PROBABILITY THEORY AND STOCHASTIC PROCESSES

Limiting Behaviour of Dirichlet Forms for Stable Processes on Metric Spaces

by

Katarzyna PIETRUSKA-PAŁUBA

Presented by Stanisław KWAPIEŃ

Summary. Supposing that the metric space in question supports a fractional diffusion, we prove that after introducing an appropriate multiplicative factor, the Gagliardo seminorms $||f||_{W^{\sigma,2}}$ of a function $f \in L^2(E,\mu)$ have the property

$$\frac{1}{C}\mathcal{E}(f,f) \le \liminf_{\sigma \nearrow 1} (1-\sigma) \|f\|_{W^{\sigma,2}} \le \limsup_{\sigma \nearrow 1} (1-\sigma) \|f\|_{W^{\sigma,2}} \le C\mathcal{E}(f,f),$$

where ${\mathcal E}$ is the Dirichlet form relative to the fractional diffusion.

1. Inroduction. For $f \in L^p(\mathbb{R}^d)$, $0 < \sigma < 1$, p > 1, consider the so-called *Gagliardo seminorm* of f:

(1.1)
$$\|f\|_{W^{\sigma,p}(\Omega)} = \left(\int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^{d + \sigma p}} \, dx \, dy \right)^{1/p},$$

where Ω is a connected open subset of \mathbb{R}^d . The restriction to $\sigma < 1$ is mandatory: when $\sigma \geq 1$, then the finiteness of (1.1) results in f being a constant function (see e.g. [8]). The seminorm (1.1) is the intrinsic seminorm in the fractional Sobolev space $W^{\sigma,p}(\Omega)$ (see [1, par. 7.43]). We are interested in the behaviour of (1.1) as σ approaches the critical value $\sigma = 1$. Bourgain, Brézis and Mironescu in [6], and further in [7], established the relation

(1.2)
$$\lim_{\sigma \nearrow 1} (1-\sigma) \|f\|_{W^{\sigma,p}(\Omega)}^p = C_p \int_{\Omega} |\nabla f|^p \, dx = C_p \|f\|_{W^{1,p}(\Omega)}^p$$

 $(\varOmega$ is a smooth bounded domain in $\mathbb{R}^d,\,f\in W^{1,p}(\varOmega),\,p>1).$ Note that the

Partially supported by a KBN grant no. 1 PO3A 008 29.

²⁰⁰⁰ Mathematics Subject Classification: Primary 60J35; Secondary 46E35.

Key words and phrases: Gagliardo seminorm, stable processes, metric spaces.

meaning of $\|\cdot\|_{W^{\sigma,p}(\Omega)}$ is different for $\sigma < 1$ and for $\sigma = 1$, which is annoying but consistent with traditional notation. For the special case p = 2, $\Omega = \mathbb{R}^d$, (1.2) follows from the previous work of Maz'ya and Nagel [18].

From another perspective, in this case $(\Omega = \mathbb{R}^d, p = 2, \alpha < 1)$ the expression

$$\mathcal{E}^{(\alpha)}(f,f) = C_{\alpha} \iint_{\mathbb{R}^d \mathbb{R}^d} \frac{(f(x) - f(y))^2}{|x - y|^{d + 2\alpha}} \, dx \, dy \quad (= \|f\|_{W^{\alpha,2}}^2)$$

(with domain $\mathcal{D}(\mathcal{E}^{(\alpha)}) = W^{\alpha,2}(\mathbb{R}^d)$) is the Dirichlet form of the subordinated symmetric 2α -stable process on \mathbb{R}^d , while the Dirichlet integral

$$\mathcal{E}(f,f) = \int_{\mathbb{R}^d} |\nabla f|^2 \, dx \quad (= \|f\|_{W^{1,2}}^2),$$

with domain $W^{1,2}$, is the Dirichlet form of the Brownian motion, and therefore the relation (1.2) asserts that the Dirichlet form of the Brownian motion on \mathbb{R}^d can be recovered from the Dirichlet forms of stable processes.

In this note, we are concerned with a similar phenomenon arising for Brownian-like diffusions (*fractional diffusions*, see [2] for the definition) and related stable processes on metric measure spaces. Namely, suppose that $\mathcal{E}(f, f)$ is the Dirichlet form of the diffusion on a metric space (E, ϱ) equipped with an Ahlfors *d*-regular measure μ , and for $\alpha \in (0, 1)$, $\mathcal{E}^{(\alpha)}$ is the Dirichlet form of the subordinated 2α -stable process. Then a similar statement holds: for any $f \in \mathcal{D}(\mathcal{E})$,

(1.3)
$$\lim_{\alpha \nearrow 1} \mathcal{E}^{(\alpha)}(f, f) = \mathcal{E}(f, f).$$

Similarly to the classical case, we can consider the Gagliardo seminorms

(1.4)
$$\|f\|_{W^{\sigma,2}} = \left(\int_{EE} \frac{(f(x) - f(y))^2}{\varrho(x,y)^{d+2\sigma}} d\mu(x) d\mu(y) \right)^{1/2},$$

which are now nontrivial up to $\sigma = d_w/2$, d_w being the walk dimension of (E, ϱ, μ) (in [20] it was proved that the finiteness of (1.4) with $\sigma \geq d_w/2$ implies $f \equiv \text{const}$). Since it is known (see Stós [21]) that the Dirichlet form of the 2α -stable process compares to $||f||^2_{W^{\alpha d_w,2}}$, our statement (1.3) obliges $||f||_{W^{\sigma,2}}$ to tend to ∞ when $\sigma \nearrow d_w/2$, and also, for $f \in \mathcal{D}(\mathcal{E})$,

$$\frac{1}{C}\mathcal{E}(f,f) \leq \liminf_{\alpha \neq 1} (1-\alpha) \|f\|_{W^{\alpha d_w/2,2}}$$
$$\leq \limsup_{\alpha \neq 1} (1-\alpha) \|f\|_{W^{\alpha d_w/2,2}} \leq C\mathcal{E}(f,f).$$

Since satisfactory differential techniques are unavailable in the setting of general metric spaces, our proof requires a different approach than the original one in [6, 7].

2. Diffusion processes and their Dirichlet forms. Suppose that (E, ϱ) is a separable, locally compact metric space and that μ is a Radon measure on E such that

(2.1)
$$C_1 r^d \le \mu(B(x,r)) \le C_2 r^d$$

for some $d \ge 1$ and all $x \in E$, r > 0 (i.e. the measure μ is Ahlfors d-regular). We require E to satisfy the chain condition:

(C) for any $x, y \in E$ and $n \ge 1$ there exists a "chain" $x = x_0, x_1, \ldots, x_n = y$ such that $\rho(x_i, x_{i+1}) \le (C/n)\rho(x, y)$ (C a universal constant).

Further, assume that (E, ϱ, μ) supports a *Markovian kernel* $\{p(t, x, y)\}$, i.e. a family of measurable functions $p(t, \cdot, \cdot) : E \times E \to \mathbb{R}_+, t > 0$, which satisfies:

Our further assumption is that the Markovian kernel p(t, x, y) satisfies the following estimate for all t > 0 and $x, y \in E$:

(2.2)
$$\frac{c_{1.1}}{t^{d/\beta}} \exp\left\{-c_{1.2}\left(\frac{\varrho(x,y)}{t^{1/\beta}}\right)^{\beta/(\beta-1)}\right\} \le p(t,x,y) \\ \le \frac{c_{1.3}}{t^{d/\beta}} \exp\left\{-c_{1.4}\left(\frac{\varrho(x,y)}{t^{1/\beta}}\right)^{\beta/(\beta-1)}\right\}.$$

Examples of such spaces are the nested fractals ([2]) and other postcritically finite self-similar sets ([15]), Sierpiński carpets ([3]), and spaces that support the 2-Poincaré inequality ([22]). It is known that the parameter β does not depend on the particular kernel $p(\cdot, \cdot, \cdot)$, and is one of the characteristic constants of (E, ϱ, μ) , called the *walk dimension* of E and denoted by $d_w(E)$ (or just d_w). Under the chain condition (**C**), it is known (see [2], [13]) that $2 \leq d_w \leq d + 1$. For the Euclidean space \mathbb{R}^d , as well as other spaces supporting the 2-Poincaré inequality, the walk dimension is equal to 2, regardless of d. The walk dimension of the Sierpiński gasket in \mathbb{R}^d is equal to $\log(d+3)/\log 2 > 2$. The exact value of the walk dimension for the Sierpiński carpet is unknown.

It has been proven lately in [14] that if we require the basic estimate (2.2) to be of the form $(c/t^{d/\beta}) \Phi(\varrho(x,y)/t^{1/\beta})$ with $\Phi : [0,\infty) \to [0,\infty)$ decreasing, then either Φ is an exponential function $\exp(-cs^{\beta/(\beta-1)})$, $\beta \geq 2$, and the corresponding Markov process is a diffusion, or it is equal to $1/(1+s)^{d+\beta}$ and the process is not diffusive.

Denote by $(P_t)_{t\geq 0}$ the semigroup of selfadjoint contraction operators on $L^2(E,\mu)$ associated with $\{p(t,x,y)\}$, given by

$$L^2(E,\mu) \ni f(x) \mapsto P_t f(x) = \int_E p(t,x,y) f(y) \, d\mu(y).$$

We require the semigroup to be continuous at zero, i.e.

(M4)
$$\lim_{t\to 0^+} P_t f = f$$
 for all $f \in L^2(E,\mu)$, the limit taken in $L^2(E,\mu)$.

Such a strongly continuous semigroup on $L^2(E, \mu)$ gives rise to a Dirichlet form \mathcal{E} . There are several ways of defining it; the most convenient for our setting is the following (see [9], [11]). For $f \in L^2(E, \mu)$ set

(2.3)
$$\mathcal{E}_t(f,f) = \frac{1}{t} \langle (f-P_t f), f \rangle_{L^2(E,\mu)}$$

Because of (M1) and (M3), we have

(2.4)
$$\mathcal{E}_t(f,f) = \frac{1}{2t} \int_E \int_E (f(x) - f(y))^2 p(t,x,y) \, d\mu(x) \, d\mu(y).$$

By an easy application of the spectral theorem, for any given $f \in L^2$, the mapping $t \mapsto \mathcal{E}_t(f, f)$ is decreasing. Therefore we can set

(2.5)
$$\mathcal{D}(\mathcal{E}) = \{ f \in L^2(E,\mu) : \sup_{t>0} \mathcal{E}_t(f,f) < \infty \},$$
$$\mathcal{E}(f,f) = \lim_{t\downarrow 0} \mathcal{E}_t(f,f).$$

Assuming (M1)–(M5) and (2.2), it has been shown (see [16], [19], [13]) that the domain of this Dirichlet form, $\mathcal{D}(\mathcal{E})$, is actually equal to the space

 $\mathcal{L} = \operatorname{Lip}(d_w/2, 2, \infty)(E).$

The definition of this space is the following. For $f \in L^2(E,\mu)$ and $n = 1, 2, \ldots$, let

$$a_n(f) = \iint_{2^{-(n+1)} < \varrho(x,y) \le 2^{-n}} (f(x) - f(y))^2 \, d\mu(x) \, d\mu(y).$$

Then

(2.6)
$$f \in \mathcal{L} \iff \sup_{n \ge 0} \left[2^{n(d+d_w)} a_n(f) \right] < \infty.$$

The norm in \mathcal{L} is

$$||f||_{\mathcal{L}}^{2} = ||f||_{2}^{2} + \sup_{n \ge 0} \left[2^{n(d+d_{w})}a_{n}(f)\right],$$

and turns \mathcal{L} into a Banach space. Also, there exists a universal constant C such that for $f \in \mathcal{L}$ one has

$$\frac{1}{C}\mathcal{E}(f,f) \le \sup_{n \ge 0} \left[2^{n(d+d_w)}a_n(f)\right] \le C\mathcal{E}(f,f).$$

Consider now the expression

(2.7)
$$E^{(\alpha)}(f,f) = \iint_{E E} \frac{(f(x) - f(y))^2}{\varrho(x,y)^{d + \alpha d_w}} d\mu(x) d\mu(y).$$

and introduce the following spaces $\Lambda^{2,2}_{\alpha}(E)$:

$$f \in \Lambda^{2,2}_{\alpha}(E) \Leftrightarrow E^{(\alpha)}(f,f) < \infty,$$

with the norm

$$||f||_{A^{2,2}_{\alpha}}^{2} = ||f||_{2}^{2} + E^{(\alpha)}(f,f)$$

In the fractal setting, they were first considered in [21], and subsequently appeared in several articles. For a detailed account, see [12] or [17]. Note that these spaces have been known by the name of Besov–Slobodetskiĭ spaces. In [20], we have proven that for $\alpha \geq 1$, the finiteness of $E^{(\alpha)}(f, f)$ for a function $f \in L^2(E, \mu)$ results in $f \equiv \text{const}$, and so the choice of the smoothness parameter α is restricted to (0, 1).

The following lemma is similar to its classical counterpart, nevertheless we give its proof for completeness.

LEMMA 2.1. We have $\operatorname{Lip}(d_w/2, 2, \infty)(E) \subset \Lambda^{2,2}_{\alpha}(E)$. Moreover, this embedding is continuous,

$$\|f\|_{\Lambda^{2,2}_{\alpha}} \le C \|f\|_{\mathcal{L}}.$$

Proof. Take $f \in \mathcal{L}$. Split the integral defining $E^{(\alpha)}(f, f)$ into two parts: the first over the region $\varrho(x, y) > 1$, the other over $\varrho(x, y) \leq 1$.

The first one is finite for any $f \in L^2$: indeed,

$$\begin{split} \iint_{\varrho(x,y)>1} \frac{(f(x) - f(y))^2}{\varrho(x,y)^{d + \alpha d_w}} \, d\mu(x) \, d\mu(y) \\ &= \sum_{n=0}^{\infty} \iint_{2^n < \varrho(x,y) \le 2^{n+1}} \frac{(f(x) - f(y))^2}{\varrho(x,y)^{d + \alpha d_w}} \, d\mu(x) \, d\mu(y) \\ &\leq \sum_{n} \frac{1}{2^{n(d + \alpha d_w)}} \iint_{2^n < \varrho(x,y) \le 2^{n+1}} (f(x) - f(y))^2 \, d\mu(x) \, d\mu(y) \\ &\leq 2\sum_{n} \frac{1}{2^{n(d + \alpha d_w)}} \iint_{2^n < \varrho(x,y) \le 2^{n+1}} (f(x)^2 + f(y)^2) \, d\mu(x) \, d\mu(y) \\ &= 4\sum_{n} \frac{1}{2^{n(d + \alpha d_w)}} \iint_{2^n < \varrho(x,y) \le 2^{n+1}} f(x)^2 \, d\mu(x) \, d\mu(y) \quad \text{(by symmetry)} \\ &= 4\sum_{n} \frac{1}{2^{n(d + \alpha d_w)}} \iint_{E} f(x)^2 \mu(\{y : 2^n < \varrho(x,y) \le 2^{n+1}\}) \, d\mu(x) \le C \|f\|_2^2 \end{split}$$

(in the last equality we used (2.1)).

As to the remaining integral, we write

$$\begin{split} & \iint_{\varrho(x,y) \le 1} \frac{(f(x) - f(y))^2}{\varrho(x,y)^{d + \alpha d_w}} \, d\mu(x) \, d\mu(y) \\ & \le \sum_{n=0}^{\infty} 2^{n(d + \alpha d_w)} \iint_{2^{-(n+1)} < \varrho(x,y) \le 2^{-n}} (f(x) - f(y))^2 \, d\mu(x) \, d\mu(y) \\ & \le 2^{d + \alpha d_w} \sum_{n=0}^{\infty} [2^{n(d + d_w)} a_n(f)] \, \frac{1}{2^{nd_w(1 - \alpha)}} \le \frac{2^{d + \alpha d_w} 2^{d_w(1 - \alpha)}}{2^{d_w(1 - \alpha)} - 1} \, \|f\|_{\mathcal{L}} \end{split}$$

and the continuity of the embedding is proven. \blacksquare

In particular, we see that all the spaces $\Lambda_{\alpha}^{2,2}(E)$, $\alpha < 1$, are dense in $L^2(E,\mu)$. This is so because \mathcal{L} , being the domain of the Dirichlet form of a Markov process, is in particular dense in $L^2(E)$.

3. Stable processes and their Dirichlet forms

3.1. Preliminaries on stable processes on metric spaces. The following definition of a stable process on a metric space supporting a fractional diffusion is taken from [5].

For a fixed parameter $\alpha \in (0,1)$, let $(\xi_t)_{t\geq 0}$ be the α -stable subordinator, i.e. the process whose Laplace transform is given by $\mathbb{E} \exp(-u\xi_t) = \exp(-tu^{\alpha})$. Let $\eta_t(u), t > 0, u \geq 0$, be its one-dimensional distribution density. For t > 0 and $x, y \in X$ define

$$p^{\alpha}(t, x, y) = \int_{0}^{\infty} p(u, x, y) \eta_t(u) \, du.$$

It is classical (see e.g. [4, p. 18]) that $p^{\alpha}(t, x, y)$ is the transition density of a Markov process, which we denote by X^{α} and call the *symmetric* 2α -stable process on E. For further properties of this process and its transition density we refer the reader to [5].

From the property (see Th. 37.1 of [10])

$$\lim_{u \to \infty} \eta_1(u) u^{1+\alpha/2} = \frac{\alpha}{2\Gamma(1-\alpha/2)}$$

and the scaling relation

$$\eta_t(u) = t^{-2/\alpha} \eta_1(t^{-2/\alpha}u), \quad t, u > 0,$$

one deduces:

(P1) $\lim_{t\to 0} t^{-1} \eta_t(u) = (\alpha/\Gamma(1-\alpha))u^{-1-\alpha}$ for u > 0, (P2) (formula (9) of [5]) $\eta_t(u) \le ctu^{-1-\alpha}$ for t, u > 0, (P3) (formula (10) of [5]) $\eta_t(u) \ge ctu^{-1-\alpha}$ for t > 0 and $u > u_0 t^{1/\alpha}$, where $u_0 = u_0(\alpha)$.

The Dirichlet form of the 2α -stable process on E is defined by (2.3)–(2.5)and will be denoted by $\mathcal{E}^{(\alpha)}(f, f)$. In [21] it was proven that $\mathcal{D}(\mathcal{E}^{(\alpha)}) = \Lambda^{2,2}_{\alpha}(E)$, and that there exists a universal constant $D = D(\alpha)$ such that

(3.1)
$$\frac{1}{D}E^{(\alpha)}(f,f) \le \mathcal{E}^{(\alpha)}(f,f) \le DE^{(\alpha)}(f,f).$$

3.2. The main theorem. First, we prove the following theorem.

THEOREM 3.1. Suppose $f \in \mathcal{D}(\mathcal{E})$ (= Lip $(d_w/2, 2, \infty)(E)$). Then (3.2) $\lim_{\alpha \nearrow 1} \mathcal{E}^{(\alpha)}(f, f) = \mathcal{E}(f, f).$

Proof. In view of Lemma 2.1 and the characterization of the domain $\mathcal{D}(\mathcal{E}^{(\alpha)}), \mathcal{E}^{(\alpha)}(f, f)$ is well-defined. The explicit formula for $\mathcal{E}^{(\alpha)}$ is

$$\mathcal{E}^{(\alpha)}(f,f) = \lim_{t \to 0} \frac{1}{2t} \int_{E} \int_{E} p^{\alpha}(t,x,y) (f(x) - f(y))^2 d\mu(x) d\mu(y)$$

(3.3)
$$= \lim_{t \to 0} \int_{0}^{\infty} \frac{1}{2t} \Big(\int_{E} \int_{E} p(u,x,y) (f(x) - f(y))^2 d\mu(x) d\mu(y) \Big) \eta_t(u) du$$
$$= \frac{1}{2} \int_{0}^{\infty} \Big(\int_{E} \int_{E} p(u,x,y) (f(x) - f(y))^2 d\mu(x) d\mu(y) \Big) \lim_{t \to 0} \frac{\eta_t(u)}{t} du.$$

To justify the last step (of putting the limit under the integral sign) we use the Lebesgue dominated convergence theorem: since for all u, t > 0 we have $\eta_t(u) \leq ctu^{-1-\alpha}$ (property **(P2)**), the integrand in (3.3), being equal to $\frac{1}{2t}\langle f - P_u f, f \rangle \frac{\eta_t(u)}{u}$, can be estimated by

(3.4)
$$\frac{c}{u^{1+\alpha}} \langle f - P_u f, f \rangle.$$

For large u the contraction property of the semigroup yields

$$(3.4) \le \frac{c \|f\|_2^2}{u^{1+\alpha}},$$

which is integrable for large u, and for small u write

$$(3.4) = \frac{2c \mathcal{E}_u(f, f)}{u^{\alpha}} \le \frac{2c \mathcal{E}(f, f)}{u^{\alpha}},$$

which in turn is integrable in the vicinity of 0 as long as $\alpha < 1$.

Next, by (P1), one has

$$\lim_{t \to 0} \frac{\eta_t(u)}{t} = \frac{\alpha}{\Gamma(1-\alpha)} \frac{1}{u^{1+\alpha}},$$

and so by Fubini,

$$\mathcal{E}^{(\alpha)}(f,f) = \frac{\alpha}{2\Gamma(1-\alpha)} \int_{EE} \left(\int_{0}^{\infty} \frac{p(u,x,y)}{u^{1+\alpha}} \, du \right) (f(x) - f(y))^2 \, d\mu(x) \, d\mu(y)$$

$$(3.5) \qquad = \frac{\alpha}{\Gamma(1-\alpha)} \int_{0}^{\infty} \frac{1}{u^{\alpha}} \, \mathcal{E}_u(f,f) \, du.$$

It follows that for any fixed number a > 0, any $\alpha \in (0, 1)$, and any $f \in \mathcal{D}(\mathcal{E})$, as a result of the monotonicity of $\mathcal{E}_u(f, f)$,

$$\mathcal{E}^{(\alpha)}(f,f) \ge \frac{\alpha}{\Gamma(1-\alpha)} \int_{0}^{a} \frac{1}{u^{\alpha}} \mathcal{E}_{u}(f,f) \, du \ge \frac{\alpha}{\Gamma(1-\alpha)} \mathcal{E}_{a}(f,f) \int_{0}^{a} \frac{1}{u^{\alpha}} \, du$$
$$= \frac{\alpha}{\Gamma(1-\alpha)} \frac{a^{1-\alpha}}{1-\alpha} \mathcal{E}_{a}(f,f).$$

In particular, we can choose $a = 1 - \alpha$, which yields the estimate

$$\mathcal{E}_a(f,f) \ge \frac{\alpha}{\Gamma(1-\alpha)} \frac{(1-\alpha)^{1-\alpha}}{1-\alpha} \mathcal{E}_{1-\alpha}(f,f)$$

Since $\lim_{t\to 0^+} t^t = 1$ and $\lim_{t\to 0^+} \mathcal{E}_t(f, f) = \mathcal{E}(f, f)$, and $\lim_{t\to 0^+} t \Gamma(t) = 1$, we obtain

(3.6)
$$\liminf_{\alpha \nearrow 1} \mathcal{E}^{(\alpha)}(f,f) \ge \mathcal{E}(f,f).$$

The matching upper bound is simpler: this time around, write the integral (3.5) as

$$\mathcal{E}^{(\alpha)}(f,f) = \frac{\alpha}{\Gamma(1-\alpha)} \left(\int_{0}^{1} \frac{1}{u^{\alpha}} \mathcal{E}_{u}(f,f) \, du + \int_{1}^{\infty} \frac{1}{u^{\alpha}} \mathcal{E}_{u}(f,f) \, du \right)$$
$$=: \frac{\alpha}{\Gamma(1-\alpha)} \, (I_{1}+I_{2}).$$

These integrals are dealt with separately: I_1 will give the proper asymptotics, and I_2 will be negligible.

More precisely, since $\mathcal{E}_u(f, f) \to \mathcal{E}(f, f)$ and the limit is increasing, one has

$$I_1 \leq \mathcal{E}(f,f) \int_0^1 \frac{du}{u^{\alpha}} = \frac{\mathcal{E}(f,f)}{1-\alpha}.$$

The integral I_2 can be rewritten as

$$I_2 = \int_{1}^{\infty} \frac{1}{u^{1+\alpha}} \left\langle f - P_u f, f \right\rangle du,$$

and since the P_u 's are contractions, $|\langle f - P_u f, f \rangle| \leq 2 ||f||_2^2$. Therefore

$$|I_2| \le 2 ||f||_2^2 \int_1^\infty \frac{du}{u^{1+\alpha}} = \frac{2}{\alpha} ||f||_2^2,$$

and so

$$\mathcal{E}^{(\alpha)}(f,f) \le \frac{\alpha}{\Gamma(1-\alpha)(1-\alpha)} \bigg(\mathcal{E}(f,f) + \frac{2}{\alpha} (1-\alpha) \|f\|_2^2 \bigg),$$

giving

$$\limsup_{\alpha \nearrow 1} \mathcal{E}^{(\alpha)}(f, f) \le \mathcal{E}(f, f). \blacksquare$$

As a corollary, we obtain

THEOREM 3.2. Suppose that \mathcal{E} is the Dirichlet form associated with a fractional diffusion on (E, ϱ, μ) and let $E^{(\alpha)}(f, f), \alpha \in (0, 1)$, be defined by (2.7). Then for any $f \in \operatorname{Lip}(d_w/2, 2, \infty)(E)$ we have

(3.7)
$$\frac{1}{C} \mathcal{E}(f, f) \leq \liminf_{\alpha \nearrow 1} (1 - \alpha) E^{(\alpha)}(f, f)$$
$$\leq \limsup_{\alpha \nearrow 1} (1 - \alpha) E^{(\alpha)}(f, f) \leq C \mathcal{E}(f, f)$$

where the constant C does not depend on f.

Proof. This follows from the representation (3.5) and the transition density estimate (2.2).

Acknowledgements. The author wants to thank Jiaxin Hu and Andrzej Stós for valuable remarks.

References

- [1] R. A. Adams, *Sobolev Spaces*, Academic Press, New York, 1975.
- [2] M. T. Barlow, Diffusion on fractals, in: Lectures on Probability and Statistics, École d'Été de Probabilités de St. Flour XXV-1995, Lecture Notes in Math. 1690, Springer, New York, 1998, 1–121.
- [3] M. T. Barlow and R. F. Bass, Brownian motion and analysis on Sierpiński carpets, Canad. J. Math. 51 (1999), 673–744.
- [4] R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Pure Appl. Math., Academic Press, New York, 1968.
- [5] K. Bogdan, A. Stós and P. Sztonyk, Harnack inequality for stable processes on d-sets, Studia Math. 158 (2003), 163–198.
- [6] J. Bourgain, H. Brézis and P. Mironescu, Another look at Sobolev spaces, in: Optimal Control and PDE, In honour of Prof. A. Bensoussan's 60th birthday, J. L. Menaldi et al. (eds.), IOS Press, Amsterdam, 2001, 439–445.
- [7] -, -, -, Limiting embedding theorems for $W^{s,p}$ when $s \uparrow 1$ and applications, J. Anal. Math. 87 (2002), 77–101.

[8]	H. Brézis, How to recognize constant functions, Uspekhi Mat. Nauk, 57 (2002), no. 4
	59–74 (in Russian); English transl.: Russian Math. Surveys 57 (2002), 693–708.

- E. A. Carlen, S. Kusuoka and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. Poincaré Probab. Statist. 23 (1987), 245–287.
- [10] G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation, Springer, New York, 1974.
- [11] M. Fukushima, Dirichlet Forms and Markov Processes, Kodansha–North-Holland, 1980.
- [12] A. Grigoryan, Heat kernels and function theory on metric measure spaces, in: Contemp. Math. 338, Amer. Math. Soc., 2003, 143–172.
- [13] A. Grigoryan, J. Hu and K. S. Lau, *Heat kernels on metric measure spaces and an application to semilinear elliptic equations*, Trans. Amer. Math. Soc. 355 (2003), 2065–2095.
- [14] A. Grigoryan and T. Kumagai, On the dichotomy of the heat kernel two sidedestimates, in: Proc. Sympos. Pure Math. 77, Amer. Math. Soc., 2008, 199–210.
- [15] B. M. Hambly and T. Kumagai, Transition density estimates for diffusion processes on post critically finite self-similar fractals, Proc. London. Math. Soc. 78 (1999), 431–458.
- [16] A. Jonsson, Brownian motion on fractals and function spaces, Math. Z. 222 (1996), 495–504.
- [17] T. Kumagai, Function spaces and stochastic processes on fractals, in: Fractal Geometry and Stochastics III, C. Bandt et al. (eds.), Progr. Probab. 57, Birkhäuser, 2004, 221–234.
- [18] W. Masja [V. Maz'ya] und J. Nagel, Über äquivalente Normierung der anisotropen Funktionalräume H^μ(ℝⁿ), Beiträge Anal. 12 (1978), 7–17.
- [19] K. Pietruska-Pałuba, On function spaces related to fractional diffusions on d-sets, Stoch. Stoch. Rep. 70 (2000), 153–164.
- [20] —, Heat kernels on metric spaces and a characterization of constant functions, Manuscripta Math. 115 (2004), 389–399.
- [21] A. Stós, Symmetric α-stable processes on d-sets, Bull. Polish Acad. Sci. Math. 48 (2000), 237–245.
- [22] K. T. Sturm, Diffusion processes and heat kernels on metric spaces, Ann. Probab. 26 (1998), 1–55.

Katarzyna Pietruska-Pałuba Institute of Mathematics University of Warsaw Banacha 2 02-097 Warszawa, Poland E-mail: kpp@mimuw.edu.pl

> Received March 1, 2008; received in final form July 28, 2008 (7650)

266