DIFFERENCE AND FUNCTIONAL EQUATIONS

Periodic Solutions of Periodic Retarded Functional Differential Equations

by

Marcin PAWŁOWSKI

Presented by Andrzej LASOTA

Summary. The paper presents a geometric method of finding periodic solutions of retarded functional differential equations (RFDE) $x'(t) = f(t, x_t)$, where f is T-periodic in t. We construct a pair of subsets of $\mathbb{R} \times \mathbb{R}^n$ called a T-periodic block and compute its Lefschetz number. If it is nonzero, then there exists a T-periodic solution.

1. Introduction. The geometric method of finding periodic solutions presented here is a generalization of the method introduced by R. Srzednicki in [8] and [9]. Its aim is to find periodic solutions of the equation

(*) x'(t) = f(t, x),

where f is a continuous function, T-periodic in the time variable. The idea is to construct a pair of sets, called a T-periodic block, which depends on the equation (*) and has a simple topological structure, so it is easy to compute its Lefschetz number, and if it is nonzero, then (*) has a periodic orbit.

For retarded functional differential equations (RFDE's), the problem is that the proper phase space is the space of continuous functions from some interval to \mathbb{R}^n . To overcome the difficulties which arise in the infinitedimensional case, we will show that the problem of finding *T*-periodic solutions of such equations can be translated into a finite-dimensional one. That will enable us to use the methods of [8].

The concept of blocks and a generalization of the Ważewski Principle which we apply to RFDE's was presented by K. Rybakowski in [7]. Condition (ii) in our definition of a T-periodic block follows the definition of a polyfacial set in [7].

²⁰⁰⁰ Mathematics Subject Classification: Primary 34K13.

 $Key\ words\ and\ phrases:$ delay differential equations, periodic orbits, Lefschetz number, ANR.

2. Preliminaries. We start by recalling some basic notations used in the theory of RFDE's. For $n \ge 1$ and r > 0 let $\mathscr{C} = \mathscr{C}([-r, 0]; \mathbb{R}^n)$ be the space of all continuous functions from the interval [-r, 0] (r is called a *lag*) to \mathbb{R}^n , with the supremum norm $|\cdot|$ (i.e. $|\varphi| = \sup_{\theta \in [-r,0]} |\varphi(\theta)|$). With this norm \mathscr{C} is a Banach space.

For a function $x: [-r+a, b) \to \mathbb{R}^n$ and $t \in [a, b)$ define $x_t \in \mathscr{C}$ by

$$x_t(\theta) = x(t+\theta), \quad \theta \in [-r,0].$$

We will consider the equation

(1)
$$x'(t) = f(t, x_t),$$

where $f: \mathbb{R} \times \mathscr{C} \to \mathbb{R}^n$ is a continuous function.

A continuous function $x: [-r+a, b) \to \mathbb{R}^n$ is a solution of (1) if it satisfies this equation for every $t \in [a, b)$ and is saturated (i.e. for every $y: [-r+a, c) \to \mathbb{R}^n$ such that y satisfies (1) and $x_t = y_t$, where $t \in [a, \min(b, c))$, we have $c \leq b$).

With every solution x of (1) we associate the map $[a, b) \ni t \mapsto x_t \in \mathscr{C}$, and call its image the *orbit* of the solution.

Throughout the paper we will assume that f has the following properties:

1) f is T-periodic in t, i.e.

$$f(t,\varphi) = f(t+T,\varphi), \quad t \in \mathbb{R}, \ \varphi \in \mathscr{C},$$

and T > r,

2) given $\sigma \in \mathbb{R}$ and $\varphi \in \mathscr{C}$ there exists a unique function $x: [-r+a, b) \to \mathbb{R}^n$ which is a solution of (1) and satisfies $x_{\sigma} = \varphi$. It will be denoted by $x(\sigma, \varphi)$.

The second condition is not very restrictive. It is satisfied, for example, if f is Lipschitzian with respect to the second variable on each compact subset of $\mathbb{R} \times \mathscr{C}$ ([6, Ch. 2, Th. 2.3]).

Let X be a topological space. In what follows, it will be \mathbb{R}^n or \mathscr{C} .

DEFINITION 1. Let $\varphi \colon \mathbb{R} \times X \times \mathbb{R} \to X$ be a continuous map. Let $\varphi_{(\sigma,t)}$ denote the map $\varphi(\sigma, \cdot, t)$. The map φ is called a (global) process on X if:

(i) $\varphi_{(\sigma,0)} = \operatorname{id}_X$ for every $\sigma \in \mathbb{R}$,

(ii) $\varphi_{(\sigma,s+t)} = \varphi_{(\sigma+s,t)} \circ \varphi_{(\sigma,s)}$ for every $\sigma, s, t \in \mathbb{R}$.

If for some fixed T > 0 we have $\varphi_{(\sigma+T,t)} = \varphi_{(\sigma,t)}$ $(\sigma, t \in \mathbb{R})$, then we call φ a *T*-periodic process.

For $A \subset \mathbb{R} \times \mathbb{R}^n$ let

$$A_t = \{ x \in \mathbb{R}^n : (t, x) \in A \}.$$

DEFINITION 2 ([8, Def. 2.2.2]). A pair (A, B) of closed subsets of $\mathbb{R} \times \mathbb{R}^n$ is called a *T*-periodic pair if

- (i) A_t and B_t are compact for all $t \in \mathbb{R}$,
- (ii) $A_t = A_{t+T}, B_t = B_{t+T}$ for every $t \in \mathbb{R}$ (A and B are T-periodic),
- (iii) A and B are ANR's,
- (iv) there exists a *T*-periodic process ω on \mathbb{R}^n such that *A* and *B* consist of trajectories of ω , that is, for every (or, equivalently, for some) $\sigma \in \mathbb{R}$,

$$A = \bigcup_{x \in A_{\sigma}} \bigcup_{t \in \mathbb{R}} (t, \omega_{(\sigma, t)}(x)), \quad B = \bigcup_{x \in B_{\sigma}} \bigcup_{t \in \mathbb{R}} (t, \omega_{(\sigma, t)}(x)).$$

For the definition of an ANR see [1, Ch. IV, Sec. 1].

REMARK 3. Condition (iii) in the definition of a T-periodic pair is equivalent to

(iii') There exists $\sigma \in \mathbb{R}$ such that A_{σ} and B_{σ} are ANR's.

Moreover, for each element $C \subset \mathbb{R} \times \mathbb{R}^n$ of a *T*-periodic pair there exists a *T*-periodic open subset $U \subset \mathbb{R} \times \mathbb{R}^n$ such that $C \subset U$ and there exists a retraction $\varrho: U \to C$ such that ϱ is *T*-periodic in *t* and *invariant with respect to time sections*, i.e. $\varrho(t, x) = (t, \pi \circ \varrho(t, x))$ for every $t \in \mathbb{R}$, where $\pi: \mathbb{R} \times \mathbb{R}^n \ni (t, x) \mapsto x \in \mathbb{R}^n$.

Proof. Let $\xi \colon \mathbb{R} \times \mathbb{R}^n \ni (t, x) \mapsto ([t], x) \in (\mathbb{R}/T\mathbb{Z}) \times \mathbb{R}^n$, where $[t] = t+T\mathbb{Z}$. Denote by $\pi_1 \colon (\mathbb{R}/T\mathbb{Z}) \times \mathbb{R}^n \to \mathbb{R}/T\mathbb{Z}$ and $\pi_2 \colon (\mathbb{R}/T\mathbb{Z}) \times \mathbb{R}^n \to \mathbb{R}^n$ the usual projections. If ω is as in the definition of a *T*-periodic pair, then $\omega^* \colon \mathbb{R} \times ((\mathbb{R}/T\mathbb{Z}) \times \mathbb{R}^n) \ni (t, ([\sigma], x)) \mapsto ([t + \sigma], \omega_{(\sigma, t)}(x)) \in (\mathbb{R}/T\mathbb{Z}) \times \mathbb{R}^n$ defines a dynamical system on $(\mathbb{R}/T\mathbb{Z}) \times \mathbb{R}^n$.

The set $C^* = \xi(C)$ is well defined, because C is T-periodic. Furthermore, C^* is ω^* -invariant, and is an ANR as the space of a locally trivial bundle with base a circle and with fiber C_t . Let $r_1^* \colon U_1^* \to C^*$ be a retraction, where U_1^* is a neighborhood of C^* in $(\mathbb{R}/T\mathbb{Z}) \times \mathbb{R}^n$. Taking a neighborhood $U^* \subset U_1^*$ of C^* small enough, we can assume that for every $([t], x) \in U^*$ there exists $\sigma_{([t],x)} \in (-T/2, T/2)$ such that $\pi_1 \circ r_1^*([t], x) = [t + \sigma_{([t],x)}]$. Then the function $r^* \colon U^* \to C^*$, $r^*([t], x) = \omega^*(-\sigma_{([t],x)}, r_1^*([t], x))$, is a retraction, invariant with respect to time sections.

Let $U = \xi^{-1}(U^*)$ and for $(t, x) \in U$ define the retraction $\varrho: U \to C$ as

$$\varrho(t,x) = (t,\pi_2 \circ r^* \circ \xi(t,x)).$$

The equivalence of (iii) and (iii') is now clear. \blacksquare

Now we will construct a pair of subsets of $\mathbb{R} \times \mathscr{C}$ using pairs contained in $\mathbb{R} \times \mathbb{R}^n$. Let (A, B) be a pair of subsets of $\mathbb{R} \times \mathbb{R}^n$. Define the *functional* extension ex(A) by

(2a)
$$\operatorname{ex}(A) = \{(t,\varphi) \in \mathbb{R} \times \mathscr{C} : (t+\theta,\varphi(\theta)) \in A \text{ for every } \theta \in [-r,0]\},\$$

and for $B \subset A$,

$$\operatorname{ex}_{A}(B) = \{(t,\varphi) \in \operatorname{ex}(A) : (t,\varphi(0)) \in B\}.$$

Similarly, define

$$ex(A)_t = \{\varphi \in \mathscr{C} : (t,\varphi) \in ex(A)\},\$$
$$ex_A(B)_t = \{\varphi \in ex(A)_t : \varphi(0) \in B_t\}.$$

LEMMA 4. If (A, B) is a *T*-periodic pair, then ex(A), $ex_A(B)$, $ex(A)_t$ and $ex_A(B)_t$ are closed ANR's.

Proof. Since A and B are ANR's, there are T-periodic open subsets U and V of $\mathbb{R} \times \mathbb{R}^n$ such that $A \subset U, B \subset V$ and, by Remark 3, there exist T-periodic retractions $\varrho: U \to A$ and $\varrho^*: V \to B$ which preserve the time sections A_t and B_t .

Denote by $\varrho_t: U_t \to A_t$ and $\varrho_t^*: V_t \to B_t$ the restrictions of ϱ and ϱ^* to the appropriate *t*-time sections. To show that $\operatorname{ex}(A)$ is an ANR define $\tilde{\varrho}: \operatorname{ex}(U) \to \operatorname{ex}(A)$ by $\tilde{\varrho}(t, \varphi) = (t, \tilde{\varrho}_t(\varphi))$, where $\tilde{\varrho}_t(\varphi)(\theta) = \varrho_t(\varphi(\theta))$. Because *U* is open, $\operatorname{ex}(U)$ is open in $\mathbb{R} \times \mathscr{C}$, and the continuity of $\tilde{\varrho}$ follows from the compactness of the graph of φ . Thus $\operatorname{ex}(U)$ is an ANR and $\operatorname{ex}(A)$ is its retract, hence also an ANR.

To show that $\operatorname{ex}_A(B)$ is an ANR, we will use the retraction $\widetilde{\rho}$ as well as ρ^* . Let (U_1, V_1) be a pair of *T*-periodic open subsets of $\mathbb{R} \times \mathbb{R}^n$ such that $A \subset U_1 \subset \overline{U}_1 \subset U$ and $B \subset V_1 \subset \overline{V}_1 \subset V$. Define $\widetilde{\rho}^* : \operatorname{ex}_{U_1}(V_1) \to \mathbb{R} \times \mathscr{C}$ by $\widetilde{\rho}^*(t, \varphi) = (t, \widetilde{\rho}^*_t(\varphi))$, where $\widetilde{\rho}^*_t(\varphi)(\theta) = \varphi(\theta) + \varrho^*_t(\varphi(0)) - \varphi(0)$. We can choose U_1 and V_1 sufficiently small to ensure that $\widetilde{\rho}^*(\operatorname{ex}_{U_1}(V_1))$ is contained in $\operatorname{ex}(U)$. Then $\widetilde{\rho} \circ \widetilde{\rho}^*$ is the required retraction onto $\operatorname{ex}_A(B)$, and so this last set is an ANR.

Since A_t is closed, so is $ex(A)_t$, and the same applies to the other sets from Lemma 4.

The main result of the paper is based on the concept of a Lefschetz map f and its Lefschetz number $\Lambda(f)$. The reader is referred to [2] and [5] for unexplained definitions and basic facts concerning these concepts.

We make the following definition (see [8, Def. 2.2.3, p. 23]):

DEFINITION 5. The Lefschetz number of a T-periodic pair (A, B) is

(3)
$$\operatorname{Lef}_T(A, B) = \Lambda(\omega_{(\sigma,T)}) \in \mathbb{Z}_2$$

where $\omega_{(\sigma,T)}$: $(A_{\sigma}, B_{\sigma}) \to (A_{\sigma+T}, B_{\sigma+T}) = (A_{\sigma}, B_{\sigma})$, and ω is the *T*-periodic process from the definition of a *T*-periodic pair.

This number is well defined, because A_{σ} and B_{σ} are compact ANR's. It was shown in [8, p. 22] that this definition does not depend on the choice of ω . Moreover, it does not depend on the choice of the initial time σ .

(2b)

For a *T*-periodic pair (A, B) and $\sigma \in \mathbb{R}$ define $\widetilde{\omega}: (A_{\sigma}, B_{\sigma}) \to (\text{ex}(A)_{\sigma}, \text{ex}_A(B)_{\sigma})$ by

(4)
$$\widetilde{\omega}(x)(\theta) = \omega_{(\sigma,\theta)}(x) \quad \text{for } \theta \in [-r,0],$$

where ω is as above.

PROPOSITION 6. If $C \subset \mathbb{R} \times \mathbb{R}^n$ is an element of a *T*-periodic pair, then for $\Omega_{\sigma,T}$: $ex(C)_{\sigma} \to ex(C)_{\sigma+T} = ex(C)_{\sigma}$ defined by

 $\Omega_{\sigma,T}(\varphi) = \widetilde{\omega}(\omega_{(\sigma,T)}(\varphi(0))),$

the Lefschetz number $\Lambda(\Omega_{\sigma,T})$ is well defined and $\Lambda(\Omega_{\sigma,T}) = \Lambda(\omega_{(\sigma,T)})$.

Proof. Let $\varrho: \exp(C)_{\sigma} \ni \varphi \mapsto \varphi(0) \in C_{\sigma}$. Consider the commutative diagram

[5, Lem. 3.1] implies that the Lefschetz number of $\Omega_{\sigma,T}$ is well defined because it is defined for $\omega_{(\sigma,T)}$. Moreover, $\Lambda(\Omega_{\sigma,T}) = \Lambda(\omega_{(\sigma,T)})$. It is obvious that we can use the same argument for pairs of spaces (see [2]).

For a set $W \subset \mathbb{R} \times \mathbb{R}^n$ we introduce the following set, which depends on the equation (1):

$$W^{-} = \{(t, x) \in \partial W : \text{ there exists } \varepsilon > 0 \text{ such that for every } \varphi \in \mathscr{C} \text{ with} \\ (t, \varphi) \in \text{ex}(W) \text{ and } \varphi(0) = x \text{ and for all } \theta \in (0, \varepsilon] \\ \text{ we have } (t + \theta, x(t, \varphi)(t + \theta)) \notin W \}.$$

This is a generalization of the exit set from the theory of dynamical systems.

DEFINITION 7. A pair (W, W^-) of subsets of $\mathbb{R} \times \mathbb{R}^n$ is a *T*-periodic block for the equation (1) if

(i) (W, W^-) is a *T*-periodic pair, (ii) $\partial W \setminus W^- = \{(t, x) \in \partial W: t\}$

(ii)
$$\partial W \setminus W^- = \{(t,x) \in \partial W : \text{ there exists } \varepsilon > 0 \text{ such that for every} \\ \varphi \in \mathscr{C} \text{ with } (t,\varphi) \in \operatorname{ex}(W) \text{ and } \varphi(0) = x \text{ and for all} \\ \theta \in (0,\varepsilon] \text{ we have } (t+\theta, x(t,\varphi)(t+\theta)) \in \operatorname{int} W \}.$$

We recall that according to the definition of a T-periodic pair, both sets in a T-periodic block have to be closed. This is an essential property, which will enable us to use the Ważewski Principle.

3. The main theorem

THEOREM 8. Let $f: \mathbb{R} \times \mathscr{C} \to \mathbb{R}^n$ be a *T*-periodic continuous map which satisfies the uniqueness condition. Suppose that there exists a *T*-periodic block (W, W^-) for the equation (1). Then $\operatorname{Lef}_T(W, W^-)$ is well defined and if $\operatorname{Lef}_T(W, W^-) \neq 0$, then there exists a T-periodic solution of (1).

The rest of this section is devoted to the proof of Theorem 8. The idea is to reduce the problem from the infinite-dimensional space \mathscr{C} to \mathbb{R}^n . The first step will be the change of space and of the *solution operator*

$$\Phi(0,T): \operatorname{ex}(W)_0 \ni \varphi \mapsto x_T(0,\varphi) \in \mathscr{C}.$$

If the initial time is 0 and W^- is not empty, then there are *T*-time solutions $x_T(0,\varphi)$, where $\varphi \in ex(W)_0$, which are not contained in $ex(W)_t$ for some $t \in (0,T]$. To avoid the problem with the range of the solution operator, we will modify the range and domain of $\Phi(0,T)$. But this operation should not create any additional fixed points of the modified operator, denoted by Θ . The next aim is to construct the homotopy between Θ and $\Omega_{0,T}$ defined in Proposition 6. The last step is to apply Proposition 6.

To simplify notation we will assume, without loss of generality, that the initial time is 0. Define

$$\begin{aligned} \tau\colon \mathrm{ex}(W)\ni (\sigma,\varphi)\mapsto \sup\{t\geq 0: (s,x(\sigma,\varphi)(s))\in W\\ \text{for all }s\in [\sigma,\sigma+t]\}\in [0,\infty]. \end{aligned}$$

The next lemma is a version of the Ważewski Principle [10] presented in a modern way by C. Conley [3]. For RFDE's a generalization of the Ważewski Principle was given by K. Rybakowski [7].

LEMMA 9. The map τ is continuous.

Proof. We consider two cases:

If $\tau(\sigma,\varphi) < \infty$ then $x_{\sigma+\tau(\sigma,\varphi)}(\sigma,\varphi) \in ex_W(W^-)_{\sigma+\tau(\sigma,\varphi)}$. By the definition of W^- we can choose $\varepsilon > 0$ such that $x(\sigma,\varphi)(\sigma+\tau(\sigma,\varphi)+\varepsilon) \notin W_{\sigma+\tau(\sigma,\varphi)+\varepsilon}$.

Let U_1 be a neighborhood of $(\sigma + \tau(\sigma, \varphi) + \varepsilon, x(\sigma, \varphi)(\sigma + \tau(\sigma, \varphi) + \varepsilon))$ in $\mathbb{R} \times \mathbb{R}^n$ such that $U_1 \cap W = \emptyset$. Let \widehat{U}_1 be a neighborhood of $(\sigma + \tau(\sigma, \varphi) + \varepsilon)$, $x_{\sigma+\tau(\sigma,\varphi)+\varepsilon}(\sigma,\varphi))$ in $\mathbb{R} \times \mathscr{C}$ with $(s,\psi(0)) \in U_1$ for every $(s,\psi) \in \widehat{U}_1$. The continuous dependence on initial conditions implies that there exists a neighborhood \widehat{V}_1 of (σ,φ) in $\mathbb{R} \times \mathscr{C}$ such that $(s+\tau(\sigma,\varphi)+\varepsilon, x_{s+\tau(\sigma,\varphi)+\varepsilon}(s,\psi)) \in \widehat{U}_1$ for every $(s,\psi) \in \widehat{V}_1$. Because the value at 0 of every function from \widehat{U}_1 does not belong to W, for every $(s,\psi) \in \widehat{V}_1$ we have $\tau(s,\psi) < \tau(\sigma,\varphi) + \varepsilon$.

Let U_2 be a neighborhood of $(\sigma + \tau(\sigma, \varphi) - \varepsilon, x(\sigma, \varphi)(\sigma + \tau(\sigma, \varphi) - \varepsilon))$ in $\mathbb{R} \times \mathbb{R}^n$ disjoint from W^- (we can assume that $\tau(\sigma, \varphi) > 0$ and $\varepsilon < \tau(\sigma, \varphi)$). We define \widehat{U}_2 as above. Let U_3 be an open neighborhood of $\{(t, x(\sigma, \varphi)(t)) : t \in [\sigma, \sigma + \tau(\sigma, \varphi) - \varepsilon]\}$ in $\mathbb{R} \times \mathbb{R}^n$ such that $U_3 \cap W^- = \emptyset$.

Using the continuous dependence again, we find a neighborhood \widehat{V}_2 of (σ, φ) such that $(s + \tau(\sigma, \varphi) - \varepsilon, x_{s+\tau(\sigma, \varphi)-\varepsilon}(s, \psi)) \in \widehat{U}_2$ for every $(s, \psi) \in \widehat{V}_2$.

Taking \widehat{V}_2 small enough, we can assume that $(t, x(s, \psi)(t))$ is in U_3 for all $(s, \psi) \in \widehat{V}_2$ and $t \in [\sigma, \sigma + \tau(\sigma, \varphi) - \varepsilon]$. This gives the opposite inequality $\tau(s, \psi) > \tau(\sigma, \varphi) - \varepsilon$, which proves the continuity in the first case.

We only sketch the proof in the case $\tau(\sigma, \varphi) = \infty$, because it is similar. We choose $N > \sigma$ and construct an open neighborhood U of $(N, x(\sigma, \varphi)(N))$ in $\mathbb{R} \times \mathbb{R}^n$ disjoint from W. Then we choose a neighborhood \widehat{U} of $(N, x_N(\sigma, \varphi))$ in $\mathbb{R} \times \mathscr{C}$ and a neighborhood U' of the trajectory $(t, x(\sigma, \varphi)(t))$ on the interval $[\sigma, N]$, and finally we conclude that for some neighborhood \widehat{V} of (σ, φ) and for every $(s, \psi) \in \widehat{V}$ we have $\tau(s, \psi) > N$.

To simplify notation, for $\varphi \in ex(W)_0$ we will write $\tau(\varphi)$ instead of $\tau(0,\varphi)$.

Let \mathscr{D} be the topological quotient space obtained from the union $\operatorname{ex}(W)_0 \cup (\operatorname{ex}_W(W^-)_0 \times \mathbb{S}^1)$ (\mathbb{S}^1 is the unit circle in the complex plane), where every $\varphi \in \operatorname{ex}_W(W^-)_0 \subset \operatorname{ex}(W)_0$ is identified with $(\varphi, 1) \in \operatorname{ex}_W(W^-)_0 \times \mathbb{S}^1$.

We now define $\Theta: \mathscr{D} \to \mathscr{D}$. For $\varphi \in ex(W)_0$ we set

$$\Theta(\varphi) = \begin{cases} x_T(0,\varphi) & \text{if } \tau(\varphi) > T, \\ (\widetilde{\omega}(\omega_{(\tau(\varphi),T-\tau(\varphi))}(x(0,\varphi)(\tau(\varphi)))), e^{\frac{T-\tau(\varphi)}{T}\pi i}) & \text{if } \tau(\varphi) \le T-r, \\ (\Theta_1(\varphi), e^{\frac{T-\tau(\varphi)}{T}\pi i}) & \text{if } \tau(\varphi) \in (T-r,T], \end{cases}$$

where

$$\Theta_1(\varphi)(t) = \begin{cases} x_T(0,\varphi)(t) & \text{if } T+t \le \tau(\varphi), \\ \widetilde{\omega}(\omega_{(\tau(\varphi),T-\tau(\varphi))}(x(0,\varphi)(\tau(\varphi))))(t) & \text{if } T+t > \tau(\varphi), \end{cases}$$

and $\widetilde{\omega}$ is given by (4). For $(\varphi, u) \in ex_W(W^-)_0 \times \mathbb{S}^1$ we define

$$\Theta(\varphi, u) = (\widetilde{\omega}(\omega_{(0,T)}(\varphi(0))), ue^{\pi i}).$$

LEMMA 10. The map Θ is continuous and compact (i.e. there exists a compact set $\mathscr{K} \subset \mathscr{D}$ such that $\Theta(\mathscr{D}) \subset \mathscr{K}$).

Proof. The continuity of Θ follows from the continuity of τ . From [6, Ch. 3, Cor. 6.1] we know that the solution map $\Phi(0,T)$: $\operatorname{ex}(W)_0 \ni \varphi \mapsto x_T(0,\varphi) \in \mathscr{C}$ is compact. The map $\widetilde{\omega} \colon W_0 \to \operatorname{ex}(W)_0$ is also compact, because $\widetilde{\omega}(W_0)$ is an equicontinuous and bounded family of functions.

Proof of the main theorem. If $\varphi \in \mathscr{D}$ is a fixed point of Θ , then it is a fixed point of the solution map $\Phi(0,T)$: $ex(W)_0 \ni \varphi \mapsto x_T(0,\varphi) \in \mathscr{C}$. This implies that $Fix \Theta \subset ex(W)_0$.

The map $\Theta: \mathscr{D} \to \mathscr{D}$ satisfies the conditions of [5, Th. 9.5]. The set \mathscr{D} is an ANR, because $\operatorname{ex}(W)_0$, $\operatorname{ex}_W(W^-)_0$ and $\operatorname{ex}_W(W^-)_0 \times \mathbb{S}^1$ are, and \mathscr{D} is the union of $\operatorname{ex}(W)_0$ and $(\operatorname{ex}_W(W^-)_0 \times \mathbb{S}^1)$ with intersection $\operatorname{ex}_W(W^-)_0$ (see [1, Th. IV.6.1]).

If $\Lambda(\Theta) \neq 0$, then Θ has a fixed point φ^* , which is also a fixed point of $\Phi(0,T)$. Because the solution operator $\Phi(0,T)$ for (1) induces a *T*-periodic process on \mathscr{C} , we obtain

$$x_t(0,\varphi^*) = x_t(T,\varphi^*) = x_t(T,x_T(0,\varphi^*)) = x_{t+T}(0,\varphi^*).$$

This ends the proof that $x(0, \varphi^*)$ is a *T*-periodic solution of (1).

If we know that the Lefschetz number $\Lambda(\Theta)$ is defined, then we can easily compute it using information about the geometry of (W, W^-) only. We will construct two homotopies to show that Θ is homotopic to $\Omega: \mathscr{D} \to \mathscr{D}$, where

$$\Omega(\varphi) = \widetilde{\omega}(\omega_{(0,T)}(\varphi(0))), \qquad \Omega(\varphi, u) = (\widetilde{\omega}(\omega_{(0,T)}(\varphi(0))), u).$$

Let $\varphi \in \mathscr{D}$. Then, roughly speaking, the first homotopy will move $\Theta(\varphi)$ to the function defined by $\widetilde{\omega}$, without changing the ending point $\Theta(\varphi)(0)$. Define $\chi: \operatorname{ex}(W)_0 \times [0,1] \to \operatorname{ex}(W)_0$ by

$$\chi(\varphi,s)(t) = \begin{cases} \varphi(t) & \text{if } t \ge -r(1-s), \\ \widetilde{\omega}(\omega_{(-r(1-s),r(1-s))}(\varphi(-r(1-s))))(t) & \text{if } t < -r(1-s). \end{cases}$$

We define the first homotopy, $h_1: \mathscr{D} \times [0,1] \to \mathscr{D}$, as follows. On $ex(W)_0 \times [0,1]$ and if $\tau(\varphi) > T$, we set

$$h_1(\varphi, s) = \chi(x_T(0, \varphi), s).$$

If $\varphi \in ex(W)_0$ and $\tau(\varphi) \in (T - r, T]$, then

$$h_1(\varphi, s) = (\chi(\Theta_1(\varphi), s), e^{\frac{T - \tau(\varphi)}{T}\pi i}).$$

On the rest of \mathscr{D} the map h_1 does not depend on the second variable and is equal to Θ :

$$h_1(\varphi, s) = \Theta(\varphi) \quad \text{if } \varphi \in \operatorname{ex}(W)_0 \text{ and } \tau(\varphi) \in [0, T - r],$$

$$h_1((\varphi, u), s) = \Theta(\varphi, u) \quad \text{if } (\varphi, u) \in \operatorname{ex}_W(W^-)_0 \times \mathbb{S}^1.$$

The second homotopy, denoted by $h_2: \mathscr{D} \times [0,1] \to \mathscr{D}$, is defined as follows. If $\varphi \in ex(W)_0$ and $\tau(\varphi) \geq T(1-s)$, then

$$h_2(\varphi, s) = \widetilde{\omega}(\omega_{(T(1-s),Ts)}(x(0,\varphi)(T(1-s)))).$$

If $\varphi \in ex(W)_0$ and $\tau(\varphi) < T(1-s)$, then

$$h_2(\varphi, s) = (\widetilde{\omega}(\omega_{(\tau(\varphi), T-\tau(\varphi))}(x(0, \varphi)(\tau(\varphi)))), e^{(\frac{T-\tau(\varphi)}{T} - s)\pi i}).$$

On $ex_W(W^-)_0 \times \mathbb{S}^1$ we set

$$h_2((\varphi, u), s) = (\widetilde{\omega}(\omega_{(0,T)}(\varphi(0))), ue^{(1-s)\pi i}).$$

Clearly $h_1(\cdot, 1) = h_2(\cdot, 0)$, and the homotopy $H: \mathscr{D} \times [0, 1] \to \mathscr{D}$ defined by $(h_1(\cdot, 2)) = (h_2(\cdot, 2))$

$$H(\varphi, s) = \begin{cases} h_1(\varphi, 2s) & \text{if } s \le 1/2, \\ h_2(\varphi, 2s - 1) & \text{if } s > 1/2, \end{cases}$$

joins Θ to Ω .

Now let

$$\Omega_1: \operatorname{ex}(W)_0 \ni \varphi \mapsto \widetilde{\omega}(\omega_{(0,T)}(\varphi(0))) \in \operatorname{ex}(W)_0,
\Omega_2: \operatorname{ex}_W(W^-)_0 \times \mathbb{S}^1 \ni (\varphi, u) \mapsto (\widetilde{\omega}(\omega_{(0,T)}(\varphi(0))), u) \in \operatorname{ex}_W(W^-)_0 \times \mathbb{S}^1,
\Omega_3: \operatorname{ex}_W(W^-)_0 \ni \varphi \mapsto \widetilde{\omega}(\omega_{(0,T)}(\varphi(0))) \in \operatorname{ex}_W(W^-)_0.$$

Set $\Delta = W_0 \cup (W_0^- \times \mathbb{S}^1)/\sim$, where \sim identifies $x \in W_0^-$ with $(x, 1) \in W_0^- \times \mathbb{S}^1$. Furthermore, let $\gamma: \Delta \to \Delta$ be defined by $\gamma(x) = \omega_{(0,T)}(x)$ and $\gamma(x,s) = (\omega_{(0,T)}(x), s)$. The restrictions of γ denoted by $\gamma_1: W_0 \to W_0$, $\gamma_2: W_0^- \times \mathbb{S}^1 \to W_0^- \times \mathbb{S}^1$, $\gamma_3: W_0^- \to W_0^-$ are well defined. Proposition 6 implies that $\Lambda(\Omega) = \Lambda(\gamma)$ and $\Lambda(\Omega_i) = \Lambda(\gamma_i)$ for i = 1, 2, 3.

The next part of the proof is similar to the proof of the main theorem of [8, p. 27]. By [2, Prop. 4.1], $\Lambda(\gamma) = \Lambda(\gamma_2) + \Lambda(\gamma_4)$, where $\gamma_4: (\Delta, W_0^- \times \mathbb{S}^1) \rightarrow (\Delta, W_0^- \times \mathbb{S}^1)$ is determined by γ . The Lefschetz number of γ_2 is 0, because γ_2 is homotopic to a map without fixed points, and it follows that $\Lambda(\gamma) = \Lambda(\gamma_4)$. Since the triad $(\Delta; W_0^- \times \mathbb{S}^1, W_0)$ is excisive (see, for example, [4, III.8.23 Ex. 1(b)] for details), the relative singular homology groups (with rational coefficients) $H(\Delta, W_0^- \times \mathbb{S}^1)$ and $H(W_0, W_0^-)$ are equal. Hence $\Lambda(\gamma_4) = \operatorname{Lef}_T(W_0, W_0^-)$ and $\Lambda(\gamma) = \operatorname{Lef}_T(W_0, W_0^-)$.

The Lefschetz number is invariant under homotopy, therefore $\Lambda(\Theta) = \text{Lef}_T(W_0, W_0^-)$. If $\text{Lef}_T(W_0, W_0^-) \neq 0$, then $\Lambda(\Theta) \neq 0$ and, by [5, Th. 9.5], Θ has a fixed point φ^* . This implies that φ^* is a fixed point of $\Phi(0, T)$, because it follows from the construction that Θ has no fixed point in $\exp(W^-)_0 \times \mathbb{S}^1$. We conclude that $\varphi^* \in \{\varphi \in \mathscr{C} : (\theta, \varphi(\theta)) \in \text{int } W \text{ for every } \theta \in [-r, 0]\}$ and $x(\sigma, \varphi^*)$ is a periodic solution of (1) contained in int W.

4. Examples. Our first example is a simple delay equation in \mathbb{R}^n :

(5)
$$\dot{x} = |x|x + x(t-r) + f(t),$$

where f is a T-periodic continuous function (T > r).

If B_d is a ball with center at the origin and its radius d is sufficiently large, then for every point of ∂B_d and every $\varphi \in \text{ex}(B_d)$ such that $\varphi(0) \in \partial B_d$, solutions of the equation (5) are directed outside the ball. Using the previous notation, $\partial B_d = B_d^-$. We can take $(\mathbb{R} \times B_d, \mathbb{R} \times \partial B_d)$ as a *T*-periodic block. Since $\text{Lef}_T(\mathbb{R} \times B_d, \mathbb{R} \times \partial B_d) = 1$, there exists a *T*-periodic orbit of (5).

The next example is an equation on the complex plane \mathbb{C} :

(6)
$$\dot{z} = \bar{z}^q + z(t-r) + p(t),$$

where $q \geq 2$ and $p: \mathbb{R} \to \mathbb{C}$ is a $2k\pi$ -periodic continuous function $(k \in \mathbb{Z})$.

If we omit the term z(t-r), then it was shown in [8, Ex. 6.4.1] that this (ordinary) differential equation has a $2k\pi$ -periodic solution. For $z \in \mathbb{C}$ with |z| large, we can estimate the term with delay, and it does not change the structure of a (sufficiently large) $2k\pi$ -periodic block. Therefore (6) has a $2k\pi$ -periodic solution.

The same reasoning applies to the equation

(7)
$$\dot{z} = \bar{z}^r e^{it} + (z(t-r))^q + p(t),$$

where $2 \leq q < r$ and p is a $2k\pi$ -periodic, continuous complex-valued function $(k \in \mathbb{Z})$.

If (W, W^-) is an appropriate $2k\pi$ -periodic block for the equation $\dot{z} = \bar{z}^r e^{it} + z^q + p(t)$, then the exit set W^- does not change if we replace z^q by $(z(t-r))^q$. Thus (7) has a $2k\pi$ -periodic solution.

To be more specific, consider the equation

(8)
$$\dot{z} = \bar{z}^2 e^{3it} + z(t-r) + e^{it}$$

The $2\pi/3$ -periodic block (W, W^-) for this equation has the form of a skewed prism with a hexagonal base, and the exit set consists of three stripes winding around this prism. This was shown in [8] in the case of the ordinary differential equation which arises from (8) by neglecting the term with delay. For (W, W^-) sufficiently large we obtain $\text{Lef}_{2\pi}(W, W^-) = -2$, and so there exists a 2π -periodic solution of (8).

We can modify these equations to obtain equations like

(9)
$$\dot{z} = \overline{z}^q + \int_{-r}^0 e^{-r/(r+\theta)} z(t-\theta) \, d\theta + p(t),$$

where p is a T-periodic, continuous complex-valued map and $q \ge 2$.

As in the second example, we can choose a *T*-periodic block for the equation $\dot{z} = \bar{z}^q + z + p(t)$, and if it is sufficiently large, then (9) has a *T*-periodic solution.

Acknowledgements. I wish to express my gratitude to Professor Roman Srzednicki for his inspiration and advice.

References

- [1] K. Borsuk, Theory of Retracts, Monogr. Mat. 44, PWN, Warszawa, 1967.
- C. Bowszyc, Fixed point theorems for the pairs of spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. 16 (1968), 845–850.
- [3] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. Math. 38, Amer. Math. Soc., Providence, RI, 1978.
- [4] A. Dold, Lectures on Algebraic Topology, Springer, Berlin, 1980.
- [5] A. Granas, The Leray-Schauder index and the fixed point theory for arbitrary ANRs, Bull. Soc. Math. France 100 (1972), 209–228.
- [6] J. Hale, Theory of Functional Differential Equations, Appl. Math. Sci. 3, Springer, New York, 1977.
- [7] K. P. Rybakowski, Ważewski's principle for retarded functional differential equations, J. Differential Equations 36 (1980), 117–138.

- [8] R. Srzednicki, A geometric method for the periodic problem in ordinary differential equations, Sém. Anal. Moderne, Univ. de Sherbrooke, 1992.
- [9] —, Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations, Nonlinear Anal. 22 (1994), 707–737.
- [10] T. Ważewski, Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math. 20 (1947), 279–313.

Marcin Pawłowski Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: pawlowsk@im.uj.edu.pl

> Received April 4, 2004; received in final form September 7, 2004

(7392)