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Summary. We study a correspondence L between some classes of functions holomorphic
in the unit disc and functions holomorphic in the left halfplane. This correspondence is
such that for every f and w ∈ H, exp(L(f)(w)) = f(expw).

In particular, we prove that the famous class S of univalent functions on the unit
disc is homeomorphic via L to the class S(H) of all univalent functions g on H for which
g(w + 2πi) = g(w) + 2πi and limRe z→−∞(g(w)− w) = 0.

1. Introduction and preliminaries. A usual way to establish a cor-
respondence between holomorphic functions in the left halfplane and those
in the unit disc is to take the composition with the fractional linear map
ϕ(z) = z+1

z−1 . Note that ϕ ◦ ϕ = Id.
In this note we shall use the fact that the exponential function exp(z) =

ez is a covering map from the left halfplane onto the punctured unit disc to
define another correspondence between some classes of holomorphic func-
tions.

Let us introduce some notations. D will denote the unit disc and H will
denote the left halfplane {z : Re z < 0}. Let ln stand for the branch of the
logarithm such that −π < Im ln z ≤ π and ln 1 = 0.

We now define some classes of functions holomorphic on D or H.

1) S0 = {f ∈ H(D) : f(0) = 0 and f(z) 6= 0 for z 6= 0}.
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2) Sk consists of the functions from S0 which have a zero of order k at
zero.

Each function from Sk can be written as

f(z) = czkf1(z), where c 6= 0, f1(0) = 1

and f1(z) does not vanish on D. We have S0 =
⋃∞

k=1 Sk.

3) S1
k consists of the functions from Sk for which c = 1.

4) S contains all functions from S1
1 which are univalent on D. In other

words, it is the class of functions f univalent on D and such that
f(0) = 0 and f ′(0) = 1. This is the most important of all the classes
considered. Note that f(z) = z + z2 belongs to S1

1 but not to S.
5) S0(H) consists of the functions h holomorphic on H for which there

exist k ∈ N and a ∈ C with −π < Im a ≤ π such that

(i) h(w)− kw is a 2πi-periodic function,
(ii) if {wn}n∈N is a sequence in H for which limn→∞Rewn =−∞ then

lim
n→∞

(h(wn)− kwn) = a.

6) Sk(H) consists of all functions from S0(H) for which (i) and (ii) hold
with the given k ∈ N.

7) S0
k(H) consists of all functions from Sk(H) for which a = 0.

8) S(H) is the class of univalent functions from S0
1(H).

If h ∈ Sk(H) then h(w + 2πi) = h(w) + 2kπi.
In particular, if h ∈ S1(H) then

h(z + 2πi) = h(z) + 2πi.

Note that all sets Sk(H) and S0
k(H) are convex.

2. The correspondence. Let f ∈ S0. Then f ∈ Sk for some k ∈ N,
and f can be written as f(z) = czkf1(z), c 6= 0, f1(0) = 1. By a monodromy
argument there exists g holomorphic on D with g(0) = 0 such that f1(z) =
eg(z). For w ∈ H put

L(f)(w) := ln c+ kw + g(ew).

It is easy to check that L(f)(w) ∈ S0(H). Since ew is 2πi-periodic, (i)
holds. Condition (ii) is satisfied because if Rewn → −∞ then ewn → 0
and g(ewn)→ 0. We have

(∗) eL(f)(w) = f(ew) for each w ∈ H.
Theorem 1. For each k ∈ N the mapping L is one-to-one and maps Sk

onto Sk(H). It also maps S1
k onto S0

k(H).

Proof. The fact that L is one-to-one follows directly from (∗). If f1, f2 ∈
Sk and L(f1) = L(f2) then f1(ew) = f2(ew) for each w ∈ H, and so f1 = f2.



Correspondence between Holomorphic Functions 225

Now let h ∈ Sk(H). Put g1(w) = h(w) − kw − a. If z ∈ D, z 6= 0, then
there exists w ∈ H such that ew = z. Define g(z) = g1(w). Since g1 is
2πi-periodic, g is well defined on D \ {0}. We have g(z) = g1(ln z) for each
branch of ln z. Since exp(z) = ez is a covering map, g(z) is holomorphic
on D \ {0}. Condition (ii) implies that g1(w) → 0 if Rew → −∞. Hence
g(z) → 0 for z → 0. Thus g(z) extends to a function holomorphic on D by
setting g(0) = 0. Now define f(z) = eazkeg(z). Then f ∈ Sk and L(f) = h.

It also follows from the above proof that L maps S1
k onto S0

k(H).
Let nowH(D) andH(H) be the spaces of holomorphic functions on D and

H respectively, endowed with the compact-open topology. We shall consider
S1

k and S0
k(H) as topological subspaces of H(D) and H(H) respectively.

We have

Theorem 2. The mapping L is a homeomorphism between S1
k and S0

k(H)
for each k ∈ N.

Proof. Let {fn}n∈N ⊂ S1
k converge almost uniformly to f0 ∈ S1

k . We
have fn(z) = zkegn(z), gn(0) = 0 for each n ∈ N and f0(z) = zkeg0(z),
g0(0) = 0. The almost uniform convergence of fn implies that egn converges
almost uniformly to eg0 . Since g′n = (egn)′/egn and g′0 = (eg0)′/eg0 we see
that g′n converges almost uniformly to g′0. Since gn(0) = g0(0) = 0 for all
n, we have gn(z) =

	z
0 g
′
n(ξ)dξ. Thus gn converges almost uniformly to g0. It

follows that L(fn)(w) = kw + gn(ew) converges almost uniformly on H to
L(f0)(w) = kw + g0(ew).

Conversely, if L(fn) converges almost uniformly to L(f0) on H then gn

converges almost uniformly to g0 and hence fn converges almost uniformly
to f0.

Warning. The mapping L is not continuous between Sk and Sk(H)
(with compact-open topology) (because of the term a = ln c in the definition
of L).

We can also prove

Proposition 1. The class S1
k is a closed subset of H(D), and S0

k(H) is
a closed subset of H(H).

Proof. The Hurwitz theorem implies that S1
k is a closed subset of H(D).

If the sequence hn(w) = L(fn)(w) converges almost uniformly on H then
the sequence gn(ew) converges almost uniformly on H since for fn = zkegn(z)

with gn(0) = 0 we have hn(w) = kw + gn(ew). Then gn converges almost
uniformly on D \ {0} and therefore on D. It follows that fn converges on D
to f0 ∈ S1

k . We have L(f0) = limn→∞ hn ∈ S0
k(H).

Remark 1. The assumptions g(0) = 0 and −π < Im a ≤ π were
introduced to ensure that L is a one-to-one correspondence between S0
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and S0(H). If we omit them we obtain a 1-∞ correspondence. For ev-
ery f ∈ S0 we shall have a countable family of functions {Lm(f)}m∈Z,
Lm(f) = L(f) + 2mπi.

Remark 2. Let f ∈ Sk and let

fm := m
√
f(zm) = c1/m · zk · eg(zm)/m for m ∈ N.

Then
L(fm)(w) =

ln c
m

+ kw +
1
m
g(emw).

Remark 3. The correspondence L can be used to construct other classes
of holomorphic functions. Let ϕ(z) = z+1

z−1 . Let f ∈ S1. We have L(f)(w +
2πi) = L(f)(w) + 2πi. Put Λ(f) = ϕ ◦ L(f) ◦ ϕ. The function Λ(f) maps D
into the Riemann sphere Ĉ and has the following properties.

1) The nontangential limit of Λ(f) at 1 is equal to 1.
2) We have

∀k∈Z uk ◦ Λ(f) = Λ(f) ◦ uk, u0 = Id,

uk(z) =
ak

ak
· z − ak

1− akz
, ak =

kπi

1 + kπi
if k 6= 0.

For f(z) = zeg(z) with g(0) = 0,

Λ(f)(z) =
2z + g(e

z+1
z−1 ) · (z − 1)

2 + g(e
z+1
z−1 ) · (z − 1)

.

3. The case of univalent functions. We start from

Theorem 3. Let f ∈ S1. The function f is univalent iff L(f) is univa-
lent.

Proof. Let f = czeg(z) ∈ S1. Assume that f is univalent. Let L(f)(w1) =
L(f)(w2). Since f is univalent and eL(f)(w) = f(ew), we see that ew1 = ew2

and w1 = w2 + 2mπi for some m ∈ Z.
We have L(f)(w) = ln c + w + g(ew). Hence L(f)(w1) = L(f)(w2) and

w1 = w2 + 2mπi imply that m = 0 and w1 = w2.
Assume now that L(f) is univalent. Since f ∈ S1 we have L(f)(w+ 2πi)

= L(w) + 2πi. Assume that f(z1) = f(z2). If it is equal to zero then z1 = z2
= 0 by the definition of S1. Hence we can assume that there exist w1, w2 ∈ H
such that z1 = ew1 and z2 = ew2 . This implies, as before, that eL(f)(w1) =
eL(f)(w2), so there exists m ∈ Z for which L(f)(w1) = L(f)(w2) + 2mπi =
L(f)(w2 + 2mπi). Thus w1 = w2 + 2mπi and ew1 = ew2 . Hence z1 = z2.

Theorem 3 is not true for Sk with k > 1. The function f(z) = zk, k > 1,
is not univalent but L(f)(w) = kw is univalent.

Proposition 2. For every f ∈ Sk there exists f1 ∈ S1 such that f = fk
1 .
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Proof. For f(z) = czkeg(z) take f1(z) = c1/kzeg(z)/k.

Theorem 3 and Proposition 2 yield

Theorem 3′. Let f ∈ Sk. The function L(f) is univalent iff f = fk
1

where f1 ∈ S1 is univalent.

Proof. There exists m ∈ Z such that

L(f) = L(fk
1 ) = k · L(f1) + 2mπi.

Examples.

1. Let f(z) = z + z2/2. Then f ∈ S1 is univalent and hence L(f)(w) =
w + ln(1 + ew/2) is univalent on H.

2. If f(z) = z+ z2 then L(f)(w) = w+ ln(1 + ew). The function L(f) is
not univalent because f is not.

In the rest of this note we shall study the famous class S of univalent
functions from S1

1 .
Let us consider S as a subset of H(D) with compact-open topology and

S(H) as a subset of H(H) with compact-open topology. Recall that S(H) is
the set of univalent functions from S0

1(H).
The Hurwitz theorem implies that S is closed in H(D). Proposition 1

together with Theorems 1, 2 and 3 shows that S(H) is closed in H(H).
As an immediate consequence of Theorem 3 we have

Theorem 4. The mapping L is a homeomorphism from S onto S(H).

Corollary. The class S(H) is compact in H(H). More generally, for
each k ∈ N the class S̃0

k(H) consisting of all univalent functions from S0
k(H)

is compact in H(H).

Proof. The class S is compact since for each f ∈ S and z ∈ D, |f(z)| ≤∑∞
n=1 n|z|n = |z|/(1− |z|)2 (De Branges Theorem). Thus S(H) must also

be compact. Moreover, by Theorem 3′, S̃0
k(H) is the continuous image of S

under the mapping f 7→ L(fk). Hence S̃0
k(H) is compact.

Remark 4. The class S0
1(H) is not compact since S1

1 is not compact.
It contains all functions fc(z) = zecz, c ∈ C. The set of values f ′′c (0) = 2c is
not bounded.

We now consider two important definitions:

Definition 1. A univalent function f ∈ H(D) with f(0) = 0 is starlike
iff f(D) is a domain starlike with respect to zero.

Definition 2. A univalent function f ∈ H(D) with f(0) = 0 is convex
iff f(D) is a convex domain.
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The following facts are well known and can be found in [D] or [P].

Theorem A. A function f is starlike iff Re{zf ′(z)/f(z)} > 0.

Theorem B. A function f is convex iff the function f1(z) = zf ′(z) is
starlike. (One assumes here that f ∈ H(D) and f(0) = 0.)

Theorem 5.

(1) f ∈ S is starlike iff Re (L(f))′(w) > 0 for all w ∈ H.
(2) f ∈ S is convex iff

∀w∈H Re
(

(L(f))′(w) +
(L(f))′′(w)
(L(f))′(w)

)
> 0.

Proof. (1) Let f(z) = zeg(z). We have

zf ′(z)
f(z)

=
z(eg(z) + zeg(z)g′(z))

zeg(z)
= 1 + zg′(z),

L(f)(w) = w+g(ew) and (L(f))′(w) = 1+g′(ew)ew = 1+zg′(z) for z = ew.
If z = 0 then zf ′(z)/f(z) = 1. Hence and by Theorem A, f is starlike iff
Re (L(f))′(w) > 0.

(2) By Theorem B, f(z) = zeg(z) is convex iff f1(z) = zf ′(z) = z(eg(z) +
zeg(z)g′(z)) = zeg(z)+ln(1+zg′(z)) is starlike. Note that Re(1 + zg′(z)) > 0 for
z ∈ D.

Hence and by the first part of Theorem 5, f is convex iff Re (L(f1))′(w)
> 0 for each w ∈ H. We have

L(f1) = L(f) + ln((L(f))′(w))

since L(f1)(w) = w + g(ew) + ln(1 + ewg′(ew)). We obtain

(L(f1))′ = (L(f))′ +
(L(f))′′

(L(f))′
.

Thus f is convex iff

∀w∈H Re(L(f1))′(w) = Re
(

(L(f))′(w) +
(L(f))′′(w)
(L(f))′(w)

)
> 0.

Remark. We thank the referee for pointing out that the operator very
similar to our L was used in Krzyż’s paper [K, proof of Theorem 1] to study
quasiconformal automorphisms of the unit disc. Very recently Chéritat [Ch]
used Krzyż’s operator to construct a holomorphic function with a strange
Siegel disc.
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