FUNCTIONAL ANALYSIS

Optimal Constants in Khintchine Type Inequalities for Fermions, Rademachers and q-Gaussian Operators

by

Artur BUCHHOLZ

Presented by Stanisław KWAPIEŃ

Summary. For (P_k) being Rademacher, Fermion or q-Gaussian $(-1 \le q \le 0)$ operators, we find the optimal constants C_{2n} , $n \in \mathbb{N}$, in the inequality

$$\left\|\sum_{k=1}^{N} A_k \otimes P_k\right\|_{2n} \le [C_{2n}]^{1/2n} \max\left\{\left\|\left(\sum_{k=1}^{N} A_k^* A_k\right)^{1/2}\right\|_{L_{2n}}, \left\|\left(\sum_{k=1}^{N} A_k A_k^*\right)^{1/2}\right\|_{L_{2n}}\right\},\right\|_{L_{2n}}$$

valid for all finite sequences of operators (A_k) in the non-commutative L_{2n} space related to a semifinite von Neumann algebra with trace. In particular, $C_{2n} = (2n - 1)!!$ for the Rademacher and Fermion sequences.

Introduction. The classical Khintchine inequality states that

$$\left\|\sum \alpha_k r_k\right\|_{L_p(0,1)} \le \left(2\left\lceil \frac{p}{2} \right\rceil - 1\right)!! \left(\sum \alpha_k^2\right)^{1/2}$$

for $p \ge 2$ and all finite sequences (α_k) of real scalars. (r_k) is the Rademacher sequence, i.e.

$$r_k(x) = \operatorname{sgn}(\sin(2^k \pi x)), \quad k = 1, 2, \dots$$

The inequality appears in many branches of mathematical analysis and it was generalized in many different ways. Also a lot of effort was put into improving the constants in these inequalities.

The first such generalization is due to Orlicz who replaced the sequence of scalars (α_k) by a sequence of vectors in the Banach space L_p .

Research partially supported by KBN grant 2P03A00723 and HPRN-CT-2002-00279.

²⁰⁰⁰ Mathematics Subject Classification: Primary 46L53; Secondary 46L52.

Key words and phrases: Khintchine inequality, non-commutative analysis, commutation relations, Rademacher functions.

A natural generalization of the Orlicz inequality is the result of F. Lust-Piquard [LP] who proved

(1)
$$\left\|\sum_{k=1}^{N} A_k \otimes r_k\right\|_p \le C_p \max\left\{\left\|\left(\sum_{k=1}^{N} A_k^* A_k\right)^{1/2}\right\|_{L_p}, \left\|\left(\sum_{k=1}^{N} A_k A_k^*\right)^{1/2}\right\|_{L_p}\right\}\right\}$$

where A_k are operators from the Schatten trace class L_p . However the constants C_p she obtained are quite large.

In this paper we give the proof of this inequality for p = 2n which gives $C_{2n} = (2n-1)!!$. For this we show that in the inequality (1) one can replace the Rademacher sequence by the Fermi sequence (U_k) (see formulas (3) for a definition). This follows from the fact that the Rademacher sequence has the same distribution as the sequence $(U_k \otimes U_k)$ (see Lemma 3 and Corollary 4).

In the last section we study Khintchine type inequalities for q-Gaussian sequences with negative q. We find the optimal constants in this case.

Definitions and notations. Let $H_{\mathbb{R}}$ be a real Hilbert space with dim $H_{\mathbb{R}} = N$, and let H be its complexification. The inner product on H will be denoted by $\langle \cdot | \cdot \rangle_H$. We define the vector space \mathcal{F}^0 by

$$\mathcal{F}^0 = \mathbb{C}\Omega \oplus \bigoplus_{k=1}^{\infty} H^{\otimes k},$$

where $\mathbb{C}\Omega = H^{\otimes 0}$ is the 1-dimensional space spanned by a fixed vector Ω . We choose an orthonormal basis $\{e_1, \ldots, e_N\}$ for $H_{\mathbb{R}}$, and we define the linear operators l_k^q, l_k^+ $(k \in \{1, \ldots, N\}, q \in [-1, 1])$ acting on \mathcal{F}^0 by the formulas

$$l_{k}^{+}\Omega = e_{k},$$

$$l_{k}^{+}e_{i_{1}} \otimes \cdots \otimes e_{i_{m}} = e_{k} \otimes e_{i_{1}} \otimes \cdots \otimes e_{i_{m}},$$

$$l_{k}^{q}\Omega = 0,$$

$$l_{k}^{q}e_{m} = \langle e_{m} \mid e_{k} \rangle_{H}\Omega,$$

$$l_{k}^{q}e_{i_{1}} \otimes \cdots \otimes e_{i_{m}} = \sum_{p=1}^{m} q^{p-1} \langle e_{i_{p}} \mid e_{k} \rangle_{H}e_{i_{1}} \otimes \cdots \otimes e_{i_{p-1}} \otimes \hat{e}_{i_{p}} \otimes e_{i_{p+1}} \otimes e_{i_{m}},$$

$$m > 1,$$

where the hat indicates omission of a vector in the tensor product. Next, we introduce a non-negative Hermitian form $\langle \cdot | \cdot \rangle_{\mathcal{F}_q}$ on \mathcal{F}^0 , and we define a Hilbert space \mathcal{F}_q . Namely, whenever $k \neq l$, the subspaces $H^{\otimes k}$ and $H^{\otimes l}$ are orthogonal with respect to $\langle \cdot | \cdot \rangle_{\mathcal{F}_q}$, the vector Ω has norm 1 with respect to this form, and on $H^{\otimes k}$ we put

$$\langle e_{i_1} \otimes \cdots \otimes e_{i_k} | e_{j_1} \otimes \cdots \otimes e_{j_k} \rangle_{\mathcal{F}_q} = \sum_{\sigma \in S_k} q^{i(\sigma)} \prod_{p=1}^k \langle e_{i_p} | e_{j_{\sigma(p)}} \rangle_H,$$

where S_k is the symmetric group, and $i(\sigma)$ is the number of inversions in the permutation σ , i.e.,

$$i(\sigma) = \#\{(k,l) : k < l \text{ and } \sigma(k) > \sigma(l)\}.$$

This form has non-trivial kernel when $q \in \{-1, 1\}$. Note also that $H^{\otimes k} = 0$ in the Hilbert space \mathcal{F}_{-1} whenever k > N. The operators l_k^q and l_k^+ preserve the kernel of the form $\langle \cdot | \cdot \rangle_{\mathcal{F}_q}$. This allows us to consider l_k^q and l_k^+ as operators on the space \mathcal{F}_q , defined to be the completion of $\mathcal{F}^0/\ker\langle \cdot | \cdot \rangle_{\mathcal{F}_q}$ in the norm given by the scalar product $\langle \cdot | \cdot \rangle_{\mathcal{F}_q}$. From now on l_k^q and l_k^+ stand for these operators on \mathcal{F}_q . They are mutually adjoint,

$$(l_k^q)^* = l_k^+.$$

The case q = 1 is special since our operators are unbounded.

DEFINITION 1. Let $\{e_1, \ldots, e_N\}$ be an orthonormal basis of the real Hilbert space $H_{\mathbb{R}}$, and let H be the complexification of $H_{\mathbb{R}}$. The sequence $(G_k^q)_{k=1}^N$ of selfadjoint operators defined by

$$G_k^q = l_k^q + l_k^+,$$

where l_k^q and l_k^+ are as above, is called the *q*-Gaussian operator sequence. In the case q = -1 those operators will be called *fermions* and denoted by U_k .

The following formula for mixed moments of q-Gaussian operators will be used (see [BSp1]):

(2)
$$\langle G_{k_1}^{(q)} \cdots G_{k_{2m}}^{(q)} \Omega | \Omega \rangle = \sum_{\substack{\nu \in \mathbb{P}_2(2m) \\ \nu = \{\{p_1, q_1\}, \dots, \{p_m, q_m\}\}}} q^{i(\nu)} \prod_{s=1}^m \langle e_{k_{p_s}} | e_{k_{q_s}} \rangle_H,$$

where $\mathbb{P}_2(2m)$ is the set of 2-partitions of the set $\{1, \ldots, 2m\}$, and $i(\nu)$ is the crossing number of the 2-partition ν .

In [Bu] a Khintchine type inequality for q-Gaussian operator sequences was proved. In the last section we will show the optimality for q < 0 in the following theorem (see Theorem 5 of [Bu]):

THEOREM 2. Let $(G_k^q)_{k=1}^N$ be the q-Gaussian operator sequence, and let $(A_k)_{k=1}^N$ be a sequence of operators from the non-commutative L_{2n} -space related to a semifinite von Neumann algebra with trace Tr. Then

$$\begin{split} \left\| \sum_{k=1}^{N} A_k \otimes G_k^q \right\|_{2n} \\ &\leq [C_{2n}(q)]^{1/2n} \max\left\{ \left\| \left(\sum_{k=1}^{N} A_k^* A_k \right)^{1/2} \right\|_{L_{2n}}, \left\| \left(\sum_{k=1}^{N} A_k A_k^* \right)^{1/2} \right\|_{L_{2n}} \right\}, \end{split}$$

where $||T||_{2n}^{2n} = \operatorname{Tr} \otimes \mathbb{E}_{\Omega}((TT^*)^n)$ for the state $\mathbb{E}_{\Omega}(S) = \langle S\Omega | \Omega \rangle_{\mathcal{F}_q}$ and

 $C_{2n}(q) = \langle (G_1^{|q|})^{2n} \Omega \,|\, \Omega \rangle.$

Moreover the constant $C_{2n}(q)$ in the above inequality is optimal for nonnegative q.

Fermions. In this section we consider the case q = -1. We will write U_k instead of G_k^{-1} . The main properties of the operators U_k are their unitarity and commutation properties, i.e.

(3)

$$U_{k} = U_{k}^{*},$$

$$U_{k}U_{k} = \mathbb{1},$$

$$U_{k}U_{l} = -U_{l}U_{k}, \quad k \neq l,$$

where 1 is the identity operator on \mathcal{F}_{-1} . The next lemma establishes a relationship between the Fermion sequence and the Rademacher sequence.

LEMMA 3. Let $(U_k)_{k=1}^N$ and $(r_k)_{k=1}^N$ be the Fermion and Rademacher sequences respectively. Moreover let G_R be the group generated by the operators $R_k = U_k \otimes U_k$ acting on the Hilbert space $\mathcal{F}_{-1} \otimes_2 \mathcal{F}_{-1}$, and let G_r be the group under pointwise multiplication generated by the rademachers r_k . Then the mapping

 $R_k \mapsto r_k$

extends to a group isomorphism between G_R and G_r .

Proof. By (3), R_k have order two and form a commuting family. We have to check that for any $m \leq N$,

$$R_{k_1}\cdots R_{k_m}\neq 1,$$

where k_1, \ldots, k_m are different positive integers. This follows from

 $R_{k_1}\cdots R_{k_m}[\varOmega]\otimes [\varOmega] = [e_{k_1}\otimes \cdots \otimes e_{k_m}]\otimes [e_{k_1}\otimes \cdots \otimes e_{k_m}] \neq [\varOmega]\otimes [\varOmega].$

The above lemma can be equivalently stated as follows:

COROLLARY 4. The joint distribution of the Rademacher sequence is the same as the distribution of the sequence (R_k) , i.e.

$$\langle R_{k_1}\cdots R_{k_m}[\Omega]\otimes [\Omega]|[\Omega]\otimes [\Omega]\rangle_{\mathcal{F}\otimes\mathcal{F}} = \int_0^1 r_{k_1}(t)\cdots r_{k_m}(t) dt.$$

From now on, the symbol C_{2n} will denote the number (2n-1)!!. Theorem 2 and Corollary 4 imply

THEOREM 5. Let $(r_k)_{k=1}^N$ be the Rademacher sequence. Moreover let $(A_k)_{k=1}^N$ be as in the preceding theorem. Then

(4)
$$\left\|\sum_{k=1}^{N} A_k \otimes r_k\right\|_{2n}$$

 $\leq (C_{2n})^{1/2n} \max\left\{\left\|\left(\sum_{k=1}^{N} A_k^* A_k\right)^{1/2}\right\|_{L_{2n}}, \left\|\left(\sum_{k=1}^{N} A_k A_k^*\right)^{1/2}\right\|_{L_{2n}}\right\}.$

Moreover the constant $C_{2n} = (2n-1)!!$ is optimal as N runs over the natural numbers and (A_k) runs over the non-commutative L_{2n} -spaces.

Proof. By Corollary 4 we have

(5)
$$\left\|\sum_{k=1}^{N} A_k \otimes r_k\right\|_{2n}^{2n} = \operatorname{Tr} \int_{0}^{1} \left(\left(\sum_{k=1}^{N} A_k r_k(t)\right) \left(\sum_{k=1}^{N} A_k^* r_k(t)\right) \right)^n dt = \left\|\sum_{k=1}^{N} A_k \otimes U_k \otimes U_k \right\|_{2n}^{2n}.$$

The equality above, Theorem 2 applied to A_k replaced by $A_k \otimes U_k$, and the first equality in (3) complete the proof.

Also, as a consequence of the above proof we obtain equality between the optimal constants in the operator Khintchine inequality for fermions and rademachers as well as the optimality of the constants $C_{2n}(-1) = (2n-1)!!$ in Theorem 2.

THEOREM 6. For any $p \ge 2$ the optimal constants in the operator Khintchine inequality for the Fermion and Rademacher sequences are identical.

Proof. As was mentioned above, the equality (5) implies that for any even polynomial w and any bounded sequence (B_k) ,

$$\operatorname{Tr} \otimes \int \left(w \Big(\sum B_k \otimes r_k \Big) \Big) = \operatorname{Tr} \otimes \mathbb{E}_{\Omega} \otimes \mathbb{E}_{\Omega} \Big(w \Big(\sum B_k \otimes U_k \otimes U_k \Big) \Big).$$

Since the function $|\cdot|^p$ can be uniformly approximated on compact sets by even polynomials and since L_{∞} is dense in L_p we get the assertion.

REMARK 7. The constant $C_{2n}(-1)$ is optimal in Theorem 2.

q-Gaussian. We will make use of the following non-commutative Central Limit Theorem (see Theorem 0 in [BSp1]).

THEOREM 8. Let \mathcal{B} be a unital *-algebra with a state ϕ . Consider selfadjoint elements $b_i = b_i^* \in \mathcal{B}$ $i \in \mathbb{N}$ normalized by $\phi(b_i^2) = 1$, which satisfy the following assumptions: Then for the operators

$$S_N(k) = \frac{1}{\sqrt{N}} \sum_{i \in A_{N,k}} b_i$$

where for each N the sets $A_{N,k}$ are disjoint and of cardinality N each, the following equalities hold:

$$\lim_{N \to \infty} \phi(S_N(k_1) \cdots S_N(k_n)) = 0 \quad \text{whenever} \quad n \in 2\mathbb{N} + 1,$$
$$\lim_{N \to \infty} \phi(S_N(k_1) \cdots S_N(k_{2n})) = \sum_{\nu \in \mathbb{P}_2(\{1, \dots, 2n\})} \delta_{k_{i_1}, k_{j_1}} \cdots \delta_{k_{i_n}, k_{j_n}} t(\nu),$$

where $\nu = \{\{i_1, j_1\}, \dots, \{i_n, j_n\}\}$ and t is some positive definite function on \mathbb{P}_2 .

To show the optimality of the constants $C_{2n}(q) = \langle (G_1^{|q|})^{2n} \Omega | \Omega \rangle^{1/2n}$ in Theorem 2 we will follow the method used for fermions.

Consider the operators

$$R_k^q = U_k \otimes G_k^q.$$

Since the sequence $(R_k^q)_{k=1}^{\infty}$ satisfies the assumptions of Theorem 8, the optimal constants in Theorem 2 cannot be smaller than the moments of the central measure associated with the sequence $(R_k^q)_{k=1}^{\infty}$. By (3) and (2) this measure has the 2*n*-moments equal to the corresponding moments for the operator $G_1^{[q]}$,

$$\left\langle \left(\lim_{N\to\infty}\frac{1}{\sqrt{N}}\sum_{k=1}^{N}R_{k}^{q}\right)^{2n}[\varOmega]\otimes\Omega\mid [\varOmega]\otimes\Omega\right\rangle = \langle (G_{1}^{|q|})^{2n}\Omega\mid\Omega\rangle.$$

The above considerations prove the following theorem:

THEOREM 9. The constants in Theorem 2 remain optimal when $q \in [-1, 1]$.

References

- [B] M. Bożejko, $On \Lambda(p)$ sets with the minimal constant in discrete noncommutative groups, Proc. Amer. Math. Soc. 51 (1975), 407–412.
- [BSp1] M. Bożejko and R. Speicher, Interpolations between bosonic and fermionic relations given by generalized Brownian motions, Math. Z. 222 (1996), 135–159.
- [Bu] A. Buchholz, Operator Khintchine inequality in non-commutative probability, Math. Ann. 319 (2001), 1–16.
- [LP] F. Lust-Piquard, Inégalités de Khintchine dans C_p (1 \infty), C. R. Acad. Sci. Paris 303 (1986), 289–292.

[P] G. Pisier, An inequality for p-orthogonal sums in non-commutative L_p , Illinois J. Math. 44 (2000), 901–923.

Artur Buchholz Institute of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland E-mail: buchholz@math.uni.wroc.pl

> Received December 17, 2004; received in final form September 8, 2005 (7424)