots, \tau_{n}\right)=\prod_{\nu=1}^{2} F_{\nu}\left(\tau_{1}, \ldots, \tau_{n}\right)
$$

By the algebraic independence of $\tau_{1}, \ldots, \tau_{n}$ over K,

$$
F=F_{1} F_{2}
$$

thus F is reducible over K.
In the case (4), since f_{1} is irreducible over K, we have
$f_{1}=c_{1} N_{L / K}\left(\alpha+x_{i}\right), \quad$ where $L=K(\alpha), \alpha$ algebraic over $K, c_{1} \in K$.
Since $F\left(\tau_{1}, \ldots, \tau_{n}\right)$ is symmetric, we have

$$
f_{1}\left(x_{j}\right) \mid F\left(\tau_{1}, \ldots, \tau_{n}\right) \quad(1 \leq j \leq n)
$$

thus

$$
\prod_{j=1}^{n} f_{1}\left(x_{j}\right) \mid F\left(\tau_{1}, \ldots, \tau_{n}\right)
$$

However,

$$
\prod_{j=1}^{n} f_{1}\left(x_{j}\right)=c_{1}^{n} \prod_{j=1}^{n} N_{L / K}\left(\alpha+x_{j}\right)=c_{1}^{n} N_{L / K}\left(\alpha^{n}+\sum_{j=1}^{n} \alpha^{n-j} \tau_{j}\right)
$$

hence

$$
N_{L / K}\left(\alpha^{n}+\sum_{j=1}^{n} \alpha^{n-j} \tau_{j}\right) \mid F\left(\tau_{1}, \ldots, \tau_{n}\right)
$$

and by the algebraic independence of $\tau_{1}, \ldots, \tau_{n}$,

$$
N_{L / K}\left(\alpha^{n}+\sum_{j=1}^{n} \alpha^{n-j} y_{j}\right) \mid F
$$

Therefore, either F is reducible over K or

$$
F=c N_{L / K}\left(\alpha^{n}+\sum_{j=1}^{n} \alpha^{n-j} y_{j}\right), \quad c \in K^{*}
$$

Sufficiency. If $F=F_{1} F_{2}$, where $F_{i} \in K\left[y_{1}, \ldots, y_{n}\right] \backslash K$, then

$$
F\left(\tau_{1}, \ldots, \tau_{n}\right)=\prod_{\nu=1}^{2} F_{\nu}\left(\tau_{1}, \ldots, \tau_{n}\right)
$$

and since $\tau_{1}, \ldots, \tau_{n}$ are algebraically independent,

$$
F_{\nu}\left(\tau_{1}, \ldots, \tau_{n}\right) \notin K
$$

thus $F\left(\tau_{1}, \ldots, \tau_{n}\right)$ is reducible over K.

If $F=c N_{K(\alpha) / K}\left(\alpha^{n}+\sum_{j=1}^{n} \alpha^{n-j} y_{j}\right)$, then

$$
F\left(\tau_{1}, \ldots, \tau_{n}\right)=c N_{K(\alpha) / K}\left(\prod_{i=1}^{n}\left(\alpha+x_{i}\right)\right)=c \prod_{i=1}^{n} N_{K(\alpha) / K}\left(\alpha+x_{i}\right)
$$

and since $n>1, F\left(\tau_{1}, \ldots, \tau_{n}\right)$ is reducible over K.
The proof of Theorem 2 is based on two lemmas.
Lemma 4. For $n=3, \tau_{1}^{2}+a \tau_{2}$ is reducible over K only if either $a=0$, or $a=-3$, char $K \neq 3$ and K contains a primitive cubic root ϱ of 1 . In the latter case

$$
\begin{equation*}
\tau_{1}^{2}+a \tau_{2}=\left(x_{1}+\varrho x_{2}+\varrho^{2} x_{3}\right)\left(x_{1}+\varrho^{2} x_{2}+\varrho x_{3}\right) \tag{5}
\end{equation*}
$$

Proof. Assuming reducibility we have

$$
\tau_{1}^{2}+a \tau_{2}=\left(x_{1}+\alpha x_{2}+\beta x_{3}\right)\left(x_{1}+\beta x_{2}+\alpha x_{3}\right), \quad \alpha, \beta \in K
$$

which gives

$$
\alpha \beta=1, \quad \alpha+\beta=a+2, \quad \alpha^{2}+\beta^{2}=a+2
$$

Hence

$$
a+2=\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=(a+2)^{2}-2=a^{2}+4 a+2
$$

so that $a(a+3)=0$, thus either $a=0$, or $a=-3$ and char $K \neq 3$. In the latter case $(x-\alpha)(x-\beta)=x^{2}+x+1$, hence α and β are two primitive cubic roots of 1 . The identity (5) is easily verified.

Lemma 5. For $n=3, \tau_{2}^{2}+a \tau_{1} \tau_{3}$ is reducible over K if and only if either $a=0$, or $a=-3$, char $K \neq 3$ and K contains a primitive cubic root ϱ of 1 . In the latter case

$$
\begin{equation*}
\tau_{2}^{2}+a \tau_{1} \tau_{3}=\left(x_{2} x_{3}+\varrho x_{1} x_{3}+\varrho^{2} x_{1} x_{2}\right)\left(x_{2} x_{3}+\varrho^{2} x_{1} x_{3}+\varrho x_{1} x_{2}\right) \tag{6}
\end{equation*}
$$

Proof. We have

$$
\tau_{1}^{2}+a \tau_{2}=\tau_{3}^{2}\left(\tau_{2}\left(x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}\right)^{2}+a \tau_{1}\left(x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}\right) \tau_{3}\left(x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}\right)\right)
$$

Therefore, if

$$
\tau_{2}^{2}+a \tau_{1} \tau_{3}=f_{1} f_{2}, \quad f_{\nu} \in K\left[x_{1}, x_{2}, x_{3}\right] \backslash K \quad(\nu=1,2)
$$

we obtain

$$
\tau_{1}^{2}+a \tau_{2}=\tau_{3} f_{1}\left(x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}\right) \tau_{3} f_{2}\left(x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}\right)
$$

where $\tau_{3} f_{\nu}\left(x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}\right) \in K\left[x_{1}, x_{2}, x_{3}\right] \backslash K$, hence by Lemma 4 either $a=0$, or $a=-3$, char $K \neq 3$ and K contains a primitive cubic root ϱ of 1 . The identity (6) is easily verified.

Proof of Theorem 2. Necessity. If $\operatorname{deg} F=1$, then since F is isobaric, $F=c y_{i}, c \in K^{*}, i \leq n$. If $c \tau_{i}$ is reducible in $K\left[x_{1}, \ldots, x_{n}\right]$, then $i=n$. If
$n \geq 5$, then Theorem 1 applies and either F is reducible or

$$
\begin{equation*}
F=c N_{K(\alpha) / K}\left(\alpha^{n}+\sum_{j=1}^{n} \alpha^{n-j} y_{j}\right), \quad c \in K^{*} \tag{7}
\end{equation*}
$$

Since F is isobaric, we have $\alpha=0$ and $F=c y_{n}$.
It remains to consider the case $2 \leq \operatorname{deg} F<n-1 \leq 3$, hence $n=4$ and $\operatorname{deg} F=2$. We distinguish the following subcases:

$$
\begin{array}{ll}
F=y_{1}^{2}+a y_{2}=: F_{1}, & a \neq 0, \\
F=y_{1} y_{2}+a y_{3}=: F_{2}, & a \neq 0, \\
F=a y_{2}^{2}+b y_{1} y_{3}+c y_{4}=: F_{3}, & a b \neq 0, \text { or } a c \neq 0, \text { or } b c \neq 0, \\
F=y_{2} y_{3}+a y_{1} y_{4}=: F_{4}, & a \neq 0, \\
F=y_{3}^{2}+a y_{2} y_{4}=: F_{5}, & a \neq 0 .
\end{array}
$$

We have $F_{1}\left(\tau_{1}, \tau_{2}\right)=x_{4}^{2}+(a+2) \tau_{1}^{\prime}+\left(\tau_{1}^{\prime 2}+a \tau_{2}^{\prime}\right)$, where $\tau_{i}^{\prime}=\tau_{i}\left(x_{1}, x_{2}, x_{3}\right)$. If $F_{1}\left(\tau_{1}, \tau_{2}\right)=\left(x_{4}+g\right)\left(x_{4}+h\right)$, where g, h are linear forms over K in x_{1}, x_{2}, x_{3}, then $g h=\tau_{1}^{\prime 2}+a \tau_{2}^{\prime}$, hence by Lemma $4, a=-3$, char $K \neq 3$ and without loss of generality

$$
g=b\left(x_{1}+\varrho x_{2}+\varrho^{2} x_{3}\right), \quad h=b^{-1}\left(x_{1}+\varrho^{2} x_{2}+\varrho x_{3}\right), \quad b \in K^{*}
$$

Therefore,

$$
b+b^{-1}=-1, \quad b \varrho+b^{-1} \varrho^{2}=-1, \quad b \varrho^{2}+b^{-1} \varrho=-1
$$

The first equation gives $b=\varrho$ or $b=\varrho^{2}$, thus either $b \varrho^{2}+b^{-1} \varrho \neq-1$ or $b \varrho+b^{-1} \varrho^{2} \neq-1$, a contradiction. Therefore $F_{1}\left(\tau_{1}, \tau_{2}\right)$ is irreducible over K. Since

$$
F_{1}\left(\tau_{1}, \tau_{2}\right)=\tau_{4}^{2} F_{5}\left(\tau_{2}\left(x_{1}^{-1}, \ldots, x_{4}^{-1}\right), \tau_{3}\left(x_{1}^{-1}, \ldots, x_{4}^{-1}\right), \tau_{4}\left(x_{1}^{-1}, \ldots, x_{4}^{-1}\right)\right)
$$

the same applies to $F_{5}\left(\tau_{2}, \tau_{3}, \tau_{4}\right)$ (cf. proof of Lemma 5).
We have further

$$
F_{2}\left(\tau_{1}, \tau_{2}, \tau_{3}\right)=\tau_{1}^{\prime} x_{4}^{2}+\left(\tau_{1}^{\prime 2}+(a+1) \tau_{2}^{\prime}\right) x_{4}+\left(\tau_{1}^{\prime} \tau_{2}^{\prime}+a \tau_{3}^{\prime}\right)
$$

hence, if $F_{2}\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$ is reducible over K then

$$
F_{2}\left(\tau_{1}, \tau_{2}, \tau_{3}\right)=\left(\tau_{1}^{\prime} x_{4}+b \tau_{1}^{\prime 2}+c \tau_{2}^{\prime}\right)\left(x_{4}+d \tau_{1}^{\prime}\right), \quad b, c, d \in K
$$

and

$$
\tau_{1}^{\prime} \tau_{2}^{\prime}+a \tau_{3}^{\prime}=b d \tau_{1}^{\prime 3}+c d \tau_{1}^{\prime} \tau_{2}^{\prime}
$$

Since $\tau_{1}^{\prime}, \tau_{2}^{\prime}, \tau_{3}^{\prime}$ are algebraically independent, it follows that $a=0$, a contradiction. Therefore $F_{2}\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$ is irreducible over K. Since

$$
F_{2}\left(\tau_{1}, \tau_{2}, \tau_{3}\right)=\tau_{4}^{2} F_{4}\left(\tau_{1}\left(x_{1}^{-1}, \ldots, x_{4}^{-1}\right), \ldots, \tau_{4}\left(x_{1}^{-1}, \ldots, x_{4}^{-1}\right)\right)
$$

the same applies to $F_{4}\left(\tau_{1}, \ldots, \tau_{4}\right)$ (cf. proof of Lemma 5).

It remains to consider F_{3}. We have

$$
\begin{aligned}
& F_{3}\left(\tau_{1}, \ldots, \tau_{4}\right)=a\left(\tau_{1}^{\prime} x_{4}+\tau_{2}^{\prime}\right)^{2}+b\left(x_{4}+\tau_{1}^{\prime}\right)\left(\tau_{2}^{\prime} x_{4}+\tau_{3}^{\prime}\right)+c \tau_{3}^{\prime} x_{4} \\
& \quad=\left(a \tau_{1}^{\prime 2}+b \tau_{2}^{\prime}\right) x_{4}^{2}+\left((2 a+b) \tau_{1}^{\prime} \tau_{2}^{\prime}+(b+c) \tau_{3}^{\prime}\right) x_{4}+\left(a \tau_{2}^{\prime 2}+b \tau_{1}^{\prime} \tau_{3}^{\prime}\right)
\end{aligned}
$$

If $a \tau_{1}^{\prime 2}+b \tau_{2}^{\prime}$ were the leading coefficient with respect to x_{4} of a proper factor over K of $F_{3}\left(\tau_{1}, \ldots, \tau_{4}\right)$, then since it does not divide $a \tau_{2}^{\prime 2}+b \tau_{1}^{\prime} \tau_{3}^{\prime}$, the complementary factor of $F_{3}\left(\tau_{1}, \ldots, \tau_{4}\right)$ would be $x_{4}+d \tau_{1}^{\prime}, d \in K^{*}$, which implies $a=0, b \tau_{1}^{\prime} \tau_{2}^{\prime}+(b+c) \tau_{3}^{\prime}=b d \tau_{1}^{\prime} \tau_{2}^{\prime}+(b / d) \tau_{3}^{\prime}, d=1, c=0$, a contradiction.

If $a \tau_{1}^{\prime 2}+b \tau_{2}^{\prime}$ is not the leading coefficient of any proper factor of $F_{3}\left(\tau_{1}, \ldots, \tau_{4}\right)$ and the latter polynomial is reducible over K, then $a \tau_{1}^{\prime 2}+b \tau_{2}^{\prime}$ is reducible over K, hence, by Lemma 4 , either $b=0$, or $b=-3 a$, char $K \neq 3$ and K contains a primitive cubic root ϱ of 1 . In the former case

$$
\begin{aligned}
& F_{3}\left(\tau_{1}, \ldots, \tau_{4}\right)=a\left(\tau_{1}^{\prime} x_{4}+d_{1} \tau_{1}^{\prime 2}+e_{1} \tau_{2}^{\prime}\right)\left(\tau_{1}^{\prime} x_{4}+d_{2} \tau_{1}^{\prime 2}+e_{2} \tau_{2}^{\prime}\right) \\
& a\left(d_{1} \tau_{1}^{\prime 2}+e_{1} \tau_{2}^{\prime}\right)\left(d_{2} \tau_{1}^{\prime 2}+e_{2} \tau_{2}^{\prime}\right)=a \tau_{2}^{\prime 2} ; \quad d_{1}=d_{2}=0 \\
& \left(a e_{1}+a e_{2}\right) \tau_{1}^{\prime} \tau_{2}^{\prime}=2 a \tau_{1}^{\prime} \tau_{2}^{\prime}+c \tau_{3}^{\prime}, \quad c=0, \quad \text { a contradiction. }
\end{aligned}
$$

In the latter case, by Lemmas 4 and 5 , either

$$
\begin{aligned}
F_{3}\left(\tau_{1}, \ldots, \tau_{4}\right)= & a\left(\left(x_{1}+\varrho x_{2}+\varrho^{2} x_{3}\right) x_{4}+d\left(x_{2} x_{3}+\varrho x_{1} x_{3}+\varrho^{2} x_{1} x_{2}\right)\right) \\
& \times\left(\left(x_{1}+\varrho^{2} x_{2}+\varrho x_{3}\right) x_{4}+d^{-1}\left(x_{2} x_{3}+\varrho^{2} x_{1} x_{3}+\varrho x_{1} x_{2}\right)\right)
\end{aligned}
$$

or

$$
\begin{aligned}
F_{3}\left(\tau_{1}, \ldots, \tau_{4}\right)= & a\left(\left(x_{1}+\varrho^{2} x_{2}+\varrho x_{3}\right) x_{4}+d\left(x_{2} x_{3}+\varrho^{2} x_{1} x_{3}+\varrho x_{1} x_{2}\right)\right) \\
& \times\left(\left(x_{1}+\varrho^{2} x_{2}+\varrho x_{3}\right) x_{4}+d^{-1}\left(x_{2} x_{3}+\varrho x_{1} x_{3}+\varrho^{2} x_{1} x_{2}\right)\right) .
\end{aligned}
$$

In the first subcase

$$
\begin{aligned}
d\left(x_{2} x_{3}+\varrho x_{1} x_{3}+\right. & \left.\varrho^{2} x_{1} x_{2}\right)\left(x_{1}+\varrho^{2} x_{2}+\varrho x_{3}\right) \\
& +d^{-1}\left(x_{2} x_{3}+\varrho^{2} x_{1} x_{3}+\varrho x_{1} x_{2}\right)\left(x_{1}+\varrho x_{2}+\varrho^{2} x_{3}\right) \\
= & -\tau_{1}^{\prime} \tau_{2}^{\prime}+(c / a-3) \tau_{3}^{\prime}
\end{aligned}
$$

in the second subcase

$$
\begin{aligned}
d\left(x_{2} x_{3}+\varrho^{2} x_{1} x_{3}+\right. & \left.\varrho x_{1} x_{2}\right)\left(x_{1}+\varrho^{2} x_{2}+\varrho x_{3}\right) \\
& +d^{-1}\left(x_{2} x_{3}+\varrho x_{1} x_{3}+\varrho^{2} x_{1} x_{2}\right)\left(x_{1}+\varrho x_{2}+\varrho^{2} x_{3}\right) \\
= & -\tau_{1}^{\prime} \tau_{2}^{\prime}+(c / a-3) \tau_{3}^{\prime}
\end{aligned}
$$

In both subcases, the right-hand side is invariant with respect to the conjugation $\varrho \mapsto \varrho^{2}$ and to any permutation $\sigma \in \mathfrak{S}_{3}$. The first condition implies $d= \pm 1, \pm \varrho, \pm \varrho^{2}$, the second condition eliminates the second subcase and in the first subcase restricts d to ± 1. Thus we obtain

$$
\begin{aligned}
& d\left(6 x_{1} x_{2} x_{3}-x_{1}^{2} x_{2}-x_{2}^{2} x_{3}-x_{3}^{2} x_{1}-x_{1} x_{2}^{2}-x_{2} x_{3}^{2}-x_{3} x_{1}^{2}\right) \\
&=-\tau_{1}^{\prime} \tau_{2}^{\prime}+(c / a-3) \tau_{3}^{\prime}
\end{aligned}
$$

$$
d\left(9 \tau_{3}^{\prime}-\tau_{1}^{\prime} \tau_{2}^{\prime}\right)=-\tau_{1}^{\prime} \tau_{2}^{\prime}+(c / a-3) \tau_{3}^{\prime}, \quad d=1, \quad c=12 a
$$

Sufficiency. In view of Theorem 1 it suffices to consider $n=4$ and $F=y_{2}^{2}-3 y_{1} y_{3}+12 y_{4}$. Then

$$
\begin{aligned}
F\left(\tau_{1}, \ldots, \tau_{4}\right)= & \left(x_{1} x_{4}+x_{2} x_{3}+\varrho\left(x_{2} x_{4}+x_{1} x_{3}\right)+\varrho^{2}\left(x_{3} x_{4}+x_{1} x_{2}\right)\right) \\
& \times\left(x_{1} x_{4}+x_{2} x_{3}+\varrho^{2}\left(x_{2} x_{4}+x_{1} x_{3}\right)+\varrho\left(x_{3} x_{4}+x_{1} x_{2}\right)\right)
\end{aligned}
$$

Example. Take $F=\sum_{i=2}^{n}(-1)^{i} x_{1}^{n-i} x_{i}$. We have $\operatorname{deg} F=n-1$ and

$$
F\left(\tau_{1}, \ldots, \tau_{n}\right)=\prod_{i=1}^{n}\left(\tau_{1}-x_{i}\right)
$$

This example also shows that the estimate in Lemma 3 cannot be improved.

References

[1] R. Fricke, Lehrbuch der Algebra, Vieweg, Braunschweig, 1924.
[2] L. Smith, Polynomial Invariants of Finite Groups, A K Peters, Wellesley, MA, 1995.

A. Schinzel
Institute of Mathematics
Polish Academy of Sciences
P.O. Box 21
00-956 Warszawa, Poland
E-mail: schinzel@impan.gov.pl

