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Summary. We prove that if f : Zd → R is harmonic and there exists a polynomial
W : Zd → R such that f +W is nonnegative, then f is a polynomial.

1. Introduction. Harmonic functions on the integer lattice are closely
related to lattice random walks and have been studied by many authors; an
introduction and detailed references can be found in a modern monograph
by Woess [8]. Many different methods have been successfully applied, includ-
ing the extreme point theory [2] and martingale approach [4]. The present
paper grew out of the author’s bachelor thesis [7] which extended results and
methods of Darkiewicz [3]. A similar result for sublinear functions on com-
pactly generated groups of polynomial growth has been obtained by Hebisch
and Saloff-Coste [6, Theorem 6.1] by using Gaussian estimates for iterated
kernels of random walks.

2. Preliminaries and main results. Let d ∈ N and let (ei)di=1 be the
standard orthonormal basis for Rd. A function f : Zd → R is called harmonic
if it has the mean value property,

f(x) =
1
2d

d∑
i=1

[f(x+ ei) + f(x− ei)] for all x ∈ Zd.

We say that f : Zd → R is a polynomial if there exists a polynomial
F : Rd → R such that f = F |Zd .
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For t ≥ 0 let Y (t)
1 , . . . , Y

(t)
d , Z

(t)
1 , . . . , Z

(t)
d be independent Poisson random

variables with mean t.
We will use the following notation:

• ‖x‖p = (
∑d

i=1 |xi|p)1/p for p ∈ [1,∞) and x = (x1, . . . , xd) ∈ Rd,

• X(t)
i = Y

(t)
i − Z

(t)
i for i = 1, . . . , d, X(t) =

∑d
i=1X

(t)
i ei,

• gt(l) = P(Y (t)
1 − Z(t)

1 = l) for l ∈ Z,
• Gt(k) =

∏m
i=1 gt(ki) for k = (k1, . . . , km) ∈ Zm,

• qt(l) = P(Y (t)
1 = l) = e−ttl/l! for l ∈ N0 = N ∪ {0}.

Note that if t ∈ N then qt(0) ≤ qt(1) ≤ · · · ≤ qt(t−1) = qt(t) ≥ qt(t+1) ≥
qt(t+ 2) ≥ · · · .

We consider the space of all exponentially bounded functions,

L = {f : Zd → R | ∃c1,c2>0 |f(x)| ≤ c1ec2‖x‖1 for all x ∈ Zd},

and define a family of operators (Pt)t≥0, Pt : L → L, by

Pt(f)(x) = Ef(x+X(t)).

Theorem 2.1. The family (Pt)t≥0 is a well-defined semigroup of opera-
tors. Moreover, harmonic functions belonging to L lie in the domain DA of
the infinitesimal generator A of the semigroup (Pt)t≥0, and for f ∈ DA we
have

(Af)(x) =
d

dt
Pt(f)(x)

∣∣∣∣
t=0

=
∑

k∈Zd : ‖k‖1=1

f(x+ k)− 2df(x).

In particular, if f ∈ L is harmonic, then (Af)(x) = 0 for all x ∈ Zd, and so

Pt(f)(x) =
∑
k∈Zd

Gt(k)f(x+ k) = f(x) for all x ∈ Zd.

Proof. If f ∈ L, then there exist c1, c2, c̃1(t) > 0 such that

|Ef(x+X(t))| ≤ c1Eec2‖x+X
(t)‖1 ≤ c1ec2‖x‖1(Eec2|X

(t)
1 |)d = c̃1(t)ec2‖x‖1 ,

so Pt(f) ∈ L. Observe that P0(f) = f . If s, t ≥ 0 and X̃(s) is a copy of X(s)

independent of X(t), then X(t) + X̃(s) ∼ X(t+s), so one can easily check that
(Pt)t≥0 is a semigroup. The last part is a simple calculation.

Lemma 2.2. If (ri)i∈N are independent ±1 symmetric Bernoulli random
variables and M is a Poisson variable with mean 4t, such that M and (ri)i∈N
are independent, then

X
(t)
1 ∼

1
2

(r1 + · · ·+ r2M ).
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Moreover, for l ∈ N0,

gt(l) = gt(−l) =
∞∑
n=0

e−4t t
n

n!

(
2n
n+ l

)
,

so if l1, l2 ∈ Z and 0 ≤ l1 ≤ l2, then

gt(l1) ≥ gt(l2).

Proof. To prove the first statement, it is enough to show that the char-
acteristic functions of both random variables are equal. We have

φ
X

(t)
1

(x) = φ
Y

(t)
1

(x)φ
Z

(t)
1

(−x) = et(e
ix−1)et(e

−ix−1) = et(2 cosx−2)

= e−4t sin2(x/2)

and

φ(r1+···+r2M )/2(x) =
∞∑
n=0

P(M = n)φ(r1+···+r2n)/2(x)

=
∞∑
n=0

e−4t (4t)n

n!
(φr1/2(x))

2n = e−4te4t(φr1/2(x))2

= e4t(−1+cos2(x/2)) = e−4t sin2(x/2),

as

φr1/2(x) = φr1(x/2) =
1
2

(e−ix/2 + eix/2) = cos(x/2).

To finish the proof observe that for l ∈ N0 we have

gt(l) = P
(

1
2

(r1 + · · ·+ r2M ) = l

)
=
∞∑
n=0

P(M = n)P(r1 + · · ·+ r2n = 2l)

=
∞∑
n=0

e−4t (4t)n

n!
1

22n

(
2n
n+ l

)
=
∞∑
n=0

e−4t t
n

n!

(
2n
n+ l

)
and

(
2n
n+l1

)
≥
(

2n
n+l2

)
for 0 ≤ l1 ≤ l2.

Lemma 2.3. For every ε > 0 and d ∈ N we can find 0 < s < t such that

gt(k) ≥ (1− ε)gs(k − 1) for k ∈ Z

and
Gt(k) ≥ (1− ε)Gs(k − e1) for k ∈ Zd.

Proof. If the first inequality holds for k = 1, 2, . . . ,m then it holds for
k = 0,−1, . . . ,−m. Indeed, for k = −1,−2, . . . ,−m we have (see Lemma 2.2)
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P(X(t)
1 = k) = P(X(t)

1 = −k) ≥ (1− ε)P(X(s)
1 = −k − 1)

= (1− ε)P(X(s)
1 = k + 1) ≥ (1− ε)P(X(s)

1 = k − 1)

and

P(X(t)
1 = 0) ≥ P(X(t)

1 = 1) ≥ (1− ε)P(X(s)
1 = 0) ≥ (1− ε)P(X(s)

1 = −1).

For k ≥ 1 we have

P(Xt = k) =
∞∑
l=0

P(Yt = l + k)P(Zt = l) =
∞∑
l=0

e−2t t2l+k

l!(l + k)!
,

P(Xs = k − 1) =
∞∑
l=0

e−2s s2l+k−1

l!(l + k − 1)!
.

Let s > 1 be such that
√
s ∈ N and set t = s+

√
s. We then have

P(Xt = k) ≥
∞∑

l=
√
s

e−2t t2l+k

l!(l + k)!
=
∞∑
l=0

e−2t t2(l+
√
s)+k

(l +
√
s)!(l +

√
s+ k)!

.

It is enough to prove that

inf
k≥1, l≥0

(
e−2t t2(l+

√
s)+k

(l +
√
s)!(l +

√
s+ k)!

/
e−2s s2l+k−1

l!(l + k − 1)!

)
−−−→
s→∞

1.

We consider the expression

pl,k(s) := e2(s−t)st2
√
s

(
t

s

)l+k (l + k − 1)!
(l +
√
s+ k)!

(
t

s

)l l!
(l +
√
s)!
.

The function N 3 n 7→ (t/s)n(n − 1)!/(n +
√
s)! has its minimum at n =

s(1 +
√
s)/(t− s) = t. Similarly, the function N0 3 n 7→ (t/s)nn!/(n+

√
s)!

has its minimum at n = s
√
s/(t− s) = s. Therefore

pl,k(s) ≥ ps,t−s(s) = e2(s−t)st2
√
s

(
t

s

)t+s (t− 1)!
(t+
√
s)!

s!
t!

= e−2
√
ss(s+

√
s)2
√
s

(
s+
√
s

s

)2s+
√
s s!
(s+ 2

√
s)!

1
s+
√
s
.

Using Stirling’s formula we get s!/(s + 2
√
s)! ≈ e2

√
sss/(s + 2

√
s)s+2

√
s as

s→∞, hence we arrive at

inf
k≥1, l≥0

pl,k(s) ≈ s−s−
√
s+1(s+

√
s)2s+3

√
s−1(s+ 2

√
s)−s−2

√
s

=
√
s
−2s−2

√
s+2+2s+3

√
s−1(1 +

√
s)−
√
s−1(1 +

√
s)2s+4

√
s(s+ 2

√
s)−s−2

√
s

=
( √

s

1 +
√
s

)√s+1(s+ 2
√
s+ 1

s+ 2
√
s

)s+2
√
s

−−−→
s→∞

e−1e = 1.
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To prove the second part observe that the first inequality yields

Gt(k) = gt(k1) . . . gt(kd) ≥ (1− ε)gs(k1 − 1)gt(k2) . . . gt(kd)

≥ (1− ε)dGs(k − e1),

since

gt(l) = gt(|l|) ≥ gt(|l|+ 1) ≥ (1− ε)gs(|l|) = (1− ε)gs(l).

A sequence (xi)ni=0 ⊂ Zd is called a path in Zd between x0 and xn if
‖xi − xi+1‖1 = 1 for i = 0, . . . , n − 1. For k ∈ Zd let Ln(k) denote the
number of paths in Zd between 0 and k.

Lemma 2.4. Let f : Zd → R be harmonic. Suppose there exists a poly-
nomial W : Zd → R such that f(x) ≥ −W (x). Then f ∈ L.

Proof. Using simple induction we can prove that for f harmonic and
n ∈ N we have

f(0) =
1

(2d)n
∑
k∈Zd

f(k)Ln(k).

Let l ∈ Zd. Then L‖l‖1(l) ≥ 1 and

f(0)(2d)‖l‖1 =
∑
k∈Zd

(f(k) +W (k))L‖l‖1(k)−
∑
k∈Zd

W (k)L‖l‖1(k)

≥ (f(l) +W (l))− max
k: ‖k‖1≤‖l‖1

|W (k)| · (2d)‖l‖1 ,

hence

f(l) ≤ f(0)(2d)‖l‖1 + (2d)‖l‖1 max
k: ‖k‖1≤‖l‖1

|W (k)| −W (l) ≤ c1ec2‖l‖1

for some c1, c2 > 0 which depend only on f and W but not on l. Since f is
polynomially bounded from below we have f ∈ L.

Now we may recover the classical strong Liouvillle property of harmonic
functions on Zd. Woess [8] traces back its weak form to Blackwell [1]; see
also [2] and [5].

Theorem 2.5. If f : Zd → R is harmonic and f ≥ 0 then f is constant.

Proof. By Lemma 2.4 we have f ∈ L. Let x ∈ Zd. Lemma 2.3 implies
that there exist t > s > 0 such that
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f(x)− f(x+ e1) = Pt(f)(x)− Ps(f)(x+ e1)

=
∑
k∈Zd

f(x+ k)Gt(k)−
∑
k∈Zd

f(x+ k + e1)Gs(k)

=
∑
k∈Zd

f(x+ k)(Gt(k)−Gs(k − e1))

≥ −ε
∑
k∈Zd

f(x+ k)Gs(k − e1) = −εf(x+ e1).

By letting ε → 0 we get f(x) ≥ f(x + e1). Applying this inequality to the
harmonic function x 7→ g(x) = f(−x) we get f(x) = f(x+ e1) and similarly
f(x) = f(x+ ei) for i = 1, . . . , d.

We will now prove some auxiliary lemmas.

Lemma 2.6. Let n ∈ N and let k ∈ Z satisfy |k| ≤ n. Then
1

2
√
n

(
1− k2

n

)
≤ 1

22n

(
2n
n+ k

)
≤ 1√

2n+ 1
e−

k2

2n ≤ 1√
n+ 1

e−
k2

2n .

Proof. We can assume k ≥ 0. By multiplying the obvious inequalities
(2j − 1)2 ≥ 2j(2j − 2) for j = 2, 3, . . . , n and (2j)2 ≥ (2j − 1)(2j + 1) for
j = 1, 2, . . . , n we arrive at ((2n− 1)!!)2 ≥ 1

2(2n)!!(2n− 2)!! and ((2n)!!)2 ≥
(2n− 1)!!(2n+ 1)!!, so that

1
4n
≤
(

(2n− 1)!!
(2n)!!

)2

≤ 1
2n+ 1

.

To finish the proof it suffices to observe that

1
22n

(
2n
n+ k

)
=

(2n− 1)!!
(2n)!!

·
k∏
j=1

(
1− k

n+ j

)
and

1− k2

n
≤
(

1− k

n

)k
≤

k∏
j=1

(
1− k

n+ j

)
≤
(

1− k

2n

)k
≤ e−

k2

2n .

Lemma 2.7. There exists a constant C > 0 such that for k ∈ Zd \ {0},
G‖k‖21(k) ≥ C

d‖k‖−2d
1 .

Proof. Let t > 0 and k = (k1, . . . , kd) ∈ Zd. We have (see Lemma 2.2)

gt(ki) ≥ e−4t t
n

n!

(
2n

n+ ki

)
≥ e−4t t

n

n!

(
2n

n+ ‖k‖1

)
(i = 1, . . . , d, n ∈ N).

We set t = ‖k‖21 and n = 4t. Then e−4ttn = e−nnn/4n, so that

gt(ki) ≥ qn(n) · 1
22n

(
2n

n+ ‖k‖1

)
≥ qn(n) · 1

2
√
n

(
1− ‖k‖

2
1

n

)
=

3
16
qn(n)/‖k‖1,
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where we have used Lemma 2.6. Note that by Chebyshev’s inequality,

P(|Y (n)
1 − n| ≥ 2

√
n) = P(|Y (n)

1 − EY (n)
1 | ≥ 2

√
n) ≤ D2Y

(n)
1

4n
= 1/4,

so that
3/4 ≤ P(|Y (n)

1 − n| < 2
√
n) =

∑
m∈N0: |m−n|<2

√
n

qn(m)

≤ card{m ∈ N0 : |m− n| < 2
√
n} · qn(n) ≤ 8‖k‖1 · qn(n).

Hence
gt(ki) ≥

3
32‖k‖1

· 3
16‖k‖1

=
C

‖k‖21
and therefore

G‖k‖21(k) =
d∏
i=1

gt(ki) ≥ Cd‖k‖−2d
1 .

Lemma 2.8. Let W : Rd → R be a polynomial. Define HW : R→ R by

HW (t) = Pt(W )(0) =
∑
k∈Zd

Gt(k)W (k).

Then HW is a polynomial.

Proof. HW is well defined since W |Zd ∈ L. Because of the product struc-
ture of Gt it is enough to consider the case d = 1 and W (z) = zl for l ∈ N.
The characteristic function

φ
X

(t)
1

(z) = e−4t sin2(z/2)

is smooth, so that

HW (t) = E[(X(t)
1 )l] = (−i)l

dlφ
X

(t)
1

dzl
(0),

which is clearly a polynomial in t.

Lemma 2.9. Let f : Zd → R be harmonic. Suppose there exists a poly-
nomial W : Zd → R such that f ≥ −W . Then |f | ≤ R for some polynomial
R : Zd → R.

Proof. We have f ∈ L (see Lemma 2.4). Proposition 2.1 yields

f(0) =
∑
k∈Zd

Gt(k)f(k),

hence for all l ∈ Zd,

f(0) =
∑
k∈Zd

Gt(k)(f(k) +W (k))−
∑
k∈Zd

Gt(k)W (k)

≥ Gt(l)(f(l) +W (l))−HW (t).
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Therefore
f(0) +HW (t) ≥ Gt(l)(f(l) +W (l)).

There exists a constant c = c(d) > 0 such that (see Lemma 2.7) for all l 6= 0,

G‖l‖21(l) ≥ c‖l‖
−2d
1 .

Hence for l 6= 0,

f(0) +HW (‖l‖21) ≥ c(f(l) +W (l))‖l‖−2d
1

and therefore

f(l) ≤ c−1‖l‖2d1
(
f(0) +HW (‖l‖21)

)
−W (l).

Since the right-hand side is polynomially bounded from above in l, we have
f(l) ≤ P (l) for some polynomial P : Rd → R and all l ∈ Zd. One can easily
check that |f(l)| ≤ 1 + [P (l)]2 + [W (l)]2.

Lemma 2.10. For all x ∈ Z, n ∈ N, a, b ∈ R and p ≥ 0 we have

|a+ b|p ≤ 2p(|a|p + |b|p)
and ∣∣|x|n − |x+ 1|n

∣∣ ≤ 1 + 2n|x|n−1.

Proof. Without loss of generality we may assume that |a| ≤ |b|. Then
|a+ b|p ≤ (2|b|)p ≤ 2p(|a|p + |b|p).

To prove the second inequality note that∣∣|(x+ 1)n| − |xn|
∣∣ ≤ |(x+ 1)n − xn| =

∣∣∣∣n−1∑
k=0

(
n

k

)
xk
∣∣∣∣ ≤ 1 +

n−1∑
k=1

(
n

k

)
|x|n−1

≤ 1 + 2n|x|n−1.

Lemma 2.11. If t > 0 then

gt(0) ≤ 1
2
√
t

and
E|X(t)

1 |
m ≤ b(m)tm/2 + c(m)

for some constants b(m), c(m) > 0 and m ∈ N.

Proof. Let M be the Poisson variable with mean 4t. By Lemma 2.2,
Lemma 2.6 and Jensen’s inequality we have

gt(0) =
∞∑
n=0

e−4t (4t)n

n!
1

22n

(
2n
n

)
≤
∞∑
n=0

e−4t (4t)n

n!
1√
n+ 1

= E
1√

M + 1

≤
(

E
1

M + 1

)1/2
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and

E
1

M + 1
=
∞∑
n=0

e−4t (4t)n

(n+ 1)!
=

1
4t

∞∑
n=0

e−4t (4t)n+1

(n+ 1)!
≤ 1

4t
.

To prove the second part, let M, r1, r2, . . . be as in Lemma 2.2. For fixed
k ∈ N and all i ≤ k we have Eeri/

√
k = 1+

∑∞
s=1 k

−s/(2s)! ≤ 1+ek−1 ≤ ee/k,
so that

1
m!

E
(
r1 + · · ·+ rk√

k

)m
+

≤ E exp
(
r1 + · · ·+ rk√

k

)
=

k∏
i=1

Eeri/
√
k ≤ ee.

Hence
E|r1 + · · ·+ rk|m = 2E(r1 + · · ·+ rk)m+ ≤ 2eem! · km/2

and therefore, by Lemma 2.2,

E|X(t)
1 |

m ≤ 2eem! · 2−m · E(2M)m/2 ≤ 2eem! · (EMm)1/2.
Now,

EMm = EMmIM<m + EMmIM≥m ≤ mm +mmE(M −m+ 1)m

≤ mm

(
1 +

∞∑
k=m

e−4t (4t)k

k!
k(k − 1) . . . (k −m+ 1)

)
= mm(1 + (4t)m)

and it is obvious (see Lemma 2.10) that

E|X(t)
1 |

m ≤ b(m)tm/2 + c(m)

for some constants b(m), c(m) > 0.

Now we state the key lemma of this paper. Similar estimates for sublin-
ear harmonic functions have been obtained in a more general setting in [6,
Theorem 6.1].

Lemma 2.12. Let n ∈ N and let f : Zd → R be harmonic. Suppose that
there exists a constant an such that

|f(x)| ≤ an(1 + ‖x‖nn)
for all x ∈ Zd. Then there exists a constant an−1 such that for all x ∈ Zd,

|f(x+ e1)− f(x)| ≤ an−1(1 + ‖x‖n−1
n−1).

Proof. For x ∈ Zd and any t > 0 we have

f(x) =
∑
k∈Zd

Gt(k)f(x+ k)

and
f(x+ e1) =

∑
k∈Zd

Gt(k)f(x+ e1 + k) =
∑
k∈Zd

Gt(k − e1)f(x+ k),

hence
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|f(x+ e1)− f(x)| ≤
∑
k∈Zd

|Gt(k − e1)−Gt(k)| |f(x+ k)|

≤
∑
k∈Zd

|Gt(k − e1)−Gt(k)|an(1 + ‖x+ k‖nn)

=
∑

k∈Zd : k1≤0

(Gt(k)−Gt(k − e1))an(1 + ‖x+ k‖nn)

+
∑

k∈Zd : k1>0

(Gt(k − e1)−Gt(k))an(1 + ‖x+ k‖nn)

=
∑

k∈Zd : k1≤−1

Gt(k)an(|x1 + k1|n − |x1 + k1 + 1|n)

+
∑

k∈Zd : k1≥1

Gt(k)an(|x1 + k1 + 1|n − |x1 + k1|n)

+
∑

k∈{0}×Zd−1

Gt(k)an(1 + ‖x+ k‖nn)

+
∑

k∈{0}×Zd−1

Gt(k)an(1 + ‖x+ k + e1‖nn).

We have used the product structure of Gt and Lemma 2.2. By using Lemma
2.10 we get∑

k1≤−1, k∈Zd

Gt(k)(|x1 + k1|n − |x1 + k1 + 1|n)

+
∑

k1≥1,k∈Zd

Gt(k)(|x1 + k1 + 1|n − |x1 + k1|n)

≤
∑
k∈Zd

Gt(k)(2n|x1 + k1|n−1 + 1) = 1 + 2n
∑
k1∈Z

gt(k1)|x1 + k1|n−1

≤ 1 + 22n−1
∑
k1∈Z

gt(k1)(|x1|n−1 + |k1|n−1)

= 1 + 22n−1(|x1|n−1 + E|X(t)
1 |

n−1).

We also have, again by using Lemma 2.10 several times,∑
k∈{0}×Zd−1

Gt(k)(1 + ‖x+ k‖nn) +
∑

k∈{0}×Zd−1

Gt(k)(1 + ‖x+ k + e1‖nn)

≤
∑

k∈{0}×Zd−1

Gt(k)(2 + 2n‖x‖nn + 2n‖x+ e1‖nn + 2n+1‖k‖nn)

≤ gt(0)(2 + 2n‖x‖nn + 2n‖x+ e1‖nn + d 2n+1E|X(t)
1 |

n)

≤ 4n+1gt(0)(1 + ‖x‖nn + d E|X(t)
1 |

n),
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so we arrive at

|f(x+ e1)− f(x)|

≤ an[1 + 22n−1(|x1|n−1 + E|X(t)
1 |

n−1) + 4n+1gt(0)(1 + ‖x‖nn + d E|X(t)
1 |

n)]

≤ 4n+2and[(1 + ‖x‖n−1
n−1 + E|X(t)

1 |
n−1) + gt(0)(‖x‖nn + E|X(t)

1 |
n)].

From Lemma 2.11 we infer that there exists a constant C = C(n, d) such
that for every t > 0 and every x ∈ Zd,

|f(x+ e1)− f(x)| ≤ Can[1 + ‖x‖n−1
n−1 + t(n−1)/2 + t−1/2(‖x‖nn + tn/2)].

By setting t = (1 + ‖x‖1)2 we complete the proof.

Lemma 2.13. Let f : Zd → R be such that fi(x) = f(x+ ei)− f(x) are
polynomials for i = 1, . . . , d. Then f is a polynomial.

Proof. First we consider the case d = 1. Note that f(x)− f(0) is deter-
mined by values of f1. Define a sequence of polynomials (Wk)∞k=0 by

xm =
m−1∑
k=0

(
m

k

)
Wk(x), m = 1, 2, . . . .

A simple induction yieldsWk(x+1)−Wk(x) = xk andWk(0) = 0. It follows
that if f1(x) =

∑l
i=0 aix

i then f(x) = f(0) +
∑l

i=0 aiWi(x). If d > 1 then

f(x1, . . . , xd) = f(x1, x2, . . . , xd)− f(0, x2, . . . , xd)
+ f(0, x2, . . . , xd)− f(0, 0, x3, . . . , xd)
+ · · ·+ f(0, . . . , 0, x1)− f(0, . . . , 0) + f(0).

By using the same argument as in the case d = 1 we see that

f(0, . . . , xi, . . . , xd)− f(0, . . . , xi+1, . . . , xd) (i = 1, . . . , d)

are polynomials.

Main Theorem 2.14. Let f : Zd → R be harmonic. Suppose there exists
a polynomial W : Zd → R such that f(k) ≥ −W (k) for k ∈ Zd. Then f is a
polynomial.

Proof. There exists n ∈ N such that |f(x)| ≤ an(1 + ‖x‖nn) (see Lemma
2.9). We claim that together with the harmonicity of f this already implies
that f is a polynomial. We prove this by induction on n. For n = 0 the claim
is a consequence of Proposition 2.5. For n > 1 let fi(x) = fi(x+ e1)− f(x).
Note that fi, i = 1, . . . , d, are also harmonic. By Lemma 2.12 and induction
hypothesis, fi are polynomials, hence by Lemma 2.13 we conclude that f is
a polynomial as well.
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