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MEASURE AND INTEGRATION

Some Remarks on Indiatries of Measurable FuntionsbyMarin KYSIAKPresented by Czesªaw RYLL-NARDZEWSKI
Summary. We show that for a wide lass of σ-algebras A, indiatries of A-measurablefuntions admit the same haraterization as indiatries of Lebesgue-measurable fun-tions. In partiular, this applies to funtions measurable in the sense of Marzewski.Let f : X → Y be a funtion. The funtion s(f) : Y → Card de�nedby the formula s(f)(y) = |f−1[{y}] is alled the (Banah) indiatrix of f .For f, g : X → Y , we say that f is equivalent to g if there exists a bijetion
ϕ : X → X suh that f = g ◦ ϕ. Obviously, this is equivalent to saying that
s(f) = s(g).Morayne and Ryll-Nardzewski show in [5℄ that a funtion f : [0, 1] →
[0, 1] is equivalent to a Lebesgue-measurable one if, and only if, either s(f)>0on a perfet set P ⊆ [0, 1] or there exists y ∈ [0, 1] suh that s(f)(y) = c.In fat, they prove a more general statement. Namely, the same is true forthe lass of funtions whih are measurable with respet to the σ-algebra Agenerated by the Borel sets and a σ-ideal I with Borel base ontaining anunountable set. They also ask about a haraterization of indiatries ofother important lasses of funtions.A haraterization of indiatries of ontinuous funtions was given byKwiatkowska in [4℄. Also, Komisarski, Mihalewski and Milewski in [3℄ har-aterized (under the axiom ofΣ1

1-determinay) indiatries of Borel funtions.The purpose of this note is to generalize the haraterization of Morayneand Ryll-Nardzewski to other lasses of measurable funtions. We say thata set X ⊆ [0, 1] is Marzewski-measurable if for every perfet set P ⊆ [0, 1]2000 Mathematis Subjet Classi�ation: 28A05, 26A99, 03E15.Key words and phrases: indiatrix, Marzewski-measurable funtion.The researh was done when the author was visiting the Institute of Mathematis ofthe Polish Aademy of Sienes. [281℄
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there exists a perfet set Q ⊆ P suh that Q ⊆ X or Q ∩ X = ∅. TheMarzewski-measurable sets form a σ-algebra; a funtion f : [0, 1] → [0, 1]is Marzewski-measurable if the pre-image of every open set is Marzewski-measurable. By Marzewski's theorem (see [7℄) this is equivalent to sayingthat for every perfet set P there exists a perfet set Q ⊆ P suh that f↾Qis ontinuous.We begin by showing that indiatries of Marzewski-measurable fun-tions admit the same haraterization as those of Lebesgue-measurable ones.It is known that the algebra of Marzewski-measurable sets is not of theform onsidered in [5℄. Then we try to isolate the properties of Marzewski-measurable sets and funtions used in the proof to obtain a more generalresult.For a family A of sets, let H(A) = {A ∈ A : ∀B ⊆ A B ∈ A}. Observethat if A is a σ-algebra, then H(A) is a σ-ideal.The following lemma is a slight modi�ation of an argument from [5℄.The main di�erene is that we do not use the assumption of Borel base ofthe ideal.Lemma 1. Let A be a σ-algebra ontaining Bor suh that H(A) ontainsa set of size c. Let f : [0, 1] → [0, 1] be a funtion suh that f [[0, 1]] ontainsa perfet set. Then f is equivalent to an A-measurable funtion.Proof. Let P be a perfet set ontained in the image of f ; we may alwaysassume that |f [[0, 1]]\P | = c. Let Ψ : [0, 1] → P be a Borel isomorphism andlet M ∈ H(A) be a set of ardinality c suh that |[0, 1] \ M | = c. Observethat Ψ is A-measurable.Let s(f) : [0, 1] → Card be the indiatrix of f and let {My : y ∈ [0, 1]}be a partition of M suh that |My| = s(f)(y) − 1 for y ∈ Ψ [[0, 1] \ M ] (thisis meaningful, beause s(f)(y) > 0 for y ∈ P and we allow My to be empty)and |My| = s(f)(y) otherwise. Suh a partition an be found beause forontinuum many y ∈ [0, 1] we stipulate that |My| > 0, so ∑

y∈[0,1] |My| = c.De�ne g : [0, 1] → [0, 1] in the following way:
g(x) =

{

Ψ(x) for x 6∈ M ,
y for x ∈ My.Clearly, g is equivalent to f beause they have the same indiatrix, and g is

A-measurable, as
{x ∈ [0, 1] : g(x) 6= Ψ(x)} ⊆ M ∈ H(A).Using exatly the same argument as in [5℄, one an prove the following.Lemma 2. Let A be a σ-algebra ontaining Bor suh that H(A) ontainsa set of size c. Let f : [0, 1] → [0, 1] be a funtion onstant on a set ofardinality c. Then f is equivalent to an A-measurable funtion.
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Theorem 3. A funtion f : [0, 1] → [0, 1] is equivalent to a Marzewski-measurable one if , and only if , either f [[0, 1]] ontains a perfet set , orthere exists y ∈ [0, 1] suh that |f−1[{y}]| = c. In partiular , eah Lebesguemeasurable funtion is equivalent to a Marzewski-measurable one, and vieversa.Proof. It is folklore that the algebra of Marzewski-measurable sets sat-is�es the assumptions of Lemmas 1 and 2, whih shows su�ieny of thisondition.To prove the neessity, we an assume that f is itself Marzewski-meas-urable. Then there exists a perfet set P suh that f↾P is ontinuous. If

f [P ] is unountable, then it ontains a perfet set. Otherwise, there exists
y ∈ f [P ] suh that the set f−1[{y}] is of size ontinuum.One an easily see that the argument above is more general than forMarzewski-measurable funtions. The assumptions needed for su�ieny ofthe haraterization (i.e. the assumptions of Lemmas 1 and 2) are very gen-eral (as long as the extensions of Bor are onerned). To prove the neessity,we only used the fat that a Marzewski-measurable funtion is ontinuouson a perfet set.Let us say that a lass of funtions F from a Polish spae to [0, 1] has theWeak Continuous Restrition Property (WCRP for short) if every f ∈ F isontinuous on a perfet set. This is a weaker property than the ContinuousRestrition Property onsidered in [6℄, where the perfet set is required notto belong to a given σ-ideal. It is also a weaker version of a suitable instaneof the Sierpi«ski ondition onsidered in [1℄.Let us point out that some natural reformulations of the WCRP are infat equivalent.Proposition 4 (folklore). The following onditions are equivalent for
f : X → [0, 1], where X is a Polish spae:(1) f↾P is ontinuous for some perfet set P ,(2) f↾B is ontinuous for some unountable Borel set B,(3) f↾P is Borel for some perfet set P ,(4) f↾B is Borel for some unountable Borel set B.As an immediate generalization of Theorem 3 we obtain the following.Theorem 5. Let A be a σ-algebra of subsets of a Polish spae X on-taining Bor(X) suh that H(A) ontains a set of size c. Assume that thelass of A-measurable funtions has WCRP. Then a funtion f : X → Xis equivalent to an A-measurable one if , and only if , either f [X] ontains aperfet set , or there exists y ∈ X suh that |f−1[{y}]| = c.Proof. Analogous to the proof of Theorem 3.
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An important lass of algebras satisfying the assumptions of Theorem 5are the algebras of sets deided by popular foring notions. We an interpretthe Marzewski-measurable sets as sets deided by the Saks foring S (i.e.sets X suh that the set of onditions in S whih either miss X or are inludedin X is dense). It is folklore that if we replae the Saks foring by theforing notion of Laver, Mathias, Miller or Silver, the funtions measurablewith respet to the orresponding σ-algebra have WCRP. Also, eah of therespetive ideals (1) ontains a set of size c (this follows from the resultsof [2℄). In partiular, in the ase of Mathias foring, we obtain the following.Corollary 6. Let A be the σ-algebra of ompletely Ramsey subsetsof 2ω. Then a funtion f : 2ω → 2ω is equivalent to an A-measurable one if ,and only if , either f [2ω] ontains a perfet set , or there exists y ∈ 2ω suhthat |f−1[{y}]| = c.
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(1) In the ase of these foring notions, the ideal of hereditarily measurable sets oin-ides with the ideal of sets missed by a dense set of onditions.


