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Summary. We study the problem of consistent and homogeneous colourings for increas-
ing families of dyadic intervals. We determine when this problem can be solved and when
it cannot.

1. Introduction. Combinatorics of coloured dyadic intervals refers to
a set of techniques created for the study of operators defined through their
action on the Haar system. We refer to the treatment of averaging projec-
tions by P. W. Jones [5], the proof of the vector-valued T (1) theorem by
T. Figiel [1, 2], the use of the stripe operators in J. Lee, P. F. X. Müller
and S. Müller [7], and the study of rearrangement operators on Lp spaces by
P. F. X. Müller [9], K. Smela [11] and A. Kamont and P. F. X. Müller [6].

Here we study a very natural colouring problem on dyadic trees. We
start out with a coloured collection C of dyadic intervals, where we assume
that the colours are distributed homogeneously over C. Given any collection
H containing C we ask if there exists an equally homogeneous colouring of
H that preserves the colours of C (a consistent colouring of H). The nature
of this problem depends very much on what we agree to call a homogeneous
distribution of colours. Our choice of homogeneity is very restrictive, and
consequently in working on the problem of consistent colouring we encoun-
tered delicate combinatorial questions.

Let D denote the collection of dyadic intervals in the unit interval [0, 1],
and let

Dj = {I ∈ D : |I| = 2−j}.
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We consider a large collection C ⊂ Dj . We assume that the intervals in C
are painted with d distinct colours, giving rise to a decomposition

C = C1 ∪ · · · ∪ Cd.

It is intuitively clear what it means that the colours {1, . . . , d} are homoge-
neously distributed among the intervals of C. For instance, we would demand
that there exists η > 0 so that

(1.1) η max
1≤i≤d

|Ci| ≤ min
1≤i≤d

|Ci|,

where |Ci| denotes the cardinality of the collection Ci. A much stronger mea-
sure of homogeneity arises when we ask for (1.1) to hold over the prespecified
collection of testing intervals

T = {J ∈ D : |J | > 2−j}.

Specifically, if |C ∩ L| > d, we would demand that there exists η > 0 such
that

(1.2) η max
1≤i≤d

|Ci ∩ L| ≤ min
1≤i≤d

|Ci ∩ L| for each L ∈ T ,

where

Ci ∩ L = {I ∈ Ci : I ⊂ L}.

We use an additional rule to express homogeneity with respect to testing
intervals that satisfy |C ∩L| ≤ d. The necessity of such a rule arises from the
fact that the cardinalities |Ci∩L| take values in N∪{0}, hence if |C ∩L| < d,
then (1.2) has to fail. Thus, there are two regimes: high cardinality and low
cardinality of C ∩ L, with transition at |C ∩ L| = d. The following definition
contains the homogeneity conditions for both regimes, and it addresses the
discrete nature of our gauge functions

Ci 7→ |Ci ∩ L|, L ∈ T .

Definition 1.1. Let C ⊂ Dj , and fix d ∈ N, 0 < η ≤ 1/2. Let C =
C1 ∪ · · · ∪ Cd be some decomposition of C. This decomposition is called an
(η, d)-homogeneous colouring of C if for each L ∈ D with |L| ≥ 1/2j one of
the following holds:

Either |C ∩ L| > d, and then

(1.3) η max
1≤i≤d

|Ci ∩ L| ≤ min
1≤i≤d

|Ci ∩ L|,

or else |C ∩ L| ≤ d, and then

(1.4) |Ci ∩ L| ≤ 1 for each 1 ≤ i ≤ d,

Remark. We remark that for each (uncoloured) C ⊂ Dj , d ∈ N and η =
1/2 there is always an (η, d)-homogeneous colouring that can be obtained
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as follows: Enumerate the intervals in C from left to right, and simply put

(1.5) Cr = {Γl ∈ C : l = r mod d}, 1 ≤ r ≤ d.
Later, we refer to this colouring as the colouring modulo d.

The use of this colouring rule—applied to intervals of equal length—
appeared in a context similar to ours in [4, p. 200] (see also [3, p. 359] and
[10, p. 199]).

The problem of consistent colouring. The problem we treat in this paper
is the following. We are given two disjoint collections C,U ⊂ Dj . Assume
that the collection C is coloured, that is, it is given an (η, d)-homogeneous
colouring

C = C1 ∪ · · · ∪ Cd.
The collection U consists of uncoloured intervals. We would like to colour
the intervals in U using the same colours {1, . . . , d}, that is, to decompose
U as

U = U1 ∪ · · · ∪ Ud
in such a way that the union H = C∪U has an (η, d)-homogeneous colouring
given by

H = H1 ∪ · · · ∪ Hd, where Hi = Ci ∪ Ui for 1 ≤ i ≤ d.
That is, we want to obtain an (η, d)-homogeneous colouring ofH ⊃ C keeping
the pre-existing (η, d)-homogeneous colouring of C.

We refer to this question as the problem of finding a colouring of H
consistent with an existing colouring of C. Our treatment of this problem is
as follows:

1. We isolate a condition on U and C (previsibility; see Definition 2.1)
implying that the problem of consistent colouring for H = C ∪ U has
a solution (see Theorem 2.2).

2. We give examples where the problem of consistent colouring for H =
C ∪U has just one solution. Moreover, we give examples (of C, its de-
composition {Ci} and U) for which the problem of consistent colouring
for H = C ∪ U does not have a solution (see Proposition 3.1).

3. In Section 4 we reformulate the problem of consistent colouring as
a two-person game. Our results—Theorem 2.2 and Proposition 3.1—
translate into winning strategies for the respective players.

For the appearance of successive colourings of dyadic intervals in the
context of averaging projections see [5, pp. 871–875]. In [6] we constructed
supporting trees for some rearrangement operators and thereby proved their
boundedness on vector valued Lp spaces. Initially, our approach to defining
the supporting trees was via inclusion-exclusion principles and consistent
colourings as studied in the present paper.
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2. Constructing a consistent colouring. In the following we isolate
a criterion which guarantees the existence of a consistent colouring. To for-
mulate this criterion, we use a dyadic interval L ∈ D together with its imme-
diate dyadic successors L′, L′′, i.e. intervals L′, L′′ ∈ D such that L = L′∪L′′
and |L′| = |L′′| = 1

2 |L|. The problem of consistent colouring leads us to the
following condition: We are given disjoint collections C,U ⊂ Dj and d ∈ N.
We say that the pair (C,U) is d-previsible if with H = C ∪ U , the conditions

|H ∩ L′′| ≥ d, C ∩ L′′ 6= ∅, U ∩ L′′ 6= ∅
imply

|H ∩ L′| ≥ d.
For case of reference in the argument below, we give the following—equi-
valent—definition.

Definition 2.1. Let C,U ⊂ Dj , C ∩ U = ∅. Let d ∈ N. The pair (C,U)
of collections is called d-previsible if for every L ∈ D with |L| ≥ 1/2j−1 and
its dyadic succesors L′, L′′, the following holds:

|(U ∪ C) ∩ L′| < d and |(U ∪ C) ∩ L′′| ≥ d
implies

U ∩ L′′ = ∅ or C ∩ L′′ = ∅.
Now, the following theorem gives a sufficient condition for existence of

consistent colourings.

Theorem 2.2. Fix d ∈ N and 0 < η ≤ 1/2. Let C ⊂ Dj, and let {Ci :
1 ≤ i ≤ d} be a fixed (η, d)-homogeneous colouring of C. Let U ⊂ Dj be such
that the pair (C,U) is d-previsible. Then there is a colouring {Ui : 1 ≤ i ≤ d}
of U such that {Hi = Ci∪Ui : 1 ≤ i ≤ d} is an (η, d)-homogeneous colouring
of H = C ∪ U .

Remark. A first attempt to prove Theorem 2.2 by an inductive argu-
ment would be the following: Find first an (η, d)-homogeneous colouring
of H ∩ K for K ∈ Dj−α, where 2α ≤ d < 2α+1. Then carry over these
colourings—inductively and backwards in time—to larger collections H∩L,
L ∈ Ds with s > j − α, as follows: Assume that for a dyadic interval L
with successors L′, L′′, separate (η, d)-homogeneous colourings of H ∩ L′
and H∩L′′ are fixed. Then check that the union of these colourings gives an
(η, d)-homogeneous colouring of the union H∩L = (H∩L′)∪(H∩L′′). If this
procedure worked, at stage s we would have produced an (η, d)-homogeneous
colouring of H∩K for each K ∈ D with |K| ≤ 2−s. However, such a deter-
ministic approach cannot work, as the following example shows.

Example. Take d = 3r, r ∈ N, and fix a dyadic interval L with succes-
sors L′, L′′. Assume that collections C,U are such that |C ∩L′| = |C ∩L′′| = r
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and |U ∩ L′| = |U ∩ L′′| = r. Take an (η, d)-homogeneous colouring of C ∩ L
such that

|Ci ∩ L′| = 1 for 1 ≤ i ≤ r, |Ci ∩ L′| = 0 for r + 1 ≤ i ≤ 3r,

|Ci ∩ L′′| = 1 for r + 1 ≤ i ≤ 2r,

|Ci ∩ L′′| = 0 for 1 ≤ i ≤ r and 2r + 1 ≤ i ≤ 3r.

Note that then

|Ci ∩ L| = 1 for 1 ≤ i ≤ 2r, |Ci ∩ L| = 0 for 2r + 1 ≤ i ≤ 3r.

Next, we can choose colourings of U ∩ L′ and U ∩ L′′ such that

|Ui ∩ L′| = 1 for r + 1 ≤ i ≤ 2r,

|Ui ∩ L′| = 0 for 1 ≤ i ≤ r and 2r + 1 ≤ i ≤ 3r,

|Ui ∩ L′′| = 1 for 1 ≤ i ≤ r, |Ui ∩ L′′| = 0 for r + 1 ≤ i ≤ 3r.

Then, knowing the colouring of C ∩ K and U ∩ K for K = L′, L′′ with
H = C ∪ U we have

|Hi ∩K| = 1 for 1 ≤ i ≤ 2r, |Hi ∩K| = 0 for 2r + 1 ≤ i ≤ 3r,

so we have separate (η, d)-homogeneous colourings of H ∩ L′ and H ∩ L′′.
However, by taking their union we get a colouring of H ∩ L such that

|Hi ∩ L| = 2 for 1 ≤ i ≤ 2r, |Hi ∩ L| = 0 for 2r + 1 ≤ i ≤ 3r,

which is not (η, d)-homogeneous.
Note however that the above example does not contradict the assertion

of Theorem 2.2. In fact, given C and its colouring as above, it is quite easy
to obtain a colouring of U so that the conclusion of Theorem 2.2 holds. For
K = L′, L′′, we put

|Ui ∩K| = 0 for 1 ≤ i ≤ 2r, |Ui ∩K| = 1 for 2r + 1 ≤ i ≤ 3r.

Taking the union with the colouring of C∩K, we find that 0 ≤ |Hi∩K| ≤ 1,
so we have an (η, d)-homogeneous colouring of H ∩K, K = L′, L′′. Finally,

|Hi ∩ L| = 1 for 1 ≤ i ≤ 2r, |Hi ∩ L| = 2 for 2r + 1 ≤ i ≤ 3r,

so we have a (1/2, d)-homogeneous colouring of H ∩ L.

In response to these examples, we will introduce a stopping time argum-
ent—running backwards in time—that produces the (η, d)-homogeneous
colouring of Theorem 2.2. At stage s of our inductive argument, we will
produce consistent (η, d)-homogeneous colourings of collections H ∩ K for
K ∈ D with K ≤ 2−s provided that K satisfies

|H ∩K| ≥ d and C ∩K 6= ∅.
Proof of Theorem 2.2. We are going to define a colouring of U by an

inductive argument. Let α be such that 2α ≤ d < 2α+1. Let us observe that



106 A. Kamont and P. F. X. Müller

if 1/2j ≤ |L| ≤ 1/2j−α, then |H ∩ L| ≤ 2α ≤ d. Thus, if the homogeneity
conditions (1.4) respectively (1.3) are satisfied for L ∈ D with |L| ≥ 1/2j−α,
then they are satisfied for each L ∈ D with |L| ≥ 1/2j . Therefore, in our
procedure of colouring U we consider only L ∈ Dk with k ≤ j − α.

The inductive argument is used to prove the following statement at each
stage s with j − α ≥ s ≥ 0:

Inductive hypothesis at stage s: Let K ∈ Ds. If |H∩K| < d or C∩K = ∅,
then intervals in U ∩K are still uncoloured. If |H ∩K| ≥ d and C ∩K 6= ∅,
then all intervals in U ∩ K are coloured, and the colouring of H ∩ K is
(η, d)-homogeneous; as |H ∩K| ≥ d, this means that |Hi ∩K| ≥ 1 and

(2.1) η max
1≤i≤d

|Hi ∩K| ≤ min
1≤i≤d

|Hi ∩K|.

I. Start of the induction. Let L ∈ Dj−α. Then either |H ∩ L| < d or
|H ∩ L| = d.

I.1. If |H ∩ L| < d or C ∩ L = ∅, then all intervals in U ∩ L are left
uncoloured.

I.2. If |H ∩ L| = d and C ∩ L 6= ∅, then also |C ∩ L| ≤ d, which implies
that |Ci ∩ L| ≤ 1 for 1 ≤ i ≤ d. In that case it is possible to colour all
intervals in U ∩ L so that |Hi ∩ L| = 1 for 1 ≤ i ≤ d.

II. Inductive step. Let ν < j − α. The inductive assumption states that
there is a colouring at stage ν+1. We need to prove that there is a colouring
at stage ν. For this take L ∈ Dν . Then L = L′ ∪ L′′ with L′, L′′ ∈ Dν+1,
ν + 1 ≤ j −α. Each interval in C ∩L or U ∩L is included in L′ or L′′, so we
have

|C ∩ L| = |C ∩ L′|+ |C ∩ L′′|,
|U ∩ L| = |U ∩ L′|+ |U ∩ L′′|,
|H ∩ L| = |H ∩ L′|+ |H ∩ L′′|.

Then we have two main cases:
II.1. |H∩L| < d or C∩L = ∅. If |H∩L| < d then also |H∩L′|, |H∩L′′| <

d. If C ∩ L = ∅, then also C ∩ L′ = ∅ and C ∩ L′′ = ∅. In both cases, by the
induction hypothesis, all intervals in both U ∩L′ and U ∩L′′ are uncoloured.

If ν > 0, then leave the intervals in U ∩ L uncoloured.
If ν = 0, then L = [0, 1], and the induction ends. This means that |H| < d

or C = ∅. If |H| < d, then it is enough to assign to elements of U colours
different from colours of elements of C. If C = ∅, then it is enough to colour
H by the modulo d method (see (1.5)).

II.2. |H∩L| ≥ d and C∩L 6= ∅. It follows that at least one of C∩L′, C∩L′′
must be nonempty. Now we isolate next two subcases:

II.2.A. |H ∩ L| ≥ d, C ∩ L 6= ∅ and both C ∩ L′ 6= ∅, C ∩ L′′ 6= ∅.
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II.2.B. |H ∩ L| ≥ d, C ∩ L 6= ∅, C ∩ L′ = ∅, but C ∩ L′′ 6= ∅. (The case
C ∩ L′ 6= ∅ and C ∩ L′′ = ∅ is symmetric, and there is no need to treat it
separately.)

We first deal with II.2.A, and then with II.2.B. Each of these cases splits
into subcases. Case II.2.B is treated by reducing its subcases to appropriate
subcases of II.2.A.

II.2.A.1. |H ∩ L′| ≥ d and |H ∩ L′′| ≥ d. Recall that C ∩ L′ 6= ∅ and
C∩L′′ 6= ∅. Then by induction hypothesis all intervals in U∩L′ and in U∩L′′
are already coloured, i.e. all intervals in U ∩ L are coloured. Moreover, by
(2.1), for 1 ≤ i, k ≤ d,

η|Hi ∩ L| = η|Hi ∩ L′|+ η|Hi ∩ L′′| ≤ |Hk ∩ L′|+ |Hk ∩ L′′| = |Hk ∩ L|.

Of course, we also have |Hi ∩ L| ≥ 1.

II.2.A.2. |H ∩L′| < d and |H ∩L′′| < d. Then by induction hypothesis
all intervals in U ∩L′ and in U ∩L′′ are uncoloured, but the intervals in C∩L
are coloured.

Now, we need to colour all intervals in U ∩ L = (U ∩ L′) ∪ (U ∩ L′′). To
simplify notation, let

m = |C ∩ L′|, n = |C ∩ L′′|, x = |U ∩ L′|, y = |U ∩ L′′|.

We have

0 ≤ m,n ≤ d− 1, 0 ≤ m+ x, n+ y ≤ d− 1,

d ≤ |H ∩ L| = m+ x+ n+ y ≤ 2(d− 1).

First consider the case m+ n < d. Then

0 ≤ |Ci ∩ L| ≤ 1 for 1 ≤ i ≤ d.

For simplicity, assume that the intervals in C ∩ L′ have colours 1, . . . ,m,
and the intervals in C ∩ L′′ have colours m + 1, . . . ,m + n. Now, we colour
the intervals in U ∩ L. First, colour the intervals in U ∩ L′ using colours
m + n + 1, . . . , d, continuing if necessary (i.e. if x > d − (m + n)) with
x − (d − (m + n)) colours from among m + 1, . . . ,m + n; since m + x < d,
in this way we assign colours to all intervals in U ∩ L′. Next, we assign
colours to intervals in U ∩ L′′. If m + n + x < d, then first assign colours
m+n+x+1, . . . , d, then continue with 1, . . . ,m, and finish if necessary with
m+n+1, . . . ,m+n+x. If m+n+x ≥ d, then just choose y different colours
from 1, . . . ,m and m + n + 1, . . . , d. With such a colouring of intervals in
U ∩ L′ and in U ∩ L′′ we find that both

|Hi ∩ L′| ≤ 1 and |Hi ∩ L′′| ≤ 1, 1 ≤ i ≤ d.

This implies that if K ⊂ L′ or K ⊂ L′′ then |H ∩K| < d and |Hi ∩K| ≤ 1.
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Moreover, we get 1 ≤ |Hi ∩ L| ≤ 2, which implies

η max
1≤i≤d

|Hi ∩ L| ≤
1

2
max
1≤i≤d

|Hi ∩ L| ≤ min
1≤i≤d

|Hi ∩ L|.

It remains to consider the case m + n ≥ d. Then the homogeneity as-
sumption on the decomposition of C ((1.4) for L′, L′′ and (1.3) for L) implies

1 ≤ |Ci ∩ L| = |Ci ∩ L′|+ |Ci ∩ L′′| ≤ 2, 1 ≤ i ≤ d.

For simplicity, assume that the intervals in C ∩L′ have colours 1, . . . ,m and
the intervals in C ∩L′′ have colours m+ 1, . . . , d and 1, . . . ,m+ n− d (note
that m+ n− d < m, since by assumption n < d). To colour the intervals in
U ∩L′ choose x colours from m+ 1, . . . , d. To colour the intervals in U ∩L′′
choose y colours from m+n−d+ 1, . . . ,m. This is possible since m+x < d
and n+ y < d. Observe that in this way we get

0 ≤ |Hi ∩ L′|, |Hi ∩ L′′| ≤ 1 and 1 ≤ |Hi ∩ L| ≤ 2, 1 ≤ i ≤ d.

Therefore, if K ⊂ L′ or K ⊂ L′′ then |Hi ∩K| ≤ 1, while for L we have

η max
1≤i≤d

|Hi ∩ L| ≤
1

2
max
1≤i≤d

|Hi ∩ L| ≤ min
1≤i≤d

|Hi ∩ L|.

II.2.A.3. |H ∩ L′| < d and |H ∩ L′′| ≥ d. Recall that C ∩ L′ 6= ∅ and
C ∩ L′′ 6= ∅, by the defining condition of case II.2.A. Then by induction
hypothesis all intervals in U∩L′ are uncoloured, but the intervals in C∩L′ are
coloured. Since the pair (C,U) is d-previsible, we have U∩L′′ = ∅. Therefore,
|H ∩ L′′| = |C ∩ L′′|, and by condition (1.3) of the (η, d)-homogeneity for C,
we get |Hi ∩ L′′| = |Ci ∩ L′′| ≥ 1 and |Ci ∩ L′′|, 1 ≤ i ≤ d, satisfy (2.1).

If U ∩ L′ = ∅ as well, then all intervals in H ∩ L come from C ∩ L, and
there is nothing to do.

Let |U ∩ L′| = x > 0. We need to colour the x intervals in U ∩ L′. To
simplify notation, let m = |C ∩ L′|. Note that 1 ≤ m+ x < d. Let

S = {i : |Ci ∩ L′| = 1} and T = {i : |Ci ∩ L′| = 0}.

Let t1, . . . , td−m be an ordering of T such that

(2.2) |Ct1 ∩ L′′| ≤ · · · ≤ |Ctd−m
∩ L′′|.

Since x < d − m, there are more colours in T than intervals in U ∩ L′.
Now attach the colours t1, . . . , tx, bijectively, to intervals in U ∩ L′. Then
|Hi ∩ L′| ≤ 1. Consequently, |Hi ∩K| ≤ 1 for each K ⊂ L′.

The colouring of H∩L′′ = C ∩L′′ is (η, d)-homogeneous by the assump-
tion. It remains to check that the |Hi ∩ L| satisfy (2.1). Since U ∩ L′′ = ∅
and |H ∩ L′′| ≥ d we have

|C ∩ L| ≥ |C ∩ L′′| = |H ∩ L′′| ≥ d.
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Consequently, since the colouring of C is (η, d)-homogeneous, we see that
|Ci ∩ L| ≥ |Ci ∩ L′′| ≥ 1 and

η max
1≤i≤d

|Ci ∩ L′′| ≤ min
1≤i≤d

|Ci ∩ L′′|,(2.3)

η max
1≤i≤d

|Ci ∩ L| ≤ min
1≤i≤d

|Ci ∩ L|.(2.4)

Moreover,

|Hi ∩ L| = |Ci ∩ L| = |Ci ∩ L′′|+ 1 for i ∈ S,(2.5)

|Hi ∩ L| = |Ci ∩ L|+ 1 = |Ci ∩ L′′|+ 1 for i = t1, . . . , tx,(2.6)

|Hi ∩ L| = |Ci ∩ L| = |Ci ∩ L′′| for i = tx+1, . . . , td−m.(2.7)

Let k be such that maxi |Hi ∩ L| = |Hk ∩ L|. Then k ∈ S or k ∈ T .

If k ∈ S, then |Hk ∩ L| = |Ck ∩ L| by (2.5), and (2.1) is satisfied for L
and H in view of (2.4) and the inequality |Ci ∩ L| ≤ |Hi ∩ L|.

If k ∈ T , then we have either k ∈ {t1, . . . , tx} or k ∈ {tx+1, . . . , td−m}.
The ordering defined by (2.2) implies that k = tx in the former case and
k = td−m in the latter. If k = td−m, then (2.1) is satisfied for L and H in
view of (2.3), (2.7) and the inequality |Ci ∩ L′′| ≤ |Hi ∩ L|. If k = tx and
|Htx ∩ L| > |Htd−m

∩ L| then we need to check that

(2.8) η|Htx ∩ L| ≤ |Hi ∩ L| for 1 ≤ i ≤ d.

For i ∈ S inequality (2.8) is satisfied by (2.3) combined with (2.5) and
(2.6). For i = t1, . . . , tx it is satisfied by (2.4) and (2.6). When |Htx ∩ L| >
|Htd−m

∩ L|, then (2.6) and (2.7) combined with the ordering (2.2) imply

|Ctx ∩ L′′| = |Ctx+1 ∩ L′′| = · · · = |Ctd−m
∩ L′′|.

Therefore |Htx ∩L| = |Ctx ∩L′′|+ 1 = |Hi ∩L|+ 1 for all i = tx+1, . . . , td−m,
so inequality (2.8) is satisfied, even with 1/2 on the left-hand side, for i =
tx+1, . . . , td−m.

II.2.A.4. |H ∩ L′| ≥ d and |H ∩ L′′| < d. This case is analogous to
II.2.A.3.

Next, we proceed with case II.2.B.

II.2.B.1. |H ∩ L′| ≥ d and |H ∩ L′′| ≥ d. Recall that—by the condition
defining case II.2.B—C ∩ L′ = ∅ and C ∩ L′′ 6= ∅. Then by the induction
hypothesis all intervals in U ∩ L′′ are already coloured, but those in U ∩ L′
are uncoloured.

We need to colour the intervals in U ∩ L′. It is enough to colour them
modulo d (see (1.5)). After this, we get a colouring of H∩L such that both
L′ and L′′ satisfy (1.3). To check that L satisfies (1.3) as well, we proceed
as in case II.2.A.1.
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II.2.B.2. |H∩L′| < d and |H∩L′′| < d. The induction hypothesis states
that the intervals in U ∩ L′ and in U ∩ L′′ are uncoloured. Now we proceed
as in case II.2.A.2.

II.2.B.3. |H ∩ L′| < d and |H ∩ L′′| ≥ d. Recall that C ∩ L′′ 6= ∅.
Therefore, by the previsibility assumption, U ∩ L′′ = ∅. Since C ∩ L′ = 0,
by the induction hypothesis the intervals in U ∩ L′ are uncoloured, and we
need to colour them in case U ∩ L′ 6= ∅. This is done as in case II.2.A.3.

II.2.B.4. |H ∩ L′| ≥ d and |H ∩ L′′| < d. Recall that C ∩ L′ = ∅. In
this case the induction hypothesis says that the intervals in both U ∩L′ and
U ∩ L′′ are uncoloured. We need to colour them all. First, we colour the
intervals in U ∩ L′′ by giving each of them a different colour which was not
used to colour C ∩ L′′. This is possible since |H ∩ L′′| < d. Then we colour
the intervals in U ∩L′ by the modulo d method as in (1.5), but starting with
colours which have not been used to colour intervals in H∩L′′. In this way
we get a modulo d colouring of H∩L, which is (1/2, d)-homogeneous, hence
also (η, d)-homogeneous.

This completes the proof of Theorem 2.2.

3. A colouring problem without solution. Here we analyze the role
of the previsibility assumption in Theorem 2.2.

Throughout this section we take d = 2a, a ∈ N, and η = 1/n with n ∈ N
and j ≥ n+ a+ 1.

We will define a sequence of collections C(0) ⊂ C(1) ⊂ · · · ⊂ C(n) ⊂ Dj ,
of size |C(k)| = k + d. The initial collection C(0) is of size d, hence—up to
permutation—it has a unique (η, d)-homogeneous colouring. Then we will
check that for 1 ≤ k ≤ n−1, there is a unique (η, d)-homogeneous colouring
of C(k) keeping the previously determined (η, d)-homogeneous colouring of
C(k − 1). Finally, we will see that there is no (η, d)-homogeneous colouring
of C(n) keeping the previous (η, d)-homogeneous colouring of C(n− 1).

In our example below, the parameter d determines the size of the initial
collection C(0), while the parameter η determines the number of steps needed
to arrive at a problem of consistent colouring without solution.

To define the desired sequence of collections, take a chain of dyadic
intervals

L1 ⊂ · · · ⊂ Ln+2, Li ∈ Dj−a−i+1.

Then |Li| = 1
2 |Li+1|, and let Pi be the dyadic brother of Li in Li+1, i =

1, . . . , n+ 1. Thus Pi = Li+1 \ Li.
Now, take two sets of intervals from Dj :

I1, . . . , Id−1 ∈ Dj such that Ii ⊂ L1 for i = 1, . . . , d− 1,

J1, . . . , Jn+1 ∈ Dj such that Ji ⊂ Pi for i = 1, . . . , n+ 1.
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Consider the following sequence of collections:

(3.1) C(k) = {I1, . . . , Id−1} ∪ {Jn−k+1, . . . , Jn+1} for k = 0, . . . , n.

Proposition 3.1. The sequence of collections C(k), 0 ≤ k ≤ n, defined
by (3.1) is increasing and it has the following properties:

(A) Stage 0. There exists exactly one—up to permutation—(η, d)-homo-
geneous colouring of C(0),

C(0) = C1(0) ∪ · · · ∪ Cd(0).

(B) Stage k, 1 ≤ k ≤ n− 1. Let

C(k − 1) = C1(k − 1) ∪ · · · ∪ Cd(k − 1)

be the (η, d)-homogeneous colouring of C(k − 1), obtained at stage k − 1.
Then there exists exactly one (η, d)-homogeneous colouring of C(k),

C(k) = C1(k) ∪ · · · ∪ Cd(k),

such that

Ci(k − 1) ⊂ Ci(k) for 1 ≤ i ≤ d.

(C) Stage n. Let

C(n− 1) = C1(n− 1) ∪ · · · ∪ Cd(n− 1)

be the (η, d)-homogeneous colouring of C(n − 1), obtained at stage n − 1.
There does not exist an (η, d)-homogeneous colouring of C(n),

C(n) = C1(n) ∪ · · · ∪ Cd(n),

such that

Ci(n− 1) ⊂ Ci(n) for 1 ≤ i ≤ d.

Proof. Verification of (A). Consider possible colourings of C(0). Take
Ln+2 as a testing interval. Observe that |C(0)| = |C(0) ∩ Ln+2| = d, so
if we want to have (η, d)-homogeneity, we must have (1.4) and therefore
|Ci(0)∩Ln+2| = 1 for i = 1, . . . , d. Without loss of generality we can assume
that Jn+1 has colour 1, and each Ii with i = 1, . . . , d − 1 has colour i + 1.
Therefore for C(0) and each testing interval L ⊂ Ln+2 we have |Ci(0)∩L| ≤ 1
for 1 ≤ i ≤ d.

The basic observation. Our example is based on iterating the following
basic observation. Let k ≤ n. Assume that C(k) has an (η, d)-homogeneous
decomposition into C1(k), . . . , Cd(k), so that

C1(0) ⊂ C1(k), . . . , Cd(0) ⊂ Cd(k).

Then necessarily

(3.2) Jn−k+1 must have colour 1.
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Verification of (3.2). We already know that Jn+1 has to have colour 1. To
check the claim for Jn−k+1, k = 1, . . . , n, we consider the pair of collections
C(0) ⊂ C(k):

C(k) = C(0) ∪ {Jn−k+1, . . . , Jn},
and the testing interval Ln−k+2. Elements of C(0) included in Ln−k+2 are
I1, . . . , Id−1. In addition, Jn−k+1 ⊂ Pn−k+1 ⊂ Ln−k+2, while Jn−k+2, . . . , Jn
6⊂ Ln−k+2. Therefore

|C(0) ∩ Ln−k+2| = d− 1, |C(k) ∩ Ln−k+2| = d,

C1(0) ∩ Ln−k+2 = ∅, |Ci(0) ∩ Ln−k+2| = 1 for i = 2, . . . , d.

Therefore, (1.4) of the (η, d)-homogeneity condition for C(k) implies that
Jn−k+1 is of colour 1.

Verification of (B). Recall that for 0 ≤ k ≤ n,

C(k) = {I1, . . . , Id−1} ∪ {Jn−k+1, . . . , Jn+1}.
Moreover, by (3.2), the only possible (1/n, d)-homogeneous decomposition
of C(k) is

C1(k) = {Jn−k+1, . . . , Jn+1}, Ci(k) = {Ii−1} for 2 ≤ i ≤ d.
Let us check that for 0 ≤ k ≤ n − 1, the above decomposition of C(k) is
indeed (1/n, d)-homogeneous. We present a detailed proof for k = n − 1,
since the cases k ≤ n− 1 are fully analogous.

First, take Ls, s = 3, . . . , n+ 2, as a testing interval. Then the elements
of C(n− 1) included in Ls are I1, . . . , Id−1 and J2, . . . , Js−1. Therefore

|C(n− 1) ∩ Ls| = s+ d− 3,

and

|C1(n− 1) ∩ Ls| = s− 2, |Ci(n− 1) ∩ Ls| = 1 for i = 2, . . . , d.

Therefore
1

n
max
1≤i≤d

|Ci(n− 1) ∩ Ls| ≤ min
1≤i≤d

|Ci(n− 1) ∩ Ls|, s = 3, . . . , n+ 2.

Next take L2 as a testing interval. Then the elements of C(n−1) included
in L2 are I1, . . . , Id−1, so |C(n− 1) ∩ L2| = d− 1,

C1(n− 1) ∩ L2 = ∅, |Ci(n− 1) ∩ L2| = 1 for i = 2, . . . , d.

Therefore L2 also satisfies (1.4) of the (1/n, d)-homogeneity condition for
C(n− 1). Consequently, L1, P1 ⊂ L2 also satisfy these conditions.

Finally, take Pk, k = 2, . . . , n+ 1, as a testing interval. The only element
of C(n− 1) included in Pk is Jk, so |C(n− 1) ∩ Pk| = 1, and more precisely

|C1(n− 1) ∩ Pk| = 1, Ci(n− 1) ∩ Pk = ∅ for i = 2, . . . , d.
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Thus, Pk (and hence each testing interval included in Pk) satisfies (1.4) of
the (1/n, d)-homogeneity condition for C(n− 1).

Verification of (C). Consider C(n−1) and C(n) = C(n−1)∪{J1}. Recall
that

C(n) = {I1, . . . , Id−1} ∪ {J1, . . . , Jn+1}.
Take Ln+2 as a testing interval. All intervals from C(n) are included in Ln+2,
and the colouring yields

|C1(n) ∩ Ln+2| = n+ 1, |Ci(n) ∩ Ln+2| = 1 for i = 2, . . . , d.

For C(n) and Ln+2 we have to consider (1.3) of the (1/n, d)-homogeneity
condition. But the above formulae mean that for C(n) and the testing inter-
val Ln+2, the condition (1.3) is satisfied with η′ = 1/(n+ 1), but not with
η = 1/n.

Remark. For 0 ≤ k ≤ n− 1, the pair of collections (C(k),U(k)), where
U(k) = C(k+ 1) \ C(k), is not d-previsible. Nevertheless, the colouring prob-
lem has a solution for 0 ≤ k ≤ n− 2.

The examples of Proposition 3.1 grew out of counterexamples to classical
martingale inequalities (see [12, p. 105], or [8, p. 156]).

4. A two-person game. The problem of consistent colourings gives
rise to the following two-person game. The game is played by two players
with collections of coloured dyadic intervals in Dj for a fixed j ∈ N. It starts
by fixing η > 0, d ∈ N, and a subcollection

C(0) ⊂ Dj
with an (η, d)-homogeneous colouring

C1(0), . . . , Cd(0),

according to Definition 1.1. The rules of the game are as follows:

1. In the first stage, Player A chooses a collection C(1) with C(1) ! C(0)
and C(1) ⊂ Dj . Player B determines an (η, d)-homogeneous colouring
of C(1) that preserves the colours of C(0).

2. At stage n, Player A chooses C(n) with C(n) ! C(n−1) and C(n) ⊂ Dj .
Player B determines an (η, d)-homogeneous colouring of C(n) preserv-
ing the colours of C(n− 1).

3. The game stops at stage n if either C(n − 1) = Dj , and then Player
B is the winner, or else if there does not exist an (η, d)-homogeneous
colouring of C(n) that preserves the colours of C(n−1), in which case
Player A is the winner.

The results of this paper enable us to predict the outcome of the game
as follows. If we do not pose any constraints on the choice of the collections
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C(k), then the example in Section 3 and Proposition 3.1 describe a realization
of our game where Player A has a winning strategy.

However, if we restrict the moves of Player A by imposing that
(C(k − 1), C(k) \ C(k − 1)) is d-previsible, then with the aid of Theorem
2.2 and its proof, Player B always has a winning strategy. In case the
moves of Player A are restricted by d-previsibility, we modify the stopping
rule accordingly: Player B is the winner at stage n if there does not exist
C(n) ⊂ Dj such that C(n) ! C(n− 1) and the pair (C(n− 1), C(n) \ C(n− 1))
is d-previsible.
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