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Summary. Let A be a complex, commutative Banach algebra and letMA be the structure
space of A. Assume that there exists a continuous homomorphism h : L1(G) → A with
dense range, where L1(G) is a group algebra of the locally compact abelian group G. The
main results of this note can be summarized as follows:

(a) If every weakly almost periodic functional on A with compact spectra is almost
periodic, then the space MA is scattered (i.e.,MA has no nonempty perfect subset).

(b) Weakly almost periodic functionals on A with compact scattered spectra are almost
periodic.

(c) If MA is scattered, then the algebra A is Arens regular if and only if A∗ = spanMA.

1. Introduction. Throughout the paper A will denote a complex, com-
mutative Banach algebra. We shall denote by MA the structure space of A.
As is well known, MA is a locally compact, Hausdorff space and the Gelfand
transform Γ : a 7→ â identifies A with a subalgebra of C0(MA), the Banach
algebra of all complex-valued continuous functions on MA which vanish
at infinity. For ϕ ∈ A∗ and a ∈ A, the functional ϕ · a on A is defined by
〈ϕ ·a, b〉 = 〈ϕ, ab〉, b ∈ A. This operation turns A∗ into a Banach A-module.
Let O∗(ϕ) denote the weak∗-closure of the set {ϕ · a : a ∈ A}. Recall that the
w∗-spectrum of a functional ϕ ∈ A∗, written σ∗(ϕ), is defined by O∗(ϕ)∩MA.
We can readily see that σ∗(ϕ) = hull(Iϕ), where Iϕ = {a ∈ A : ϕ · a = 0} is
a closed ideal in A.

Let G be a locally compact abelian group and L1(G) be the group alge-
bra of G. The well known Loomis theorem [9] states that if the w∗-spectrum
of ϕ ∈ L∞(G) is compact and scattered, then ϕ is an almost periodic func-
tion, namely ϕ ∈ spanσ∗(ϕ). Recall that a closed subset S of a topological
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Hausdorff space is said to be scattered if S does not contain a nonempty
perfect subset.

For 1 < p <∞, let Ap(G) denote the space of functions on G which can
be represented as

f =
∞∑

n=1

un ∗ v∨n ,

where the un’s are in Lp(G), the vn’s are in Lq(G) (1/p+ 1/q = 1), v∨n (g) =
vn(−g), and ∞∑

n=1

‖un‖p‖vn‖q <∞.

The norm of f is the infimum of the above sums over all such representations
of f . The space Ap(G) is a commutative Banach algebra [4], often called the
Herz algebra. We recall that L1(Ĝ) is isometrically isomorphic to A2(G) via
the Fourier transform F . Here Ĝ is the dual group of G. A generalization
of the Loomis theorem to Herz algebras has been proved by Lust-Piquard
in [10].

As functions which are continuous on G with compact support are dense
in Lp(G), A2(G) is dense in Ap(G). It follows that F : L1(Ĝ) → Ap(G)
is a continuous homomorphism with dense range. This suggests the ques-
tion: Assume that there exists a continuous homomorphism h : L1(G)→ A
with dense range. Is there a generalization of the Loomis theorem to the
algebra A? In this paper we give a partial answer to this question.

We first note that the class of Banach algebras A satisfying the above
conditions is fairly large. In general, these algebras arise in the following way:
Let g 7→ Tg be a bounded continuous representation of G on a Banach space
X. For f ∈ L1(G), define Tf =

�
G f(g)Tg dg. We see that Tf is a bounded

linear operator on X. Let LT (G) denote the closure of {Tf : f ∈ L1(G)} with
respect to the operator-norm topology. Then the algebras LT (G) satisfy the
conditions imposed on A.

If there exists a continuous homomorphism h : L1(G) → A with dense
range, the spectrum of h, written sp(h), is defined as the hull of the ideal
ker(h). The standard technique of Banach algebras shows that h∗ homeo-
morphically identifieds MA with sp(h). Moreover, the Gelfand transform of
h(f) is just f̂(χ) (χ ∈ sp(h)), where f̂ is the Fourier transform of f ∈ L1(G).
If ϕ ∈ A∗, for notational simplicity we will write h∗ϕ for ϕ∨. We shall also
need the following notations: X is a Banach space, X∗ is its dual, X∗∗ is
its second dual, and X1 is the closed unit ball in X. We shall regard X
as naturally embedded into X∗∗. For ϕ ∈ X∗ and x ∈ X, by 〈ϕ, x〉, and
also by ϕ(x), we denote the natural duality between X∗ and X. We will
denote by w and w∗ the weak topology in X and the weak∗ topology in X∗,
respectively. By E

w
and E we will denote the weak closure and the norm
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closure, respectively, of a set E ⊂ X. E
∗

will denote the weak∗ closure of a
set E ⊂ X∗.

2. Preliminaries. Let A be a complex, commutative Banach algebra.
The functional ϕ ∈ A∗ is said to be (weakly) almost periodic on A if the
set {ϕ · a : a ∈ A1} is relatively (weakly) compact. This is equivalent to
saying that the linear operator Tϕ : A → A∗ defined by Tϕ(a) = ϕ · a
is (weakly) compact. For example, if A = L1(G) then this reduces to the
classical notion of (weak) almost periodicity for ϕ ∈ L∞(G). We will denote
by ap(A) (resp. wap(A)) the set of all almost periodic (resp. weakly almost
periodic) functionals on A. Both ap(A) and wap(A) are norm-closed A-
submodules of A∗. As is known [2], ap(L1(G)) = AP(G) and wap(L1(G)) =
WAP(G), where AP(G) and WAP(G) are the spaces of almost periodic and
weakly almost periodic functions on G respectively.

We can endow A∗∗ with a product (making A∗∗ a Banach algebra) which
is a natural extension of the original product in A (cf. [1]). This product
is defined as follows: If ϕ ∈ A∗ and F,H ∈ A∗∗, then we set 〈F ◦ H,ϕ〉 =
〈F,H ·ϕ〉, where H ·ϕ is the functional on A defined by 〈H ·ϕ, a〉 = 〈H,ϕ·a〉,
a ∈ A. The algebra A is said to be Arens regular if A∗∗ is commutative. This
is equivalent to the condition that wap(A) = A∗ (see [1]).

Let µ be an arbitrary bounded regular Borel measure on MA. Then µ
can be considered as an element of A∗ with respect to the duality

〈µ, a〉 = �
MA

â(φ) dµ(φ), a ∈ A.

It is easy to see that σ∗(µ) and suppµ in the usual terms are the same.

Lemma 2.1. If µ is a bounded regular Borel measure on MA, then µ ∈
wap(A).

Proof. We follow basically the proof by Dunkl–Ramirez [2], given there
for the Fourier algebra. It is enough to show that if µ is a positive measure on
MA with compact support, then the operator Tµ is weakly compact. Define
the map S : L2(MA, dµ)→ A∗ by Sf = f(φ) dµ(φ) (φ ∈ MA). We see that
S is a weakly compact operator and Tµ = S ◦Γ . It follows that the operator
Tµ is also weakly compact.

The following lemma was proved in [8, Lemma 6.1] for Arens regular
Banach algebras.

Lemma 2.2. If A has a bounded approximate identity , then every ϕ ∈
wap(A) (resp. ϕ ∈ ap(A)) can be represented as ϕ = ψ · a for some ψ ∈
wap(A) (resp. ψ ∈ ap(A)) and a ∈ A.
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Proof. Let ϕ ∈ wap(A). Note that wap(A) is a Banach A-module. It
follows from the Cohen–Hewitt Factorization Theorem [5, 32.22] that the
set {ψ · a : ψ ∈ wap(A), a ∈ A} is a norm-closed linear subspace of A∗. Let
(ei)i∈I be a bounded approximate identity for A. Then ϕ · ei → ϕ in the
w∗-topology. On the other hand, since the set {ϕ · ei : i ∈ I} is relatively
weakly compact, ϕ · ei → ϕ weakly. Hence we have

ϕ ∈ {ψ · a : ψ ∈ wap(A), a ∈ A}w = {ψ · a : ψ ∈ wap(A), a ∈ A}.
For ap(A) a similar argument works.

A Banach G-module X is a Banach space X which is a G-module such
that:

(i) e · x = x for all x ∈ X, where e is the identity of G.
(ii) ‖g · x‖ ≤ C‖x‖ for some constant C > 0, for all x ∈ X and g ∈ G.

(iii) For all x ∈ X, the map g 7→ g · x is continuous from G into X.

In this case, we can define for each ϕ ∈ X∗, g ∈ G, the element g · ϕ ∈ X∗
by 〈g · ϕ, x〉 = 〈ϕ, g · x〉, x ∈ X. A Banach G-module X is said to be almost
periodic if the set {g · x : g ∈ G} is relatively compact for every x ∈ X. It
follows from the Peter–Weyl theory [11, Chap. 4, Sect. 3] that, if X is an
almost periodic Banach G-module, then X is generated by the eigenvectors
of G, i.e., by those x ∈ X that satisfy g · x = χ(g)x for some χ ∈ Ĝ and for
all g ∈ G.

Lemma 2.3. If there exists a continuous homomorphism h : L1(G)→ A
with dense range, then A is a Banach G-module and furthermore 〈g ·ϕ, a〉 =
(ϕ · a)∨(g) for every ϕ ∈ A∗, a ∈ A and g ∈ G.

Proof. Let g ∈ G and f ∈ L1(G). Define g · h(f) = h(fg), where fg(s) =
f(s− g). Let (fi)i∈I be an approximate identity in L1(G) bounded by one.
Since h((fi)g)h(f) → g · h(f), we have ‖g · h(f)‖ ≤ ‖h‖‖h(f)‖. Thus since
h(L1(G)) is dense in A the module operation can be extended to all A, after
which the algebra A becomes a Banach G-module. Now let ϕ ∈ A∗ and
a ∈ A be given. It is easy to verify that

�
G f(g)(g · ϕ) dg = ϕ · h(f). Using

this we have

�
G

f(g)〈g · ϕ, a〉 dg = 〈ϕ · h(f), a〉 = 〈(ϕ · a)∨, f〉.

Since this is true for all f ∈ L1(G), we obtain

〈g · ϕ, a〉 = (ϕ · a)∨(g).

Let A be an arbitrary commutative Banach algebra. If φ ∈ MA then
φ · a = â(φ)φ, and consequently, φ ∈ ap(A). Hence, spanMA ⊆ ap(A).

Lemma 2.4. If there exists a continuous homomorphism h : L1(G)→ A
with dense range, then ap(A) = spanMA.
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Proof. Let ϕ ∈ ap(A). By Lemma 2.2, ϕ is of the form ϕ = ψ · a for
some ψ ∈ ap(A) and a ∈ A. Since the set {g · a : g ∈ G} is bounded, from
the identity g·ϕ = ψ·(g·a) we deduce that the set {g · ϕ : g ∈ G} is relatively
compact. On the other hand, since the map g 7→ g · ϕ is w∗-continuous, it
follows that g 7→ g ·ϕ is norm-continuous. Thus ap(A) is an almost periodic
Banach G-module. Hence, ap(A) is generated by the eigenvectors of G. Let
us now find the eigenvectors of G. Assume that g · ψ = χ(g)ψ for some
χ ∈ Ĝ, ψ ∈ A∗\{0} and for all g ∈ G. Then for any f ∈ L1(G), we can write

ψ · h(f) = �
G

f(g)(g · ψ) dg = f̂(χ)ψ.

It follows that χ ∈ sp(h). Since h(L1(G)) is dense in A, we have ψ ·a = φ(a)ψ
for some φ ∈MA and all a ∈ A. Thus since kerφ ⊆ kerψ, we obtain ψ = cφ
for some c 6= 0. The proof is complete.

3. The results. The first main result of this note is the following the-
orem.

Theorem 3.1. Assume that there exists a continuous homomorphism
h : L1(G) → A with dense range. If ϕ ∈ spanσ∗(ϕ) for every ϕ ∈ wap(A)
with compact spectra, then MA is scattered.

Proof. It suffices to show that every compact subset of MA is scattered.
Let µ be an arbitrary bounded regular Borel measure on MA. Then µ can
be considered as a measure on Ĝ with suppµ ⊆ sp(h). First we claim that
µ∨(g) = µ̂(−g), where µ̂ is the Fourier–Stieltjes transform of µ. To see this,
let f ∈ L1(G). Then we can write

〈h∗µ, f〉 = 〈µ, h(f)〉 = �
Ĝ

f̂(χ) dµ(χ) = �
Ĝ

( �
G

f(g)χ(g) dg
)
dµ(χ)

= �
G

( �
Ĝ

χ(g) dµ(χ)
)
f(g) dg = �

G

µ̂(g)f(g) dg.

Since this is true for all f ∈ L1(G), we obtain µ∨(g) = µ̂(−g).
Now let K be an arbitrary compact subset of MA and µ be an arbi-

trary continuous regular Borel measure supported on K. To prove that K
is scattered, in view of [7, p. 52, Theorem 10] it is enough to show that µ is
identically zero. By Lemma 2.1, µ ∈ wap(A). Hence, by the assumption we
have µ ∈ spanK. It follows that µ∨(g) can be approximated in the ‖ · ‖∞
norm by linear combinations of the characters in K. Consequently, µ̂(−g) is
an almost periodic function on G. Let Φ be the invariant mean on AP(G).
Since 〈Φ, χ(g)〉 = 1 if χ = 1 and 〈Φ, χ(g)〉 = 0 if χ = 0, we have

〈Φ, χ(g)µ̂(−g)〉 = µ{χ} = 0.
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This shows that all Fourier–Bohr coefficients of the function µ̂(−g) are zero.
By the uniqueness theorem we obtain µ̂(−g) ≡0, and so µ = 0. This proves
the theorem.

The next theorem is the second main result of this note.

Theorem 3.2. Assume that there exists a continuous homomorphism
h : L1(G) → A with dense range. If the w∗-spectrum of ϕ ∈ wap(A) is
compact and scattered , then ϕ ∈ spanσ∗(ϕ).

Before giving the proof of this theorem, we need the following facts. For
χ ∈ Ĝ, Cχ[f ] denotes the Fourier–Bohr coefficient of a function f ∈ AP(G).
As is known, Cχ[f ] =

�
Σ f(σ) dσ, where Σ is the Bohr compactification of G

and f(σ) the Bohr extension of f . The Bohr spectrum σB(f) of f ∈ AP(G)
is defined as the set of all χ ∈ Ĝ such that Cχ[f ] 6= 0. We also note that if
f ∈ AP(G) and k ∈ L1(G), then f ∗ k ∈ AP(G) and Cχ[f ∗ k] = k̂(χ)Cχ[f ].
It is well known that if f ∈ AP(G), then σB(f) ⊆ σ∗(f) and moreover
σB(f)

∗
= σ∗(f).

We also need the following lemma.

Lemma 3.3. If there exists a continuous homomorphism h : L1(G)→ A
with dense range, then σ∗(ϕ∨) ⊆ σ∗(ϕ) for every ϕ ∈ A∗.

Proof. Let ϕ ∈ A∗. Suppose that there is χ0 ∈ σ∗(ϕ∨) but χ0 6∈ σ∗(ϕ).
Then there exists a k ∈ L1(G) such that k̂(χ0) 6= 0 and k̂ = 0 on some
neighborhood of σ∗(ϕ). Let π : A → A/.Iϕ be the canonical map and h =
π ◦ h. Then sp(h) = σ∗(ϕ). It follows that k belongs to the smallest ideal in
L1(G) whose hull is sp(h). Hence h(k) = 0, so that h(k) ∈ Iϕ. Consequently,
ϕ · h(k) = 0. It follows from the relation ϕ∨ ∗ k = h∗(ϕ · h(k)) (which can
readily be verified) that k ∈ Iϕ∨ . Since χ0 ∈ σ∗(ϕ∨), we obtain k̂(χ0) = 0.
This is a contradiction.

Proof of Theorem 3.2. Assume that the w∗-spectrum of ϕ ∈ wap(A) is
compact and scattered. By Lemma 3.3, σ∗(ϕ∨) is also compact and scat-
tered. The Loomis theorem implies that ϕ∨ ∈ AP(G). Since (ϕ · h(f))∨

= ϕ∨ ∗ f , we have ϕ∨ ∗ f ∈ AP(G) for all f ∈ L1(G). Also since h(L1(G))
is dense in A, this clearly implies that (ϕ · a)∨ ∈ AP(G) for all a ∈ A.

Now let F ∈ A∗∗ be such that F (χ) = 0 for all χ ∈ σ∗(ϕ). To prove the
theorem, it suffices to show that F (ϕ) = 0. Let Σ be the Bohr compactifi-
cation of G, and f(σ) (σ ∈ Σ) the Bohr extension of a function f ∈ AP(G).
For any given σ ∈ Σ, define σ · ϕ ∈ A∗ as follows: Since G is dense in Σ,
there exists a net (gλ)λ∈Λ in G such that gλ → σ in Σ. Taking into account
Lemma 2.3, we can write

lim
λ
〈gλ · ϕ, a〉 = lim

λ
(ϕ · a)∨(gλ) = (ϕ · a)∨(σ), a ∈ A.
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Since the set {gλ · ϕ}λ∈Λ is bounded, we can define σ · ϕ ∈ A∗ by

σ · ϕ = w∗- lim
λ
gλ · ϕ.(3.1)

Note that

〈σ · ϕ, a〉 = (ϕ · a)∨(σ), a ∈ A.(3.2)

By Lemma 2.2, ϕ can be represented as ϕ = ψ · a for some ψ ∈ wap(A)
and a ∈ A. Since the set {g · a : g ∈ G} is bounded, from the identity g ·ϕ =
ψ · (g ·a) we deduce that the set {g · ϕ : g ∈ G} is relatively weakly compact.
Using (3.1) we get

σ · ϕ = w- lim
λ
gλ · ϕ.

Hence, the set {σ · ϕ : σ ∈ Σ} is relatively weakly compact (since Σ is com-
pact, this set is relatively norm-compact). Using relation (3.2) in the same
way, we can see that the map σ 7→ σ·ϕ is weakly continuous on Σ. Therefore,
the function g 7→ 〈F, g ·ϕ〉 is in AP(G). We claim that 〈F, g ·ϕ〉 = (F ·ϕ)∨(g).
To see this, let f ∈ L1(G). Since the map g 7→ g · ϕ is weakly continuous,
we have

�
G

〈F, g · ϕ〉f(g) dg =
〈
F, �

G

(g · ϕ)f(g) dg
〉

= 〈F,ϕ · h(f)〉

= 〈F · ϕ, h(f)〉 = 〈(F · ϕ)∨, f〉.
Since this is true for all f ∈ L1(G), our claim follows. We also note that

〈F, σ · ϕ〉 = (F · ϕ)∨(σ), σ ∈ Σ.(3.3)

Let us now find the Fourier–Bohr coefficients of the function (F · ϕ)∨.
For this purpose consider the following vector-valued integral:

ϕχ = �
Σ

χ(σ)(σ · ϕ) dσ.

Then we have

〈ϕχ, a〉 = �
Σ

χ(σ)〈σ · ϕ, a〉 dσ = �
Σ

χ(σ)(ϕ · a)∨(σ)

= Cχ[(ϕ · a)∨] = â(χ)Cχ[ϕ∨], a ∈ A.
It follows that ϕχ = χCχ[ϕ∨]. Further, since the mapping σ 7→ σ ·ϕ is weakly
continuous, in view of (3.3) we obtain

Cχ[(F · ϕ)∨] = �
Σ

χ(σ)(F · ϕ)∨(σ) dσ = �
Σ

χ(σ)〈F, σ · ϕ〉 dσ

= 〈F,ϕχ〉 = F (χ)Cχ[ϕ∨].

Since σ∗(ϕ∨) ⊆ σ∗(ϕ) and F (χ) = 0 for all χ ∈ σ∗(ϕ), it follows that all
Fourier–Bohr coefficients of the function (F ·ϕ)∨ are zero. By the uniqueness
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theorem, (F · ϕ)∨ ≡ 0. In particular, we have F (ϕ) = (F · ϕ)∨(e) = 0. This
proves the theorem.

Let us record a consequence of this theorem.

Corollary 3.4. Assume that there exists a continuous homomorphism
h : L1(G) → A with dense range and MA is scattered. Then the algebra A
is Arens regular if and only if A∗ = spanMA.

Proof. It is clear that if A∗ = spanMA, then A is Arens regular. Now
assume that A is Arens regular. Then wap(A) = A∗ by Theorem 1 of [1].
Let ϕ ∈ A∗. By Lemma 6.1 of [8] (see also Lemma 2.2 of this note), ϕ is
of the form ϕ = ψ · a for some ψ ∈ A∗ and a ∈ A. It suffices to show
that ψ · h(f) ∈ spanMA for every f ∈ L1(G). Let (fi)i∈I be a bounded
approximate identity for L1(G) such that supp f̂i (i ∈ I) is compact. Then
(h(fi))i∈I is a bounded approximate identity for A. Since σ∗(ψ) is scattered,
from the relation

σ∗(ψ · h(f)h(fi)) ⊆ σ∗(ψ) ∩ supp f̂ ∩ supp f̂i

(which can be readily verified), we deduce that σ∗(ψ ·h(f)h(fi)) is compact
and scattered. By Theorem 3.2, we have ψ · h(f)h(fi) ∈ spanMA. Since
ψ · h(f)h(fi)→ ψ · h(f) in norm, we obtain ψ · h(f) ∈ spanMA. The proof
is complete.
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