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Summary. We introduce the notion of uniform Fréchet differentiability of mappings be-
tween Banach spaces, and we give some sufficient conditions for this property to hold.

Let G be a convex set in an Asplund space X (i.e. such that the dual X∗0
to any separable subspaceX0 ⊂ X is separable) with non-empty interior. Let
f(·) be a real-valued convex function defined on G. Asplund (1968) showed
that in this case there is a dense Gδ-set Ω ⊂ G such that the function f(·)
is Fréchet differentiable at every point x0 ∈ Ω. Moreover, on Ω the Fréchet
derivative (gradient) is unique and it is continuous as a mapping from Ω
into the conjugate space X∗, equipped with the norm topologies.

The result of Asplund (1968) can be extended to so called uniformly
approximately convex functions (Rolewicz (2002, 2005)).

Let (X, ‖ ·‖) be a real Banach space. Let f(·) be a real-valued continuous
function defined on an open convex subset G ⊂ X. We say that the function
f(·) is uniformly approximately convex if for all ε > 0 there is δ(ε) > 0 such
that for all x, y ∈ G such that ‖x− y‖ < δ, and all 0 ≤ t ≤ 1,

(1) f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y) + εmin[t, 1− t]‖x− y‖.

It can be shown that a function f(·) is uniformly approximately convex
if and only if there is a non-decreasing function α(·) : [0,+∞) → [0,+∞]
such that

lim
t↓0

α(t)
t

= 0
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and

(1α) f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y) + min[t, 1− t]α(‖x− y‖)

(see Rolewicz (2001b)). The functions satisfying (1α) for fixed α(·) are called
strongly α(·)-paraconvex.

The notion of uniformly approximately convex functions can be treated as
a uniformization of the notion of approximately convex functions introduced
in the papers of Luc, Ngai and Théra (1999, 2000). We recall that a real-
valued function f(·) defined on a convex set G ⊂ X is called approximately
convex if for any x0 ∈ G and ε > 0 there is δ = δ(ε, x0) such that for x, y
such that ‖x− x0‖ < δ and ‖y − x0‖ < δ we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + εmin[t, 1− t].

An essential role in extending Asplund’s result to uniformly approxi-
mately convex functions is played by uniformly approximate subgradients.
Let f(·) be a real-valued function defined on an open set G of a Banach
space X. We say that f(·) is uniformly approximately subdifferentiable if for
all ε > 0 there is δ(ε) > 0 such that for each x ∈ G there is a linear functional
x∗ ∈ X∗ such that for ‖h‖ < δ we have

(3) f(x+ h)− f(x)− x∗(h) ≥ −ε‖h‖.

The functional x∗ is called a uniformly approximate subgradient of f(·)
at x. The set of all uniformly approximate subgradients of f(·) at x will
be called the uniformly approximate subdifferential of f(·) at x and denoted
by ∂uf |x.

The notions of uniformly approximate subgradient and uniformly approx-
imate subdifferential can be treated as a uniformization of the approximate
subgradient and approximate subdifferential introduced by Mordukhovich
and Ioffe (see Mordukhovich (1980, 1988), Ioffe (1984, 1986, 1989, 1990,
2000)).

Since we have the notions of uniformly approximate subgradients and
uniformly approximate subdifferentials, it is a natural problem to introduce
notions of uniformly approximate derivatives (gradients) and uniformly ap-
proximate differentials.

Let G be an open subset of a Banach space X. Let Y a Banach space.
Let F(·) be a mapping of G into Y .

We say that the mapping F(·) is uniformly Fréchet differentiable if for
every ε > 0 there is δ(ε) > 0 such that for each x0 ∈ G there is a continuous
linear operator ∂uF|x0(·) mapping X into Y , ∂uF|x0(·) ∈ B(X → Y ), such
that

(4) ‖F(x)−F(x0)− ∂uF|x0(x− x0)‖Y ≤ ε‖x− x0‖X
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provided ‖x−x0‖X < δ. The operator ∂uF|x0(·) ∈ B(X → Y ) will be called
a uniform Fréchet differential of F at x0. It seems that this notion has not
been considered even in finite-dimensional spaces.

Proposition 1. Let G be an open set in a Banach space X. Let an
equicontinuous mapping F(·) from G into a Banach space Y be uniformly
Fréchet differentiable. Then its uniform Fréchet differential ∂uF|x is also
equicontinuous in the norm operator topology with respect to x on each subset
K ⊂ G such that

dK = inf
x∈K, y 6∈G

‖x− y‖ > 0.

Proof. LetK be as in the statement. Since the mapping F(·) is uniformly
Fréchet differentiable, for each ε > 0 there is r, 0 < r < dK , such that for
all x ∈ K and all h such that ‖h‖ ≤ r we have

(5) ‖F(x+ h)−F(x)− ∂uF|x(h)‖Y < ε‖h‖X .

Since F(·) is equicontinuous there is δ > 0 such that for all x1, x2 ∈ G such
that ‖x1 − x2‖X < δ,

(6) ‖F(x1)−F(x2)‖Y < εr.

Since r < dK , for ‖h‖X ≤ r and x1, x2 ∈ K we have

(7) ‖F(x1 + h)−F(x2 + h)‖Y < εr.

Take arbitrary x1, x2 ∈ K and arbitrary h such that ‖h‖X = r. Thus by (6)
and (7) we get

(8) ‖∂uF|x1(h)− ∂uF|x2(h)‖Y
≤ ‖∂uF|x1(h)−F(x1 + h) + F(x1)‖Y + ‖F(x1 + h)−F(x2 + h)‖Y

+ ‖F(x1)−F(x2)‖Y + ‖∂uF|x2(h)−F(x2 + h) + F(x2)‖Y
≤ 4εr.

Since this holds for all h such that ‖h‖X = r we obtain

(9) ‖∂uF|x1 − ∂uF|x2‖Y ≤ 4ε.

Therefore the gradient ∂uF|x is equicontinuous on K.

There are two natural questions.

Problem 2. Is ∂uF|x equicontinuous on the whole G?

Problem 3. Is the assumption that the mapping F(·) is equicontinuous
necessary?

It is easy to observe that there are non-equicontinuous functions with
equicontinuous derivatives, which are uniformly Fréchet differentiable.
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Example 4. Let X = R and let F(x) = x2. It is easy to observe that the
derivative f ′(x) = 2x is equicontinuous but F(x) itself is not. The mapping
F(·) is uniformly Fréchet differentiable. Indeed,

(x+ h)2 − x2 − 2xh = h2.

It is a natural problem under which conditions a differentiable mapping
F(·) with equicontinuous derivative is uniformly Fréchet differentiable.

It is not difficult to give an example of a continuously differentiable map-
ping with equicontinuous derivative, which is not uniformly Fréchet differ-
entiable.

Example 5. Let G be a spiral domain in R2 defined in the following way.
Let X = {(r,D) : 1 − 2π/D < r < 1 − 2π/(D + 1), 2π < D < +∞} ⊂ R2.
Define f : X → R2 by f(r,D) = (r cosD, r sinD) and let G = f(X). It is
easy to see that f : X → G is one-to-one.

Define F : X → R by F(r,D) = D. It is easy to see that the composite
function F ◦ f−1 : G → R is differentiable with equicontinuous derivative,
but is not uniformly Fréchet differentiable.

However, we have

Proposition 6. Let X, Y be Banach spaces. Let G be a convex open
set in X. Let F : G → Y be differentiable and suppose that its derivative is
equicontinuous. Then F(·) is uniformly Fréchet differentiable.

Proof. If x and x+ h belong to G then

F(x+ h)−F(x) =
1�

0

∂uF|x+th(h) dt.

Thus

F(x+ h)−F(x)− ∂uF|x(h) =
1�

0

[∂uF|x+th − ∂uF|x](h) dt.

Since the derivative ∂uF|x is equicontinuous with respect to x, for every ε > 0
we can find δ > 0 such that if ‖h‖X < δ then ‖∂uF|x+th − ∂uF|x‖Y < ε for
all 0 ≤ t ≤ 1. Therefore

‖F(x+h)−F(x)−∂uF|x(h)‖Y ≤
1�

0

‖∂uF|x+th−∂uF|x‖Y dt ‖h‖X < ε‖h‖X .

The arbitrariness of ε implies that F(·) is uniformly Fréchet differentiable.

The convexity assumption in Proposition 6 can be weakened.
Let G be an open set in a Banach space X. Let K ≥ 1 be a constant.

We say that G is intervally K-convex if for any x, y ∈ G there are elements
x = x0, x1, . . . , xn = y ∈ X such that [xi−1, xi] ⊂ G, where [u, v] denotes the
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closed interval {tu+ (1− t)v : 0 ≤ t ≤ 1}, and
n∑
i=1

‖xi−1 − xi‖X ≤ K‖x− y‖X

(compare Rudnicki (1986)).
The set G in Example 5 is not intervally K-convex for any K ≥ 1.

Proposition 7. Let X, Y be Banach spaces. Let G be an intervally K-
convex open set in X. Let F : G → Y be differentiable and suppose that its
derivative is equicontinuous. Then F(·) is uniformly Fréchet differentiable.

Proof. Let x ∈ G and let h ∈ X be such that y = x + h ∈ G. Since G
is intervally K-convex, there are x = x0, x1, . . . , xn = y = x + h such that
[xi−1, xi] ⊂ G and

n∑
i=1

‖xi−1 − xi‖X ≤ K‖x− y‖X .

Set hi = xi − xi−1. Since [xi−1, xi] = [xi−1, xi−1 + hi] ⊂ G we get

(9i) F(xi)−F(xi−1) =
1�

0

∂uF|xi−1+thi
(hi) dt, i = 1, . . . , n.

Thus summing (9i) over i we obtain

(10) F(x+ h)−F(x) =
n∑
i=1

1�

0

∂uF|xi−1+thi
(hi) dt.

Observe that h =
∑n

i=1 hi. Thus

(11) ∂uF|x(h) =
n∑
i=1

∂uF|x(hi).

Subtracting (11) from (10) we get

F(x+ h)−F(x)− ∂uF|x(h) =
n∑
i=1

1�

0

[∂uF|xi−1+thi
− ∂uF|x](hi) dt.

Since the derivative ∂uF|x is equicontinuous with respect to x, for every ε > 0
we can find δ > 0 such that if ‖x− z‖X < Kδ then ‖∂uF|z − ∂uF|x‖Y < ε.
Since G is an intervally K-convex open set, ‖xi−1 + thi − x‖X ≤ K‖h‖X .

Therefore if ‖h‖X < δ then

(13) ‖F(x+ h)−F(x)− ∂uF|x(h)‖Y

≤
n∑
i=1

1�

0

‖[∂uF|xi−1+thi
− ∂uF|x]‖Y dt ‖hi‖X

< ε
n∑
i=1

‖hi‖X ≤ Kε‖h‖X .
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The arbitrariness of ε implies that the mapping F(·) is uniformly Fréchet
differentiable.

It is not clear if the condition that G is an intervally K-convex open set
is also necessary for the conclusion of Proposition 7 to hold. More precisely,
we have

Problem 8. Suppose that G is an open set in a Banach space X, which
is not intervally K-convex. Can we construct a real-valued differentiable
function F(·) on G with equicontinuous derivative, but not uniformly Fréchet
differentiable?
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