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Summary. A new sufficient condition for the asymptotic stability of a locally Lipschitzian
Markov semigroup acting on the space of signed measures Msig is proved. This criterion
is applied to the semigroup of Markov operators generated by a Poisson driven stochastic
differential equation.

1. Introduction. The purpose of the present paper is to show an ap-
plication of the Kantorovich–Rubinstein maximum principle in the stability
theory of Markov semigroups. This principle was already used to prove the
stability of some iterated function systems, stochastically perturbed dynam-
ical systems with discrete time (see [1]) and stochastic semigroups generated
by the Tjon–Wu equation (see [8]).

We will also show the application of the general theory to the semi-
group (P t)t≥0 of Markov operators generated by a Poisson driven stochastic
differential equation. This equation has the form

dξ(t) = a(ξ(t))dt+
�

Θ

σ(ξ(t), θ)Np(dt, dθ) for t ≥ 0(1)

and will be considered with the initial condition

ξ(0) = ξ0,(2)

where {ξ(t)}t≥0 is a stochastic process with values in the d-dimensional real
space Rd. In the special case ξ(0) = x a.s. this solution will be denoted by ξx.
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It is known that for sufficiently regular f and under some regularity
conditions concerning the coefficients, the function

u(t, x) = Ef(ξx(t)),

where E denotes the mathematical expectation, satisfies the equation

ut(t, x) = 〈a(x) |ux(t, x)〉 − λu(t, x) + λ
�

Θ

u(t, x+ σ(x, θ)) ñ(dθ),(3)

where
u(0, x) = f(x) for x ∈ Rd.

The semigroup (U t)t≥0 is defined by the formula

U tf(x) = u(t, x) for t ≥ 0, x ∈ Rd,
and the semigroup (P t)t≥0 is adjoint to (U t)t≥0. The precise conditions
concerning equation (1) and the formal definitions of the semigroup (P t)t≥0

and (U t)t≥0 will be given in Section 4.
The asymptotic properties of the semigroup (P t)t≥0 generated by the

stochastic differential equation (1) were studied in [6, 10, 12].
In particular J. Malczak [10] found a criterion of asymptotic stability in

the case when the operators P t are defined on the space L1(Rd). Using a
double contraction principle A. Lasota [6] proved the asymptotic stability
for P t acting on the space of signed measures. Those results were generalized
by J. Traple [12] who considered equation (1) in a quite general situation
when the intensity λ of the Poisson process depends on the solution.

Our result intersects with that of Traple. We assume that λ is constant
but our conditions on the coefficients are less restrictive.

2. Preliminaries. Let (X, %) be a metric space. We will assume that
every closed and bounded subset of X is compact. This condition implies
that (X, %) is a Polish space.

We denote by B(X) the σ-algebra of Borel subsets of X and by M the
family of all finite Borel measures (nonnegative, σ-additive) on X.

Let M1 denote the subset of those µ ∈ M for which µ(X) = 1. The
elements of M1 will be called distributions. Further let

Msig = {µ1 − µ2 : µ1, µ2 ∈ M}
be the space of finite signed measures.

Let c be a fixed element of X. For every α ≥ 1 we define the subsetM1,α
of M1 by setting

M1,α =
{
µ ∈ M1 :

�

X

(%(x, c))α µ(dx) <∞
}
.

It is evident that this space does not depend on the choice of c.
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As usual, B(X) denotes the space of all bounded Borel measurable func-
tions f : X → R, and Cb(X) the subspace of all bounded continuous func-
tions, both endowed with the supremum norm

‖f‖ = sup
x∈X
|f(x)|.

For every f : X → R and µ ∈ Msig we write

〈f, µ〉 =
�

X

f(x)µ(dx),

whenever this integral exists.
In the space M1 we introduce the Hutchinson metric (see [2]) by

‖µ1 − µ2‖H = sup{|〈f, µ1 − µ2〉| : f ∈ H},(4)

where H is the set of functions f : X → R which satisfy

|f(x)− f(y)| ≤ %(x, y) for x, y ∈ X.(5)

The value ‖µ1 − µ2‖H in (4) is well defined and finite for µ1, µ2 ∈ M1,1.
Furthermore, for µ1, µ2 ∈M1, we have

‖µ1 − µ2‖H = sup{|〈f, µ1 − µ2〉| : f ∈ Hc},(6)

where c is a fixed element of X and Hc = {f ∈ H : f(c) = 0}.
In M1 we also introduce the Fortet–Mourier metric by setting

‖µ1 − µ2‖F = sup{|〈f, µ1 − µ2〉| : f ∈ F},(7)

where F is the set of functions f : X → R satisfying

‖f‖ ≤ 1, |f(x)− f(y)| ≤ %(x, y) for x, y ∈ X.
We say that a sequence (µn) ⊂ M1 converges weakly to a measure µ ∈

M1 if

lim
n→∞

〈f, µn〉 = 〈f, µ〉 for f ∈ Cb(X).(8)

Since X is a Polish space, condition (8) is equivalent to

lim
n→∞

‖µn − µ‖F = 0.

Moreover M1 with the distance ‖µn − µ‖F is a complete metric space
(see [11]).

Denote by K(x, r) the closed ball in X with center x ∈ X and radius r.
Let µ ∈ M1. We define the support of µ by setting

suppµ = {x ∈ X : µ(K(x, ε)) > 0 for every ε > 0}.
Remark 1. Every setM1,α for α ≥ 1 contains the subset of all measures

µ ∈ M1 with compact support. This subset is dense in M1 with respect to
the Fortet–Mourier norm. Thus for every α ≥ 1 the set M1,α is dense in
M1 with respect to that norm.
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3. Markov semigroups. A linear mapping P :Msig →Msig is called
a Markov operator if P (M1) ⊂M1.

Remark 2. Every Markov operator is defined by its values on M1.

A Markov operator P is called a Feller operator if there is a linear op-
erator U : Cb(X)→ Cb(X), dual to P , i.e.,

〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ Cb(X), µ ∈ M1.(9)

Remark 3. The dual operator U has a unique extension to the set of
all Borel measurable, nonnegative, not necessarily bounded functions on X.
The extension is given by

(Uf)(x) = 〈f, Pδx〉,(10)

where δx ∈ M1 is the Dirac measure supported at x.

A Markov operator P is called Lipschitzian with a constant k > 0 if

‖Pµ1 − Pµ2‖F ≤ k‖µ1 − µ2‖F for µ1, µ2 ∈ M1.(11)

If k ≤ 1 then P is nonexpansive.
A family of Markov operators (P t)t≥0 is called a semigroup if

P t+s = P tP s for t, s ∈ R+

and P 0 = I is the identity operator on Msig.
If the operators P t, t ≥ 0, are Fellerian, we say that (P t)t≥0 is a Feller

semigroup. We denote by (U t)t≥0 the semigroup dual to (P t)t≥0.
We say that a semigroup (P t)t≥0 is weakly continuous if P tµ→ µ weakly

as t→ 0+, for every µ ∈M1.
A Markov semigroup (P t)t≥0 is called locally Lipschitzian if there exists

a locally bounded function k : R+ → R+ such that for every t ≥ 0 the
operator P t is Lipschitzian with constant k(t); if k(t) ≤ 1 for all t ∈ R+,
then (P t)t≥0 is a nonexpansive semigroup.

A nonexpansive semigroup (P t)t≥0 is called strongly contracting onM1,α
if for any µ1, µ2 ∈M1,α, µ1 6= µ2, there is a t0 ∈ R+ such that

‖P t0µ1 − P t0µ2‖H < ‖µ1 − µ2‖H.
A measure µ∗ ∈ M is called stationary (or invariant) for a Markov

semigroup (P t)t≥0 if
P tµ∗ = µ∗ for t ≥ 0.

A Markov semigroup (P t)t≥0 is called asymptotically stable if there is a
stationary distribution µ∗ such that

lim
t→∞

‖P tµ− µ∗‖F = 0 for all µ ∈ M1.(12)

The distribution µ∗ satisfying (12) is unique.
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In the proof of our main result Theorem 1 we will use the following
properties of the Hutchinson norm:

Kantorovich–Rubinstein Maximum Principle. For any µ1, µ2 ∈
M1,1, µ1 6= µ2, there exists f ∈ H such that

〈f, µ1 − µ2〉 = ‖µ1 − µ2‖H.(13)

Moreover , every such f satisfies the condition

|f(x)− f(y)| = %(x, y)

for some x, y ∈ X,x 6= y.

(For details see [11, pp. 89–121]).
Let c be a fixed element of X and %αc (x) := %α(x, c) for every α > 0.

Theorem 1. Let (P t)t≥0 be a Feller semigroup and (U t)t≥0 its dual
semigroup. Assume that there is t0 ∈ R+ such that for every f ∈ H the
following two conditions are satisfied :

|U tf(x)− U tf(y)| ≤ %(x, y) for x, y ∈ X and t ≥ 0,(14)

|U t0f(x)− U t0f(y)| < %(x, y) for x, y ∈ X, x 6= y.(15)

Moreover , assume that there exist constants A,B ≥ 0 and α > 1 such that

(U t%αc )(x) ≤ A%αc (x) +B for x ∈ X and t ≥ 0.(16)

Then (P t)t≥0 is asymptotically stable.

Proof. From (16), it follows immediately that

P t(M1,α) ⊂M1,α for t ≥ 0.

Moreover, by (14)–(16) the Feller semigroup (P t)t≥t0 is nonexpansive on
M1,α with respect to the Hutchinson norm. Indeed, for µ1, µ2 ∈ M1,α and
t ≥ 0 we have

‖P tµ1 − P tµ2‖H = sup{|〈f, P tµ1 − P tµ2〉| : f ∈ H}
= sup{|〈U tf, µ1 − µ2〉| : f ∈ H} ≤ ‖µ1 − µ2‖H.

We claim that (P t)t≥0 is also strongly contracting with respect to the
same norm, i.e.,

‖P t0µ1 − P t0µ2‖H < ‖µ1 − µ2‖H for µ1, µ2 ∈ M1,α, µ1 6= µ2.(17)

Fix µ1, µ2 ∈ M1,α, µ1 6= µ2. According to the Kantorovich–Rubinstein
maximum principle there exists f ∈ H such that

〈f, P t0µ1 − P t0µ2〉 = ‖P t0µ1 − P t0µ2‖H.(18)

This equality may be rewritten in the form

〈U t0f, µ1 − µ2〉 = ‖P t0µ1 − P t0µ2‖H.
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The function U t0f satisfies (15), so according to the second part of the
principle we obtain

〈U t0f, µ1 − µ2〉 < ‖µ1 − µ2‖H.(19)

Conditions (18) and (19) imply (17) and the claim is proved.
Now we are going to verify that for every µ ∈ M1,α the trajectory

{P tµ}t≥0 is relatively compact in M1,α. Let (tn) be a sequence of integers
such that tn →∞ and tn ≥ 0 for n = 1, 2, . . . .

According to (16) the sequence (P tnµ) satisfies the Prokhorov condi-
tion (see [8, p. 66]). So from the Prokhorov theorem it follows immediately
that there exists a subsequence (P tknµ) which converges weakly to a mea-
sure µ0 ∈ M1. Now we are going to show that µ0 ∈ M1,α and (P tknµ) is
convergent to µ0 in the Hutchinson norm. For given r > 0 define

gr(x) =
{
%αc (x) for x ∈ K(c, r),

rα for x 6∈ K(c, r).

Condition (16) implies that

〈gr, P tknµ〉 = 〈U tkngr, µ〉 ≤ l, where l = A〈%αc , µ〉+B.(20)

The function gr is continuous and bounded. Consequently,

lim
n→∞

〈gr, P tknµ〉 = 〈gr, µ0〉.

Since r > 0 was arbitrary, the last equality and (20) imply that µ0 ∈ M1,α.
So it suffices to verify that

lim
n→∞

‖P tknµ− µ0‖H = 0.

An elementary calculation shows that
�

X\K(c,r)

%c(x)P tknµ(dx) ≤ l

rα−1 .(21)

Fix an ε > 0 and choose r such that 4l/rα−1 ≤ ε. Define

∆ = [−r, r], F∆,1 = {f ∈ C(X) : |f(x)| ≤ r and |f(x)− f(y)| ≤ %(x, y)}.
On M1 the metric

‖µ1 − µ2‖F∆,1 = sup{〈f, µ1 − µ2〉 : f ∈ F∆,1},
is equivalent to the Fortet–Mourier metric. For f ∈ H define

fr(x) = max{min[f(x), r],−r}.
Evidently fr ∈ F∆,1. Furthermore for f ∈ Hc the function fr has the fol-
lowing properties:

(a) fr(x) = f(x) for x ∈ K(r, c),
(b) |f(x)− fr(x)| ≤ 2%c(x) for x ∈ X.
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From this and (21), it follows immediately that

〈f, P tknµ− µ0〉 ≤ ‖P tknµ− µ0‖F∆,1 +
4l
rα−1 ≤ ‖P

tknµ− µ0‖F∆,1 + ε

for f ∈ Hc. This shows that (P tknµ) converges to µ0 in the Hutchinson
norm. Thus the trajectory {P tµ}t≥0 is compact in M1,α.

Condition (17) and the compactness of orbits imply that for every tn→∞
the sequence (P tnµ) with µ ∈ M1,α converges in the Hutchinson norm to a
unique invariant measure µ0 (see [5, p. 115]).

To complete the proof it is sufficient to observe that M1,α is dense in
M1 and by (14), (15) the Feller semigroup (P t)t≥0 is nonexpansive on M1
with respect to the Fortet–Mourier norm.

The analogue of Theorem 1 for locally Lipschitzian Markov semigroups
is

Theorem 2. Let (P t)t≥0 be a locally Lipschitzian Markov semigroup on
Msig and let (U t)t≥0 denote the semigroup dual to (P t)t≥0. Assume that
there is t0 ∈ R+ such that

|U t0f(x)− U t0f(y)| < %(x, y) for x, y ∈ X, x 6= y,(22)

for every f ∈ H. Moreover , assume that there exist constants A,B ≥ 0 and
α > 1 such that

(Unt0%αc )(x) ≤ A%αc (x) +B for x ∈ X and n = 0, 1, 2, . . . .(23)

Then (P t)t≥0 is asymptotically stable.

The proof can be easily derived from an analogous result in [1].

4. Application. In this part we denote by ‖ · ‖, 〈· | ·〉 the Euclidean
norm and the Euclidean scalar product in Rd. The spaces

Bb(Rd) ⊃ Cb(Rd) ⊃ C1
c (Rd)

are respectively: the space of all real, Borel measurable, bounded functions
on Rd equipped with the supremum norm; the subspace of all bounded
continuous functions; the subspace of all functions with compact support
and continuous first derivatives.

In our study of solutions of (1), (2) we make the following assumptions:

(i) The coefficient a : Rd → Rd is Lipschitzian,

‖a(x)− a(y)‖ ≤ la‖x− y‖ for x, y ∈ Rd.
(ii) (Θ,G, ñ) is a finite measure space with ñ(Θ) = 1.

(iii) The perturbation coefficient σ : Rd × Θ → Rd is a BRd × G/BRd-
measurable function such that

|σ(x, ·)− σ(y, ·)|L2(ñ) ≤ lσ‖x− y‖ for x, y ∈ Rd.
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(iv) The mapping q : Rd ×Θ → Rd given by

q(z, θ) = z + σ(z, θ) for z ∈ Rd, θ ∈ Θ(24)

is measurable and q(x, ·) ∈ L1(ñ) for x ∈ Rd. Moreover,

|q(x, ·)− q(y, ·)|L1(ñ) ≤ lq‖x− y‖ for x, y ∈ Rd(25)

for some constant lq ≥ 0.
(v) There is a probability space (Ω,F ,prob), a sequence of nonnega-

tive random variables (ti)i∈N0 and a sequence of random elements
(θi)i∈N with values in Θ. The variables ∆ti = ti − ti−1 (t0 = 0) are
nonnegative, independent and equally distributed with probability
density function λe−λt for t ≥ 0. The elements θi are independent,
equally distributed with distribution ñ. The sequences (ti) and (θi)
are also independent. Under this condition the mapping

Ω 3 ω 7→ p(ω) = (ti(ω), θi(ω))i∈N
defines a stationary Poisson point process ([3, Ch. 1, p. 44]).

(vi) For every µ ∈ M1 there is an Rd-valued random vector ξµ defined
on Ω, independent of p and having distribution µ.

Condition (v) implies that for every measurable set Z ⊂ (0,∞)×Θ the
variable

Np(Z) = #{i : (ti, θi) ∈ Z}
is Poisson distributed. It is called the Poisson random counting measure.

Denote by E the mathematical expectation on (Ω,F ,prob). It can be
proved that

E(Np((0, t]×K)) = λtñ(K)

for t ∈ (0,∞), K ∈ G.
By a solution of (1), (2) we mean a stochastic process (ξ(t))t≥0 with

values in Rd such that with probability one the following two conditions are
satisfied:

(a) The sample paths are right-continuous functions such that for t > 0
the limit

ξ(t−) = lim
s→t−0

ξ(s)

exists, and
(b) ξ(t) = ξ0 + � t0 a(ξ(s)) ds+ � t0 � Θ σ(ξ(s−), θ)Np(ds, dθ) for t ≥ 0.

It is easy to write an explicit formula for the solution of (1), (2). Denote by
πt the dynamical system defined by

πt(x) = y(t) for t ∈ Rd,(26)

where y is the solution of the ordinary differential equation

y′(t) = a(y(t)) for t ∈ R+,(27)
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with the initial condition
y(0) = x.(28)

Then for every fixed value of p = (ti, θi)i∈N the solution of (1), (2) is given
by

ξ(0) = ξ0, ξ(ti) = ξ(ti−) + σ(ξ(ti−), θi), i ∈ N,
ξ(t) = πt−ti(ξ(ti)) for t ∈ [ti, ti+1), i ∈ N0.

For x ∈ Rd denote by ξx(t) the solution of the initial value problem (1),
(2) with ξ0 = x. For every t ≥ 0 and f ∈ Cb define

U tf(x) = E(f(ξx(t))).(29)

The classical theory of equation (1) ensures that under conditions (i)–(vi),
(ξx(t))t≥0 is a homogeneous in time Markov process and (U t)t≥0 is a con-
tinuous semigroup of bounded linear operators acting on Cb. Analogously
for given µ ∈ M1 we may find a solution ξµ(t), t ≥ 0, of (1), (2) such that
ξµ(0) has distribution µ. For every t ≥ 0 we define P tµ as the distribution
of ξµ(t), i.e.,

P tµ(A) = prob(ξµ(t) ∈ A) for t ≥ 0, A ∈ BRd .(30)

The operators P t and U t satisfy the duality condition

〈f, P tµ〉 = 〈U tf, µ〉 for t ≥ 0, f ∈ C, µ ∈M1.(31)

Via (31) the semigroup (P t)t≥0 can be easily extended to the vector
spaceMsig. It is locally Lipschitzian and weakly continuous. Moreover using
the Phillips perturbation theorem it is easy to find an explicit formula for
(U t)t≥0.

In fact, let G0 be a linear operator given by the formula

G0f(x) =
�

Θ

f(q(x, θ)) ñ(dθ) for f ∈ Cb(Rd), x ∈ Rd,(32)

and let (T t)t≥0 be the semigroup corresponding to the unperturbed system
(27), i.e.:

T tf(x) = f(πt(x)) for f ∈ Cb(Rd), x ∈ Rd.(33)

Then (cf. [12])

U tf = e−λt
∞∑

n=0

U tnf for f ∈ Cb(Rd),(34)

where

U tn+1f = λ

t�

0

T t−sG0U
s
nf ds, n = 0, 1, . . . ,(35)

U t0f = T tf for t ≥ 0.
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Using these formulas and Theorem 2 we can prove an explicit sufficient
condition for the asymptotic stability of (P t)t≥0.

Theorem 3. Assume that assumptions (i)–(vi) are satisfied. Moreover ,
let λ ≥ 0 and γ ∈ R be constants such that

‖πtx− πty‖ ≤ eγt‖x− y‖ for x, y ∈ Rd, t ≥ 0,(36)

and
lqλ+ γ < λ.(37)

Further , suppose that

〈a(x) | 2x〉+ λ
�

Θ

(‖x+ σ(x,Θ)‖2 − ‖x‖2) ñ(dθ) ≤ α0‖x‖2 + β0(38)

for some α0 ≤ 0, β0 ∈ R. Then the semigroup (P t)t≥0 is asymptotically
stable.

Proof. We show that (U t)t≥0 satisfies the assumptions of Theorem 2. We
will verify by induction that for every n = 0, 1, . . . and t ≥ 0,

|(U tnf)(x)− (U tnf)(y)| ≤ eγt (λlqt)n

n!
‖x− y‖, x, y ∈ Rd.(39)

Fix f ∈ H and t ≥ 0. For n = 0 by (33) and (35) we obtain

|(U t0f)(x)− (U t0f)(y)| ≤ |f(πtx)− f(πty)| ≤ ‖πtx− πty‖
≤ eγt‖x− y‖ for x, y ∈ Rd.

From (32), (33) and (35) it follows immediately that

|(G0U
s
nf)(x)− (G0U

s
nf)(y)| ≤

�

Θ

|(U snf)(q(x, θ))− (U s
nf)(q(y, θ))| ñ(dθ)

≤ eγs (λlqs)n

n!

�

Θ

‖q(x, θ)− q(y, θ)‖ ñ(dθ)

≤ eγsln+1
q

(λs)n

n!
‖x− y‖ for x, y ∈ Rd and s ∈ [0, t].

For s ∈ [0, t] and f ∈ H we also have

|T t−sG0U
s
nf(x)− T t−sG0U

s
nf(y)| ≤ eγ(t−s)eγsln+1

q

(λs)n

n!
‖x− y‖

= eγtln+1
q

(λs)n

n!
‖x− y‖ for x, y ∈ Rd.

This and (35) imply (39). From (34) and (39) we obtain

|U tf(x)− U tf(y)| ≤ eγ−λ+lqλ‖x− y‖, x, y ∈ Rd, f ∈ H.(40)

Since γ − λ+ lqλ < 0, this implies condition (22) of Theorem 2.
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Now from the theory of semigroups, it follows that

U tf(x) = f(x) +
t�

0

U sAUf(x) ds for x ∈ Rd, f ∈ C1
c (Rd),(41)

where

AUf(x) = 〈a(x) | fx(x)〉 − λf(x) + λ
�

Θ

f(x+ σ(x, θ)) ñ(dθ).(42)

Using this and an appropriate approximation we obtain

U tV (x) = V (x) +
t�

0

U sψ(x) ds for x ∈ Rd,(43)

where V (x) = ‖x‖2 and

ψ(x) = 〈a(x) | 2x〉+ λ
�

Θ

(‖x+ σ(x, θ)‖2 − ‖x‖2) ñ(dθ).(44)

From (38), (43), (44) we deduce the inequality

dU t

dt
≤ α0U

tV (x) + β0.(45)

Solving (45) we conclude that

U tV (x) ≤ V (x)eα0t +
β0

α0
(eα0t − 1) for x ∈ R, t ≥ 0.(46)

Since α0 ≤ 0 this implies (23). Thus by Theorem 2 the semigroup (P t)t≥0
is asymptotically stable.

The asymptotic properties of the semigroup (P t)t≥0 were studied by
J. Traple [12] under different conditions. Namely, in [12] it was assumed
that the dual semigroup (U t)t≥0 satisfies the equation

ut(t, x) = 〈a(x) |ux(t, x)〉 − λ(x)u(t, x) + λ(x)
�

Θ

u(t, x+ σ(x, θ)) ñ(dθ),

where

u(t, x) = U tf(x), u(0, x) = f(x) for x ∈ Rd, f ∈ Cb,

and λ : Rd → R+ is a function satisfying

0 < λ ≤ λ(x) ≤ λ <∞, |λ(x)− λ(y)| ≤ |x− y| for x, y ∈ Rd.
J. Traple proved the asymptotic stability of (P t)t≥0 if

〈a(x) |x〉+ λ(x)
�

Θ

〈σ(x,Θ) |x〉 ñ(dθ) ≤ α0‖x‖2 + β0 for x ∈ Rd,

and

2α0 < −λl2σ.(47)

In our case λ is a constant but we have replaced condition (47) by α0<0.
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