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Summary. What should be assumed about the integral polynomials f1(x), . . . , fk(x) in
order that the solvability of the congruence f1(x)f2(x) · · · fk(x) ≡ 0 (mod p) for sufficiently
large primes p implies the solvability of the equation f1(x)f2(x) · · · fk(x) = 0 in integers x?
We provide some explicit characterizations for the cases when fj(x) are binomials or have
cyclic splitting fields.

Let K be a number field and consider the following situation. The given
polynomials f1(x), . . . , fk(x) ∈ OK [x] have the property that for each prime
ideal p of OK with sufficiently large norm (abbreviated: with s.l.n.), at least
one of the congruences

fj(x) ≡ 0 (modp), j = 1, . . . , k,(1)

is solvable in x ∈ OK . What can be said about f1, . . . , fk?
Essentially this question has been put and answered in terms of Galois

theory by M. Fried in [3, Theorem 1]. Although the condition is quite simple
it requires the explicit computation of relevant Galois groups, which is not
easy. On the other hand, if one restricts to some classes of polynomials
then it is possible to give a more explicit characterization in terms of the
coefficients of the relevant polynomials. For example the case of binomials
(which can be naturally called the case of power residues) is studied very
thoroughly in [7].

Our main goal is to provide generalizations of the following beautiful
result of D. Richman:

Theorem 1 (D. Richman, unpublished manuscript [5], for K = Q). Let
S denote a subset of a number field K such that |S| ≤ q, where q is a given
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rational prime. Assume that for almost every prime ideal p of K there is an
element of S which is congruent modulo p to a qth power. Then S contains
a qth power of a number from K.

The first generalization allows the degrees q of power residues to be
nonconstant.

Theorem 2. Let Q be a finite set of odd primes and K a number field
satisfying

{ζq : q ∈ Q} ∩K = ∅,(2)

where ζq denotes a qth primitive root of unity. Moreover , for each q ∈ Q let
Aq ⊂ K∗ be a finite set satisfying |Aq| ≤ q. Assume that for each prime ideal
p of K with s.l.n. there exist q ∈ Q and a ∈ Aq such that the congruence

xq ≡ a (mod p)

is solvable in x ∈ OK . Then there exist q0 ∈ Q, a ∈ Aq0 and b ∈ K∗ such
that a = bq0 .

This is an immediate consequence of Theorem 1 (Theorem 5 for k = 1)
and the following more general theorem.

Theorem 3. Let Q be a finite set of odd primes and K a number field
satisfying (2). Moreover , for each q ∈ Q let Aq ⊂ K∗ be a finite set. Assume
that for each prime ideal p of K with s.l.n. there exist q ∈ Q and a ∈ Aq
such that the congruence

xq ≡ a (mod p)

is solvable in x ∈ OK . Then there exists q0 ∈ Q which is universal in the
following sense. For each prime ideal p of K with s.l.n. there exists a ∈ Aq0
such that the congruence

xq0 ≡ a (mod p)

is solvable in x ∈ OK .

Remark. The condition (2) excludes obviously q = 2 from the set Q.
This exclusion is necessary as shown by the following example, due in prin-
ciple to van der Waerden [9]:

Q = {2, 3}, A2 = {−3}, A3 = {−5}.
The main ingredient in the proof of the above theorem will be the next

theorem which (we hope) is of some independent interest.

Theorem 4. Assume that all the polynomials g1, . . . , gk, h1, . . . , hl ∈
OK [x] have Abelian splitting fields over a number field K and that the con-
gruence

k∏

i=1

gi(x)
l∏

j=1

hj(x) ≡ 0 (modp)



Alternatives of Polynomial Congruences 125

is solvable for all prime ideals p of K with s.l.n. Moreover assume that

gcd
( k∏

i=1

deg gi,
l∏

j=1

deg hj
)

= 1.

Then either the congruence

k∏

i=1

gi(x) ≡ 0 (modp)

is solvable for all prime ideals p of K with s.l.n., or the congruence

l∏

j=1

hj(x) ≡ 0 (modp)

is solvable for all prime ideals p of K with s.l.n.

Another generalization of Richman’s result can be obtained if we allow
for more general “testing” modules. First recall a definition: for I < OK
let Ω(I) denote the number of all prime ideal factors of I, counted with
multiplicities.

Theorem 5. Let q be a rational prime and K a number field. Let S
denote a subset of K such that |S| ≤ qk + qk−1 + · · ·+ q where k is a given
natural number. Assume that for almost every ideal I of K with Ω(I) ≤ k
there is an element of S which is congruent modulo I to a qth power. Then
S contains a qth power of a number from K.

Here the phrase “for almost every ideal I of K” means that possible
exceptions are I such that gcd(I, J) 6= OK , for a fixed J < OK .

Our last theorem and corollaries concern the alternative of congruences
(1) where the fj are polynomials with cyclic Galois groups. We transfer some
result on binomials, contained in [7], to the cyclic case.

Theorem 6. Let K be a number field , n ∈ N, and assume that

gcd(n, [K(ζn) : K]) = 1.

Consider k polynomials f1, . . . , fk ∈ OK [x], irreducible over K, with splitting
fields cyclic of degrees nj = deg fj |n. Then the following two conditions are
equivalent :

(i) For almost all prime ideals p of K there exists j = j(p) such that
the congruence

fj(x) ≡ 0 (modp)

is solvable in x ∈ OK .
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(ii) There exists an involution σ of the family of all subsets of {1, . . . , k}
such that for each A ⊂ {1, . . . , k},

|σ(A)| ≡ |A|+ 1 (mod 2)

and

(3)
∏

j∈σ(A)

Lnj = γnA
∏

j∈A
Lnj ,

where γA ∈ K(ζn) and

Lj =
nj−1∑

l=0

ζ lnjσ
l
j(bj)

are Lagrange resolvents of fj , j = 1, . . . , k (bj and σj are a fixed root
of fj and a fixed generator of the Galois group of its splitting field ,
respectively).

Corollary 1 (M. Fried [3], M. A. Filaseta and D. R. Richman [2]).
Let fj(x) = x2 + bjx + cj ∈ Z[x] and ∆j = b2j − 4cj for j = 1, . . . , k. The
following two conditions are equivalent:

(i) For each sufficiently large prime p there exists j ∈ {1, . . . , k} such
that the congruence

fj(x) ≡ 0 (modp)

is solvable in integers x.
(ii) There exists J ⊂ {1, . . . , k} of odd cardinality and d ∈ Z such that

∏

j∈J
∆j = d2.

Remark. The most general assertion concerning the above situation is
contained in Corollary 2 of [7].

On the other hand we have not found any reference to the following
theorem.

Corollary 2. Let fj(x) = x3 + pjx + qj ∈ Z[x] for j = 1, . . . , k and
assume that for each j, ∆j := −4p3

j − 27q2
j = d2

j with dj ∈ Z. The following
two conditions are equivalent :

(i) For each sufficiently large prime p there exists j ∈ {1, . . . , k} such
that the congruence

x3 + pjx+ qj ≡ 0 (modp)

is solvable in integers x.
(ii) There exists an involution σ of the family of all subsets of {1, . . . , k}

such that for each A ⊂ {1, . . . , k},
|σ(A)| ≡ |A|+ 1 (mod 2)
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and

(4)
∏

j∈σ(A)

(
−27

2
qj +

3
2
dj
√
−3
)

= γ3
A

∏

j∈A

(
−27

2
qj +

3
2
dj
√
−3
)
,

where γA ∈ Q(
√
−3)∗.

Example. The following polynomials are irreducible over Q and their
discriminants are squares (so their splitting fields over Q are cyclic):

f1(x) = x3 − 7x+ 7,

f2(x) = x3 − 13x+ 13,

f3(x) = x3 − 91x+ 273,

f4(x) = x3 − 91x+ 182.

For a suitable choice of Lj for j = 1, 2, 3, 4 we can write

L3
1 = 7

(
−27

2
+

3
2

√
−3
)
,

L3
2 = 13

(
−27

2
+

15
2

√
−3
)
,

L3
3 = 91

(
−81

2
− 33

2

√
−3
)
,

L3
4 = 91(−27 + 24

√
−3).

For α, β ∈ Q(
√
−3) we write α ∼ β if α = βγ3 for some γ ∈ Q(

√
−3). We

have
L3

3 ∼ L3
1L3

2, L3
4 ∼ L3

1(L3
2)2

so we can take the following σ:

{1} 7→ {2, 4}, {2} 7→ {1, 2, 3, 4}, {3} 7→ {1, 2}, {4} 7→ {2, 3},
{2, 3, 4} 7→ {1, 3}, {1, 2, 3} 7→ {1, 4}, {1, 2, 4} 7→ {3, 4}, {1, 3, 4} 7→ ∅.

By Corollary 2 our polynomials have the crucial property that the con-
gruence

f1(x)f2(x)f3(x)f4(x) ≡ 0 (mod p)

is solvable for all primes p.

The proofs are based on six lemmas.

Lemma 1. If G1, . . . , Gk,H1, . . . ,Hl are normal subgroups of a group G
and ((G : Gi), (G : Hj)) = 1 for all i, j, then either G =

⋃
Gi or G =

⋃
Hj

or G 6= ⋃Gi ∪
⋃
Hj .

Remark. The assumption that G1, . . . , Gk,H1, . . . ,Hl are normal is es-
sential as the following example shows: G = S3, G1, G2, G3 are all its sub-
groups of index 3, and H1 is the unique subgroup of index 2.

Proof. The following short proof is due to A. Schinzel. Let

r = lcm(G : Gi), s = lcm(G : Hj)

and assume that

x 6∈
k⋃

i=1

Gi, y 6∈
l⋃

j=1

Hj .(5)
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Then xs ∈ ⋂l
j=1Hj and yr ∈ ⋂k

i=1Gi. Hence xsyr ∈ Gi would give xs ∈ Gi,
and xsyr ∈ Hj would give yr ∈ Hj . On the other hand, there exist integers
t and u such that

st ≡ 1 (mod r), ru ≡ 1 (mod s).

Hence xs ∈ Gi would give xst ∈ Gi and since xr ∈ Gi, we would obtain
x ∈ Gi, contrary to (5). Similarly yr ∈ Hj would give y ∈ Hj , contrary
to (5).

Lemma 2 (M. Fried, Theorem 1 of [3]). Let M be a number field and
consider a finite family F of polynomials f(x) ∈ OM [x]. Assume that all
the splitting fields Mf , f ∈ F , are Abelian over M . Let L be their composi-
tum. Then the following two conditions are equivalent :

(i) For each prime ideal p of OM with s.l.n. there exist f ∈ F and
x ∈ OM such that f(x) ≡ 0 (modp),

(ii) Gal(L/M) =
⋃
f∈F Gal(L/Mf ).

Theorem 1 of [3] is much more general, but we have adapted it above to
the Abelian case.

Lemma 3. Let wn(M) be the number of nth roots of unity contained in
a number field M and assume that

(wn(M), lcm[M(ζq) : M ]) = 1,(6)

where the least common multiple is over all prime divisors q of n and addi-
tionally q = 4 if 4 |n. Let β1, . . . , βl ∈M∗. Then the following two conditions
are equivalent :

(i) For each prime ideal p of M with s.l.n. there exists 1 ≤ j ≤ l such
that the congruence

xn ≡ βj (modp)

is solvable in M .
(ii) There exists an involution σ of the family of all subsets of {1, . . . , l}

such that for each A ⊂ {1, . . . , l},
|σ(A)| ≡ |A|+ 1 (mod 2)

and

(7)
∏

j∈σ(A)

βj = γnA
∏

j∈A
βj ,

where γA ∈M∗.
Proof. This is a special case of Corollary 1 of [7], for k = 0.

Lemma 4 (A. Schinzel, Theorem 2 of [6]). Let K be a field , m a positive
integer not divisible by charK, and w the number of mth roots of unity in K.
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Let M be the splitting field of xm − a over K for some a ∈ K. Then

M/K is Abelian ⇔ aw ∈ Km.

For a simple proof of the above classical result see also [10].

Lemma 5. Let M be a number field and assume that ζq ∈ M , where q
is a fixed rational prime. Let β1, . . . , βl ∈ M∗ and let V be the subgroup of
M∗/M∗q generated by βjM

∗, j = 1, . . . , l. Then for each character χ ∈ V̂
one can find infinitely many prime ideals p of M of degree one over Q for
which

χ(β) = (β | p)q for β ∈ V,
where the symbol on the right hand side is the qth power residue symbol.

Proof. We choose a maximal Fq-independent subset a1, . . . , an of
β1, . . . , βl and apply the Chebotarev theorem ([1], also [4, Theorem 7.13]).

Lemma 6. Let n > k be positive integers and V an n-dimensional vector
space over a finite field Fq. If a set S ⊂ V − {0} intersects each linear
subspace W of V satisfying dimV/W = k then

|S| ≥ qk + qk−1 + · · ·+ q + 1.(8)

Proof. The proof is given in [8].

Proof of Theorem 4. We apply Lemma 2 for M = K and the family
F = {g1, . . . , gk, h1, . . . , hl} to infer that

Gal(L/M) =
⋃

f∈F
Gal(L/Mf ).

Now we apply Lemma 1 for G := Gal(L/M), Gi = Gal(L/Mgi), i = 1, . . . , k,
Hj = Gal(L/Mhj ), j = 1, . . . , l. Because

(G : Gi) = |Gal(Mgi/M)| = deg gi, (G : Hj) = |Gal(Mhj/M)| = deg hj ,

the assumption of Lemma 1 is satisfied. Hence the assertion follows by ap-
plying first Lemma 1, and then Lemma 2 again, but now in the opposite
direction.

Proof of Theorem 3. Let n =
∏
q∈Q q and consider M := K(ζn). More-

over, for each pair (q, a(q)) with q ∈ Q and a(q) ∈ Aq let Mq,a(q) := M(
q
√
a(q))

be the splitting field of xq − a(q) over M . Obviously, Mq,a(q) is Abelian of
exponent dividing q. Applying Theorem 4 to the system of polynomials
fq,a(q)(x) := xq − a(q) we find that there exists q0 ∈ Q such that the alterna-
tive of congruences

xq0 ≡ a(q0) (modp), a(q0) ∈ Aq0 ,
is solvable for all prime ideals p of M with s.l.n. Now we use Lemma 3 for
n = q0 and (βj)lj=1 being all the elements a(q0) ∈ Aq0 , so l = |Aq0 |. Using
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the implication (i)⇒(ii) of Lemma 3 we deduce that for each A ⊂ {1, . . . , l},
γq0A =

∏

j∈σ(A)

βj
∏

j∈A
β−1
j ∈M∗q0 ,

where γA ∈ M = K(ζn). On the other hand, all factors βj belong to K∗

and therefore γq0A ∈ K∗. The field K(γA) is an Abelian extension of K as
a subextension of M = K(ζn). By Lemma 4 we obtain (γq0A )1 ∈ K∗q0 . The
proof is finished by referring to the implication (ii)⇒(i) of Lemma 3.

Proof of Theorem 5. Put M := K(ζq). Let S = {β1, . . . , βl} and adopt
the notation from Lemma 5 and its proof. We will now verify that the
assumptions of Lemma 6 are satisfied for the set S, with the convention that
its elements are now considered mod M ∗q, and assuming that S ⊂ V −{0}.
Consider a subspace W of V with dimV/W = k. Such a subspace W can
be described by a system of k “linear” equations:

χ1(v) = χ2(v) = · · · = χk(v) = 1(9)

with properly chosen χ1, . . . , χk ∈ V̂ . Now we use Lemma 5 and for each
j = 1, . . . , k we choose a prime ideal pj such that

χj(v) = (v | pj)q for v ∈ V.
Put I :=

∏k
j=1 pj . By the assumption of the theorem there is a v ∈ S such

that v is a qth power residue mod I. Hence this v satisfies the system (9) and
it belongs to W by definition. Using Lemma 6 we obtain the inequality (8),
which contradicts the assumption of the theorem. Therefore S ⊂ V −{0} is
impossible. This means that M ∗q∩S 6= ∅. If ζq ∈ K, then M = K and we are
done. In the case ζq 6∈ K we use Lemma 4 and infer again that K∗q ∩S 6= ∅.

Proof of Theorem 6. Let L1, . . . ,Lk be splitting fields of f1, . . . , fk overK.
Let M1, . . . ,Mk be splitting fields of f1, . . . , fk over M := K(ζn). By the
classical Galois theory

Mj = M(Lj), Lnjj ∈ K(ζnj) ⊂M.

Elementary considerations (using the assumption ζn ∈M) lead to the equiv-
alence of two conditions:

(a) For a prime ideal p of M there exists j = j(p) such that the congru-
ence

xnj ≡ Lnj (mod p)

has a solution in x ∈M .
(b) For a prime ideal p of M there exists j = j(p) such that the congru-

ence
xn ≡ Ln (mod p)

has a solution in x ∈M .
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By the construction of Lagrange resolvent condition (a) is equivalent to:

(c) For a prime ideal p of M there exists j = j(p) such that the congru-
ence

fj(x) ≡ 0 (modp)

has a solution in x ∈M .

What is left is to prove the equivalence of the following two set-theoretic
equalities:

(iii) Gal(L′/M) =
⋃k
j=1 Gal(L′/Mj),

(iv) Gal(L/K) =
⋃k
j=1 Gal(L/Lj),

where L is the compositum of L1, . . . , Lk and L′ is the compositum of
M1, . . . ,Mk.

Indeed, then (i) is equivalent to (iv) (by Lemma 2), (iv) is equivalent to
(iii), and (iii) to (ii) (by Lemmas 2 and 3).

The reasoning which will establish the equivalence of (iii) and (iv) will be
purely field-theoretical. The implication (iv)⇒(iii) is obvious. For the proof
of (iii)⇒(iv) assume that (iii) holds and consider an arbitrary σ ∈ Gal(L/K).

Since Gal(L/K) ↪→ ∏k
j=1 Gal(Lj/K) we see that the exponent of

Gal(L/K) divides n, hence

p | (L : K) ⇒ p |n.(10)

L′, being the compositum of M1, . . . ,Mk is of the form L′ = L(ζn) = LM .
Using (10) and the assumption gcd(n, [M : K]) = 1 we obtain

L ∩M = K.

This equality enables us to extend σ ∈ Gal(L/K) to σ̃ ∈ Gal(LM/M) =
Gal(L′/M). Because of (iii) there exists j such that σ̃|Mj = id. Hence σ|Lj
= id as well, and we have proved (iv).
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