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Summary. We prove that if f : Z¢ — R is harmonic and there exists a polynomial
W : Z% — R such that f + W is nonnegative, then f is a polynomial.

1. Introduction. Harmonic functions on the integer lattice are closely
related to lattice random walks and have been studied by many authors; an
introduction and detailed references can be found in a modern monograph
by Woess [8]. Many different methods have been successfully applied, includ-
ing the extreme point theory [2] and martingale approach [4]. The present
paper grew out of the author’s bachelor thesis [7] which extended results and
methods of Darkiewicz [3]. A similar result for sublinear functions on com-
pactly generated groups of polynomial growth has been obtained by Hebisch
and Saloff-Coste [0, Theorem 6.1] by using Gaussian estimates for iterated
kernels of random walks.

2. Preliminaries and main results. Let d € N and let (e;)%; be the
standard orthonormal basis for R?. A function f : Z¢ — R is called harmonic
if it has the mean value property,

d
flz) = %Z[f(a:—i—ei) + f(z —e)] forall z € Z%.
i=1

We say that f : Z¢ — R is a polynomial if there exists a polynomial
F :R? — R such that f = F|za.
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Fort > 0 let Yl(t), . ,Yd(t), Z{t) e Zc(lt) be independent Poisson random
variables with mean t.
We will use the following notation:

o |lz]p, = (fo:l \xi|p)1/p for p € [1,00) and = = (x1,...,24) € R?,
o X =y zWfori=1,....d X0 =L xPe,

a() =P — 2V =) for 1 € Z,

Ge(k) = [T7 ge(ks) for k = (ky, ... k) € Z™,

a(1) =PV = 1) = e~ /1l for | € Ny = NU {0}

Note that if ¢ € N then ¢;(0) < gu(1) < -+ < qu(t—1) = q(t) > q:(t+1) >
qa(t+2)>--.
We consider the space of all exponentially bounded functions,

L={f:2% >R |30 |f(2)] < cre?l®l for all 2z € 79},
and define a family of operators (P¢)i>0, Pr: L — L, by

Pu(f)(z) = Ef(z + X D).

THEOREM 2.1. The family (Pi)i>o0 is a well-defined semigroup of opera-
tors. Moreover, harmonic functions belonging to L lie in the domain Dy of
the infinitesimal generator A of the semigroup (Pt)i>0, and for f € Dy we
have

d

(Af)(@) = 2 Pu(f)(x)

= ) flt+k) —2df(x)

=0 kezd.|k|,=1
In particular, if f € L is harmonic, then (Af)(x) = 0 for all z € Z¢, and so
Puf)(x) =D Gilk)f(x+k)=f(z) foralxeZ
kezd

Proof. If f € L, then there exist ¢1, ¢a, ¢1(t) > 0 such that

Ef(z+ XD < ¢Rel7+X 1 < C1eCQHxHI(EeCQ|XY)|)d = ¢ (t)ec2llelh
so Pi(f) € L. Observe that Po(f) = f. If s, > 0 and X ) is a copy of X (%)
independent of X then X® 4+ X () ~ X(+5) g0 one can easily check that
(Pt)e>0 is a semigroup. The last part is a simple calculation. =

LEMMA 2.2. If (r;)ien are independent +1 symmetric Bernoulli random
variables and M is a Poisson variable with mean 4t, such that M and (7;);en
are independent, then

1
Xft) ~ §(T1+"'+T2M)-
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Moreover, for l € Ny,

a) =g =Y 2 (jj l),

n=0
so ifli,ls € Z and 0 <11 <3, then

ge(l1) > gi(l2).

Proof. To prove the first statement, it is enough to show that the char-
acteristic functions of both random variables are equal. We have

030 (2) = D0 (@) 500 (—x) = TN = efEeone2)
_ e—4tsin2(:c/2)

and
Plrattran) 2(2 ZP = )Py ttran) /2(T)
— Z ar ( (z ))Qn — Ut Dy y2(2))?
— e ( 14cos?(z/2)) _ 674tsin2(x/2)’
as

Brajal@) = by (/2) = 5 (7 4 /%) = cos(a2)

To finish the proof observe that for [ € Ny we have

1
gt(l) = P<2 (7‘1 +--- T2M > Z]P 7’1 + Ty = 2l)

—Ze*“ 2n _ie%ti 2n
n! 22" n+1 _n:O n!'\n+1

and (2% ) > (,2) for 0 <1y <lp. m

LEMMA 2.3. For every e >0 and d € N we can find 0 < s <t such that
gi(k) 2 (1 —e)gs(k—1)  forkeZ
and
Gi(k) > (1 —¢)Gy(k —e1) fork e 2%

Proof. If the first inequality holds for £ = 1,2,...,m then it holds for
k=0,—-1,...,—m.Indeed, for k = —1, -2, ..., —m we have (see Lemma
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and
) _ ) _ o (s) _ . (s) _
PX;"=0)>P(X;"=1)>(1—-¢)P(X;” =0) > (1 —-¢)P(X;” =-1).

For k > 1 we have

PX;=k)=) PY,=Il+kP(Z =1)= -2t
(X =F) lz_% (¥ =1+ k)P(Z: = 1) ;e N1+ k)
o0 2l+k—1
P(Xy=k—-1)=Y e>»_~
( ) ZZ;G Ni+k—1)
Let s > 1 be such that /s € N and set t = s + y/s. We then have
oo £20+k oo 12(+/5)+k
P(X, = k) > -2t _ > —2t .
(X )—Z_Zfe N1+ k) ;e A+ /)N + 5+ k)

It is enough to prove that

£204/5)+k g2lHk—1
inf (e 2 e 1.
k>1,1>0 4+ V)l + /s + k) Nl+k—1)) s—o0

We consider the expression

. s—t s(1 bk I+k-1)" [t t i
PLi(s) = e )5t2\7<$) R (S) ol

The function N 3 n — (t/s)"(n — 1)!/(n + /s)! has its minimum at n =
s(14+/s)/(t — s) = t. Similarly, the function Ng 3 n — (¢/s)"n!/(n + /s)!
has its minimum at n = sy/s/(t — s) = s. Therefore

t+s
_ t (t—1)! s!
— 2s—t) 25 L il
as) 2 pugals) = e 0sE (1) LEIE S
2s++/5
:6_2\/53<3+\/§)2\/§ 8+\/§ 8! ]_ )
s (s +2ys)! s+ /s
Using Stirling’s formula we get s!/(s + 21/5)! &~ e2V5s% /(s + 2/5)5T2V5 as
s — 00, hence we arrive at

L pu(s) A s T TV (s o)V (s 4 0 ) TS

_ \/§72372\/§+2+28+3\/§fl(1+\/§>_\/§_1<1+\/§)2s+4\/§(8+2\/§)—5—2\/§

Vs+1 s+24/s
— \/g w _— 6_16 =1.
1+ /s s+2¢/s

S§—00
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To prove the second part observe that the first inequality yields

Gi(k) = gi(k1) ... gr(ka) > (1 —€)gs(kr — Dgr(k2) - .. ge(ka)
> (1—¢)?Gy(k —e1),

9¢(1) = g:(l]) = g (U] + 1) = (1 = &)gs(ll]) = (1 — €)gs(0)- m

A sequence (z;)}, C Z% is called a path in Z% between x¢ and x, if
lz; — ziz1]ls = 1 for i = 0,...,n — 1. For k € Z% let L, (k) denote the
number of paths in Z? between 0 and k.

LEMMA 2.4. Let f : Z* — R be harmonic. Suppose there exists a poly-
nomial W : Z¢ — R such that f(x) > —W(x). Then f € L.

Proof. Using simple induction we can prove that for f harmonic and
n € N we have

keZd
Let I € Z%. Then Ly, (1) > 1 and

FOY@DI =3 (£ (k) + W (k) Ly, (k) = > W (k) Lyy, (k

kezd keZd

> (fO+WO) -, max Wk 2d)l

hence

F() < FO) @)+ 2a)H max W (k)| = W(I) < crelh

k(&N <[22

for some c1,co > 0 which depend only on f and W but not on [. Since f is
polynomially bounded from below we have f € L. u

Now we may recover the classical strong Liouvillle property of harmonic
functions on Z?. Woess [§] traces back its weak form to Blackwell [I]; see
also [2] and [5].

THEOREM 2.5. If f : Z¢ — R is harmonic and f > 0 then f is constant.

Proof. By Lemma we have f € L. Let z € Z¢. Lemma implies
that there exist ¢ > s > 0 such that
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f(x) = f(z+e1) = P(f)(z) — Ps(f)(x +e1)
= Z flz+k)Gi(k) — Z flz+k+e)Gs(k)

kezd kezd
= Y f@+E)(Gilk) = Go(k —e1))
kezd
>—c > fla+k)G(k—e)=—cf(z+er).
kezd

By letting ¢ — 0 we get f(z) > f(z + e1). Applying this inequality to the
harmonic function z +— g(z) = f(—2z) we get f(x) = f(z + e1) and similarly
flx)=f(z+e)fori=1,...,d. =

We will now prove some auxiliary lemmas.

LEMMA 2.6. Let n € N and let k € Z satisfy |k| < n. Then

1 k2 1 [ 2n 1 K2 1 2
_— 1 —_— < —_— < —_— e 2n < e 2n,
2\/n n) =2 \n+k)= Vgl T Vn+1
Proof We can assume k& > 0. By multiplying the obvious inequalities
—1)2 > 25(2j —2) for j = 2,3,...,n and (25)% > (25 — 1)(2j + 1) for
1,2,...,n we arrive at ((2n — 1)”) (2n)”(2n —2)!land ((2n)!1)% >
)”(2n + 1)!, so that

1 (2n — 1)1 2 1
— < < .
4n (2n)! 2n+1

To finish the proof it suffices to observe that

INERRCTS (s

1

2 k k 2
L §<1—k> <H(1— i ) (1—’“) <e v m
n n n+j 2n
LEMMA 2.7. There exists a constant C' > 0 such that for k € Z\ {0},

Gz (k) = Ik ||
Proof. Let t >0 and k = (ki1,...,kg) € Z%. We have (see Lemma

tm 2n t" 2n
ki) > e 4= > e 4 i=1,...,d N).
gt( )_6 n'(n—i—kz)_e n! n+HkH1 (7' 3 @, N € )

We set t = ||k||? and n = 4¢. Then e~#¢" = e~"n" /4" so that

n 2
) = a0 g () 2 ) Z a5 (1= 1E00) = g,

J

(2
J
(2n

and
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where we have used Lemma Note that by Chebyshev’s inequality,

P(Y\"” —n| > 2v/n) = P(|Y,"”) — EY,"| > 2¢/n) < Dfn() = 1/4,
so that
3A<P(Y” —nl<2vm)= Y. qu(m)
meNp: [m—n|<2y/n
< card{m € Ny : |m — n| < 2v/n} - g.(n) < 8|kl - gu(n).
Hence

3 3 c

g¢(k;) > :
320|k[ly 16]lklln (kI

and therefore J
G (k) = [ [ ge(ke) > COllklI . w
=1

LEMMA 2.8. Let W : R? — R be a polynomial. Define Hy : R — R by

Hy (t) = P(W)(0) = > Gu(k)W (k).
kezd
Then Hyy is a polynomial.

Proof. Hyy is well defined since W|,a € L. Because of the product struc-
ture of Gy it is enough to consider the case d = 1 and W (z) = 2! for I € N.
The characteristic function

— —4tsin?(z/2)
Pym(z) =¢
is smooth, so that
d' )
t . X
H (1) = E[(X{")] = (=) —=-(0),
which is clearly a polynomial in ¢. m

LEMMA 2.9. Let f : Z* — R be harmonic. Suppose there exists a poly-
nomial W : Z¢ — R such that f > —W. Then |f| < R for some polynomial
R:7¢ —R.

Proof. We have f € L (see Lemma . Proposition yields
F0) = Gi(k)f(k),
kezd
hence for all [ € Z¢,

F0) =" Gik)(f(k) + W (k) = Y Gi(k)W (k)

kezd kezd
> G(D)(f) + W (1)) — Hw (1)
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Therefore
FO) + Hw (t) > Gi(D)(f (1) + W (1))
There exists a constant ¢ = ¢(d) > 0 such that (see Lemma [2.7)) for all I # 0,
G () = el
Hence for [ # 0,
F(0) + Hu (ILlIF) = e(£(1) + W @)l
and therefore
FO) < e HURY (£0) + Hw (I11) = W (D).
Since the right-hand side is polynomially bounded from above in [, we have

f(1) < P(1) for some polynomial P : R — R and all [ € Z%. One can easily
check that [f(I)| <1+ [P(D]2+ [W()]* =

LEMMA 2.10. Forallz € Z, n € N, a,b € R and p > 0 we have
|+ blP < 2°([al” + [b")

and
|z = |z + 1| < 1+ 27|z

Proof. Without loss of generality we may assume that |a| < |b|. Then
la +b[” < (2[b])” < 2°(Jal” + [b[").

To prove the second inequality note that

n—1
o+ 171 = 1] <l 17 = o = [ ()

k=0

n—1

<142z -

LEMMA 2.11. Ift > 0 then
1
9:(0)

< —
W
and
E| XD m < b(m)t™?2 + c(m)
for some constants b(m),c(m) > 0 and m € N.

Proof. Let M be the Poisson variable with mean 4¢{. By Lemma
Lemma [2.6] and Jensen’s inequality we have

o o0
S a1 (2n L (A1 1
9:(0) vt n! 22”(71) _nzo n! Vn+1 vVM+1

1 1/2
<
- (EM+1>
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and - -
L= e B Ly e B L
M+1 ~ (n+1)! 4t & (n+1)! ~ 4t

To prove the second part, let M, 71, 72, ... be as in Lemma[2.2] For fixed
ke Nandalli <k we have Ee"i/VE = 145 k=5/(25)! < 1+ek~! < e“/*,
so that

k
1 r1+~--+7“k>m <r1+---+rk> VR
E( <Eexp| ——— | = Ee”/ < e“.
m! Vk n Vk g

Hence
Elry + - 4™ = 2E(ry + - + 7)< 2e“m! - K2
and therefore, by Lemma,
E| XY™ < 2¢fm! - 27 E(2M)™? < 2¢m) - (EM™)Y/2.
Now,
EM™ = EM™Iyj < + EM™ Lyysm < m™ + m™E(M — m + 1)™

m — —t(4t)k
<m <1+£e 4 klk(k:l)...(km+1)>

=m"(1+ (4t)™)
and it is obvious (see Lemma that
E[X{7 ™ < b(m)t™? + c(m)
for some constants b(m), c(m) > 0. =

Now we state the key lemma of this paper. Similar estimates for sublin-
ear harmonic functions have been obtained in a more general setting in [0
Theorem 6.1].

LEMMA 2.12. Let n € N and let f : Z¢ — R be harmonic. Suppose that
there exists a constant a,, such that

[f (@) < an(1+ [l]l7)
for all & € Z*. Then there exists a constant an_1 such that for all x € Z¢,
[f(z+e1) = f@)] < an—1(1+ [lz]n27)-
Proof. For x € Z% and any t > 0 we have

fl@) =Y Gi(k)f(z+k)

kezd

flate) =Y Gik)f(z+er+k) =Y Gilk—e))f(x+k),

kezd kezd

and

hence
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f@+e) = f@)] < Y |Gk —er) — Gi(R)| | f(x + k)|
kezd
< Y |Gi(k - e1) = Gu(k)|an (1 + [l + |7
kezd
= > (Gi(k) = Gilk —ex))an(1 + [|lz + K[7)
k€Zd : k1 <0
+ ) (Gik—e1) = Gu(R))an(1 + [z + k|7
k€Zd : k>0
= Z Gi(k)an(|z1 + E1|" — |21 + k1 + 1]")
k€zZd k1 <—1
+ Y Gk)an(lry + k+ 1" = oy + ")
k€Z4 k1 >1
+ > Gk)an(1+ |z +E|7)
ke{0}xzd—1
+ Y GiR)an(1+ [z +E+ el
kc{0}xzd-1

We have used the product structure of Gy and Lemma By using Lemma
210 we get
S Gk (e k" — e k1)

k’lg—l,k‘ezd
+ Z Gi(k)(|wy 4k + 1" — |21 + k1[™)
ko >1,kEZ4
< GR) 2 e+ k" ) = 142" ) gi(k)|an + R
kezd k1€Z
< 1422071 Z ge(k) (lza "1 + ka7

k1€Z
=14+ 22 |y [P+ B,
We also have, again by using Lemma [2.10] several times,
Yoo GR)A+z K+ D) Gk A+ [zt k+e))
ke{0}xzd-1 ke{0}xzd-1

< Y Gkl + 2"+ el + 2" IR
ke{0}xzd-1

< O +2"2l3 + 2la + el + 4 2 ELX O )
< 4" g (0)(1 + ||zl + d E[X "),



Harmonic Functions 241

so we arrive at

[f(z+e1) = flz)]
< anlL+ 27 (a7 4 BIX ) 47 g (001 [l + d LX)
< 4 and[(L+ 37+ X 4 gu(0) (e + EIX M)
From Lemma we infer that there exists a constant C' = C(n,d) such
that for every ¢ > 0 and every z € Z¢,
[f(@+er) = f(2)] < Can[l+ [|xfp=g + 12 4672 (|[z]n + /)],
By setting t = (1 + ||z||1)? we complete the proof. m

LEMMA 2.13. Let f : Z% — R be such that fi(z) = f(x +e;) — f(x) are
polynomials for i =1,...,d. Then f is a polynomial.

Proof. First we consider the case d = 1. Note that f(z) — f(0) is deter-
mined by values of f;. Define a sequence of polynomials (W)32, by

m—1
m
™= Z <k>Wk(3{:), m=1,2,....

k=0

A simple induction yields Wy(z +1) — Wy(x) = 2 and W}, (0) = 0. It follows
that if f1(x) = S0y aw? then f(z) = f(0) + Y2ty a;Wi(z). If d > 1 then

flay, ... xq) = f(z1,22,...,2q) — f(0,22,...,24)
+f(0,.%'2,...,.1‘d> —f(0,0,.’Eg,...,.’Bd)
+--+ f(0,...,0,z1) — f(0,...,0) + £(0).

By using the same argument as in the case d = 1 we see that

f(O,...,xi,...,xd) —f(O,...,xZ-H,...,a:d) (Z = 1,...,d)
are polynomials. =

MAIN THEOREM 2.14. Let f : Z* — R be harmonic. Suppose there exists
a polynomial W : Z% — R such that f(k) > —W (k) for k € Z¢. Then f is a
polynomial.

Proof. There exists n € N such that |f(z)| < a,(1+ ||z]]}}) (see Lemma
. We claim that together with the harmonicity of f this already implies
that f is a polynomial. We prove this by induction on n. For n = 0 the claim
is a consequence of Proposition 2.5 For n > 1 let f;(z) = fi(z + €1) — f(x).
Note that f;, ¢ =1,...,d, are also harmonic. By Lemma and induction
hypothesis, f; are polynomials, hence by Lemma [2.13] we conclude that f is
a polynomial as well. u
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