FUNCTIONAL ANALYSIS

Functionals on Banach Algebras with Scattered Spectra

 $\mathbf{b}\mathbf{y}$

H. S. MUSTAFAYEV

Presented by Andrzej HULANICKI

Summary. Let A be a complex, commutative Banach algebra and let M_A be the structure space of A. Assume that there exists a continuous homomorphism $h : L^1(G) \to A$ with dense range, where $L^1(G)$ is a group algebra of the locally compact abelian group G. The main results of this note can be summarized as follows:

- (a) If every weakly almost periodic functional on A with compact spectra is almost periodic, then the space M_A is scattered (i.e., M_A has no nonempty perfect subset).
- (b) Weakly almost periodic functionals on A with compact scattered spectra are almost periodic.
- (c) If M_A is scattered, then the algebra A is Arens regular if and only if $A^* = \overline{\text{span}} M_A$.

1. Introduction. Throughout the paper A will denote a complex, commutative Banach algebra. We shall denote by M_A the structure space of A. As is well known, M_A is a locally compact, Hausdorff space and the Gelfand transform $\Gamma : a \mapsto \hat{a}$ identifies A with a subalgebra of $C_0(M_A)$, the Banach algebra of all complex-valued continuous functions on M_A which vanish at infinity. For $\varphi \in A^*$ and $a \in A$, the functional $\varphi \cdot a$ on A is defined by $\langle \varphi \cdot a, b \rangle = \langle \varphi, ab \rangle, b \in A$. This operation turns A^* into a Banach A-module. Let $O_*(\varphi)$ denote the weak*-closure of the set $\{\varphi \cdot a : a \in A\}$. Recall that the w^* -spectrum of a functional $\varphi \in A^*$, written $\sigma_*(\varphi)$, is defined by $O_*(\varphi) \cap M_A$. We can readily see that $\sigma_*(\varphi) = \operatorname{hull}(I_{\varphi})$, where $I_{\varphi} = \{a \in A : \varphi \cdot a = 0\}$ is a closed ideal in A.

Let G be a locally compact abelian group and $L^1(G)$ be the group algebra of G. The well known Loomis theorem [9] states that if the w^* -spectrum of $\varphi \in L^{\infty}(G)$ is compact and scattered, then φ is an almost periodic function, namely $\varphi \in \overline{\operatorname{span}} \sigma_*(\varphi)$. Recall that a closed subset S of a topological

²⁰⁰⁰ Mathematics Subject Classification: 43A20, 43A60, 46J99.

 $Key\ words\ and\ phrases:$ Banach algebra, group algebra, (weakly) almost periodic functional, scattered set.

Hausdorff space is said to be *scattered* if S does not contain a nonempty perfect subset.

For $1 , let <math>A_p(G)$ denote the space of functions on G which can be represented as

$$f = \sum_{n=1}^{\infty} u_n * v_n^{\vee},$$

where the u_n 's are in $L^p(G)$, the v_n 's are in $L^q(G)$ (1/p+1/q=1), $v_n^{\vee}(g) = v_n(-g)$, and ∞

$$\sum_{n=1}^{\infty} \|u_n\|_p \|v_n\|_q < \infty.$$

The norm of f is the infimum of the above sums over all such representations of f. The space $A_p(G)$ is a commutative Banach algebra [4], often called the *Herz algebra*. We recall that $L^1(\widehat{G})$ is isometrically isomorphic to $A_2(G)$ via the Fourier transform F. Here \widehat{G} is the dual group of G. A generalization of the Loomis theorem to Herz algebras has been proved by Lust-Piquard in [10].

As functions which are continuous on G with compact support are dense in $L^p(G)$, $A_2(G)$ is dense in $A_p(G)$. It follows that $F : L^1(\widehat{G}) \to A_p(G)$ is a continuous homomorphism with dense range. This suggests the question: Assume that there exists a continuous homomorphism $h: L^1(G) \to A$ with dense range. Is there a generalization of the Loomis theorem to the algebra A? In this paper we give a partial answer to this question.

We first note that the class of Banach algebras A satisfying the above conditions is fairly large. In general, these algebras arise in the following way: Let $g \mapsto T_g$ be a bounded continuous representation of G on a Banach space X. For $f \in L^1(G)$, define $T_f = \int_G f(g)T_g dg$. We see that T_f is a bounded linear operator on X. Let $L_T(G)$ denote the closure of $\{T_f : f \in L^1(G)\}$ with respect to the operator-norm topology. Then the algebras $L_T(G)$ satisfy the conditions imposed on A.

If there exists a continuous homomorphism $h : L^1(G) \to A$ with dense range, the spectrum of h, written $\operatorname{sp}(h)$, is defined as the hull of the ideal $\operatorname{ker}(h)$. The standard technique of Banach algebras shows that h^* homeomorphically identifieds M_A with $\operatorname{sp}(h)$. Moreover, the Gelfand transform of h(f) is just $\widehat{f}(\chi)$ ($\chi \in \operatorname{sp}(h)$), where \widehat{f} is the Fourier transform of $f \in L^1(G)$. If $\varphi \in A^*$, for notational simplicity we will write $h^*\varphi$ for φ^{\vee} . We shall also need the following notations: X is a Banach space, X^* is its dual, X^{**} is its second dual, and X_1 is the closed unit ball in X. We shall regard Xas naturally embedded into X^{**} . For $\varphi \in X^*$ and $x \in X$, by $\langle \varphi, x \rangle$, and also by $\varphi(x)$, we denote the natural duality between X^* and X. We will denote by w and w^* the weak topology in X and the weak* topology in X^* , respectively. By \overline{E}^w and \overline{E} we will denote the weak closure and the norm closure, respectively, of a set $E \subset X$. \overline{E}^* will denote the weak^{*} closure of a set $E \subset X^*$.

2. Preliminaries. Let A be a complex, commutative Banach algebra. The functional $\varphi \in A^*$ is said to be (weakly) almost periodic on A if the set $\{\varphi \cdot a : a \in A_1\}$ is relatively (weakly) compact. This is equivalent to saying that the linear operator $T_{\varphi} : A \to A^*$ defined by $T_{\varphi}(a) = \varphi \cdot a$ is (weakly) compact. For example, if $A = L^1(G)$ then this reduces to the classical notion of (weak) almost periodicity for $\varphi \in L^{\infty}(G)$. We will denote by ap(A) (resp. wap(A)) the set of all almost periodic (resp. weakly almost periodic) functionals on A. Both ap(A) and wap(A) are norm-closed Asubmodules of A^* . As is known [2], $ap(L^1(G)) = AP(G)$ and wap($L^1(G)$) = WAP(G), where AP(G) and WAP(G) are the spaces of almost periodic and weakly almost periodic functions on G respectively.

We can endow A^{**} with a product (making A^{**} a Banach algebra) which is a natural extension of the original product in A (cf. [1]). This product is defined as follows: If $\varphi \in A^*$ and $F, H \in A^{**}$, then we set $\langle F \circ H, \varphi \rangle =$ $\langle F, H \cdot \varphi \rangle$, where $H \cdot \varphi$ is the functional on A defined by $\langle H \cdot \varphi, a \rangle = \langle H, \varphi \cdot a \rangle$, $a \in A$. The algebra A is said to be *Arens regular* if A^{**} is commutative. This is equivalent to the condition that wap $(A) = A^*$ (see [1]).

Let μ be an arbitrary bounded regular Borel measure on M_A . Then μ can be considered as an element of A^* with respect to the duality

$$\langle \mu, a \rangle = \int_{M_A} \widehat{a}(\phi) \, d\mu(\phi), \quad a \in A.$$

It is easy to see that $\sigma_*(\mu)$ and $\operatorname{supp} \mu$ in the usual terms are the same.

LEMMA 2.1. If μ is a bounded regular Borel measure on M_A , then $\mu \in wap(A)$.

Proof. We follow basically the proof by Dunkl–Ramirez [2], given there for the Fourier algebra. It is enough to show that if μ is a positive measure on M_A with compact support, then the operator T_{μ} is weakly compact. Define the map $S: L^2(M_A, d\mu) \to A^*$ by $Sf = f(\phi) d\mu(\phi)$ ($\phi \in M_A$). We see that S is a weakly compact operator and $T_{\mu} = S \circ \Gamma$. It follows that the operator T_{μ} is also weakly compact.

The following lemma was proved in [8, Lemma 6.1] for Arens regular Banach algebras.

LEMMA 2.2. If A has a bounded approximate identity, then every $\varphi \in$ wap(A) (resp. $\varphi \in$ ap(A)) can be represented as $\varphi = \psi \cdot a$ for some $\psi \in$ wap(A) (resp. $\psi \in$ ap(A)) and $a \in A$. *Proof.* Let $\varphi \in wap(A)$. Note that wap(A) is a Banach A-module. It follows from the Cohen–Hewitt Factorization Theorem [5, 32.22] that the set $\{\psi \cdot a : \psi \in wap(A), a \in A\}$ is a norm-closed linear subspace of A^* . Let $(e_i)_{i \in I}$ be a bounded approximate identity for A. Then $\varphi \cdot e_i \to \varphi$ in the w^* -topology. On the other hand, since the set $\{\varphi \cdot e_i : i \in I\}$ is relatively weakly compact, $\varphi \cdot e_i \to \varphi$ weakly. Hence we have

$$\varphi \in \overline{\{\psi \cdot a : \psi \in \operatorname{wap}(A), a \in A\}}^w = \{\psi \cdot a : \psi \in \operatorname{wap}(A), a \in A\}.$$

For ap(A) a similar argument works.

A Banach G-module X is a Banach space X which is a G-module such that:

- (i) $e \cdot x = x$ for all $x \in X$, where e is the identity of G.
- (ii) $||g \cdot x|| \le C ||x||$ for some constant C > 0, for all $x \in X$ and $g \in G$.
- (iii) For all $x \in X$, the map $g \mapsto g \cdot x$ is continuous from G into X.

In this case, we can define for each $\varphi \in X^*$, $g \in G$, the element $g \cdot \varphi \in X^*$ by $\langle g \cdot \varphi, x \rangle = \langle \varphi, g \cdot x \rangle$, $x \in X$. A Banach *G*-module *X* is said to be *almost periodic* if the set $\{g \cdot x : g \in G\}$ is relatively compact for every $x \in X$. It follows from the Peter–Weyl theory [11, Chap. 4, Sect. 3] that, if *X* is an almost periodic Banach *G*-module, then *X* is generated by the eigenvectors of *G*, i.e., by those $x \in X$ that satisfy $g \cdot x = \chi(g)x$ for some $\chi \in \widehat{G}$ and for all $g \in G$.

LEMMA 2.3. If there exists a continuous homomorphism $h: L^1(G) \to A$ with dense range, then A is a Banach G-module and furthermore $\langle g \cdot \varphi, a \rangle = (\varphi \cdot a)^{\vee}(g)$ for every $\varphi \in A^*$, $a \in A$ and $g \in G$.

Proof. Let $g \in G$ and $f \in L^1(G)$. Define $g \cdot h(f) = h(f_g)$, where $f_g(s) = f(s-g)$. Let $(f_i)_{i \in I}$ be an approximate identity in $L^1(G)$ bounded by one. Since $h((f_i)_g)h(f) \to g \cdot h(f)$, we have $||g \cdot h(f)|| \leq ||h|| ||h(f)||$. Thus since $h(L^1(G))$ is dense in A the module operation can be extended to all A, after which the algebra A becomes a Banach G-module. Now let $\varphi \in A^*$ and $a \in A$ be given. It is easy to verify that $\int_G f(g)(g \cdot \varphi) dg = \varphi \cdot h(f)$. Using this we have

$$\int_{G} f(g) \langle g \cdot \varphi, a \rangle \, dg = \langle \varphi \cdot h(f), a \rangle = \langle (\varphi \cdot a)^{\vee}, f \rangle.$$

Since this is true for all $f \in L^1(G)$, we obtain

$$\langle g \cdot \varphi, a \rangle = (\varphi \cdot a)^{\vee}(g). \blacksquare$$

Let A be an arbitrary commutative Banach algebra. If $\phi \in M_A$ then $\phi \cdot a = \hat{a}(\phi)\phi$, and consequently, $\phi \in ap(A)$. Hence, span $M_A \subseteq ap(A)$.

LEMMA 2.4. If there exists a continuous homomorphism $h: L^1(G) \to A$ with dense range, then $\operatorname{ap}(A) = \overline{\operatorname{span}} M_A$. *Proof.* Let $\varphi \in \operatorname{ap}(A)$. By Lemma 2.2, φ is of the form $\varphi = \psi \cdot a$ for some $\psi \in \operatorname{ap}(A)$ and $a \in A$. Since the set $\{g \cdot a : g \in G\}$ is bounded, from the identity $g \cdot \varphi = \psi \cdot (g \cdot a)$ we deduce that the set $\{g \cdot \varphi : g \in G\}$ is relatively compact. On the other hand, since the map $g \mapsto g \cdot \varphi$ is w^* -continuous, it follows that $g \mapsto g \cdot \varphi$ is norm-continuous. Thus $\operatorname{ap}(A)$ is an almost periodic Banach *G*-module. Hence, $\operatorname{ap}(A)$ is generated by the eigenvectors of *G*. Let us now find the eigenvectors of *G*. Assume that $g \cdot \psi = \overline{\chi}(g)\psi$ for some $\chi \in \widehat{G}, \psi \in A^* \setminus \{0\}$ and for all $g \in G$. Then for any $f \in L^1(G)$, we can write

$$\psi \cdot h(f) = \int_{G} f(g)(g \cdot \psi) \, dg = \widehat{f}(\chi)\psi.$$

It follows that $\chi \in \operatorname{sp}(h)$. Since $h(L^1(G))$ is dense in A, we have $\psi \cdot a = \phi(a)\psi$ for some $\phi \in M_A$ and all $a \in A$. Thus since ker $\phi \subseteq \ker \psi$, we obtain $\psi = c\phi$ for some $c \neq 0$. The proof is complete.

3. The results. The first main result of this note is the following theorem.

THEOREM 3.1. Assume that there exists a continuous homomorphism $h: L^1(G) \to A$ with dense range. If $\varphi \in \overline{\operatorname{span}} \sigma_*(\varphi)$ for every $\varphi \in \operatorname{wap}(A)$ with compact spectra, then M_A is scattered.

Proof. It suffices to show that every compact subset of M_A is scattered. Let μ be an arbitrary bounded regular Borel measure on M_A . Then μ can be considered as a measure on \widehat{G} with $\operatorname{supp} \mu \subseteq \operatorname{sp}(h)$. First we claim that $\mu^{\vee}(g) = \widehat{\mu}(-g)$, where $\widehat{\mu}$ is the Fourier–Stieltjes transform of μ . To see this, let $f \in L^1(G)$. Then we can write

$$\begin{split} \langle h^*\mu, f \rangle &= \langle \mu, h(f) \rangle = \int_{\widehat{G}} \widehat{f}(\chi) \, d\mu(\chi) = \int_{\widehat{G}} \left(\int_{G} f(g) \overline{\chi}(g) \, dg \right) d\mu(\chi) \\ &= \int_{G} \left(\int_{\widehat{G}} \overline{\chi}(g) \, d\mu(\chi) \right) f(g) \, dg = \int_{G} \widehat{\mu}(g) f(g) \, dg. \end{split}$$

Since this is true for all $f \in L^1(G)$, we obtain $\mu^{\vee}(g) = \widehat{\mu}(-g)$.

Now let K be an arbitrary compact subset of M_A and μ be an arbitrary continuous regular Borel measure supported on K. To prove that K is scattered, in view of [7, p. 52, Theorem 10] it is enough to show that μ is identically zero. By Lemma 2.1, $\mu \in \text{wap}(A)$. Hence, by the assumption we have $\mu \in \overline{\text{span}} K$. It follows that $\mu^{\vee}(g)$ can be approximated in the $\|\cdot\|_{\infty}$ norm by linear combinations of the characters in K. Consequently, $\hat{\mu}(-g)$ is an almost periodic function on G. Let Φ be the invariant mean on AP(G). Since $\langle \Phi, \chi(g) \rangle = 1$ if $\chi = 1$ and $\langle \Phi, \chi(g) \rangle = 0$ if $\chi = 0$, we have

$$\langle \Phi, \overline{\chi}(g)\widehat{\mu}(-g) \rangle = \mu\{\chi\} = 0.$$

This shows that all Fourier–Bohr coefficients of the function $\hat{\mu}(-g)$ are zero. By the uniqueness theorem we obtain $\hat{\mu}(-g) \equiv 0$, and so $\mu = 0$. This proves the theorem.

The next theorem is the second main result of this note.

THEOREM 3.2. Assume that there exists a continuous homomorphism $h: L^1(G) \to A$ with dense range. If the w^{*}-spectrum of $\varphi \in wap(A)$ is compact and scattered, then $\varphi \in \overline{\operatorname{span}} \sigma_*(\varphi)$.

Before giving the proof of this theorem, we need the following facts. For $\chi \in \widehat{G}$, $C_{\chi}[f]$ denotes the Fourier–Bohr coefficient of a function $f \in \operatorname{AP}(G)$. As is known, $C_{\chi}[f] = \int_{\Sigma} \overline{f}(\sigma) \, d\sigma$, where Σ is the Bohr compactification of G and $\overline{f}(\sigma)$ the Bohr extension of f. The Bohr spectrum $\sigma_{\mathrm{B}}(f)$ of $f \in \operatorname{AP}(G)$ is defined as the set of all $\chi \in \widehat{G}$ such that $C_{\chi}[f] \neq 0$. We also note that if $f \in \operatorname{AP}(G)$ and $k \in L^1(G)$, then $f * k \in \operatorname{AP}(G)$ and $C_{\chi}[f * k] = \widehat{k}(\chi)C_{\chi}[f]$. It is well known that if $f \in \operatorname{AP}(G)$, then $\sigma_{\mathrm{B}}(f) \subseteq \sigma_*(f)$ and moreover $\overline{\sigma_{\mathrm{B}}(f)}^* = \sigma_*(f)$.

We also need the following lemma.

LEMMA 3.3. If there exists a continuous homomorphism $h: L^1(G) \to A$ with dense range, then $\sigma_*(\varphi^{\vee}) \subseteq \sigma_*(\varphi)$ for every $\varphi \in A^*$.

Proof. Let $\varphi \in A^*$. Suppose that there is $\chi_0 \in \sigma_*(\varphi^{\vee})$ but $\chi_0 \notin \sigma_*(\varphi)$. Then there exists a $k \in L^1(G)$ such that $\hat{k}(\chi_0) \neq 0$ and $\hat{k} = 0$ on some neighborhood of $\sigma_*(\varphi)$. Let $\pi : A \to A/J_{\varphi}$ be the canonical map and $\bar{h} = \pi \circ h$. Then $\operatorname{sp}(\bar{h}) = \sigma_*(\varphi)$. It follows that k belongs to the smallest ideal in $L^1(G)$ whose hull is $\operatorname{sp}(\bar{h})$. Hence $\bar{h}(k) = 0$, so that $h(k) \in I_{\varphi}$. Consequently, $\varphi \cdot h(k) = 0$. It follows from the relation $\varphi^{\vee} * k = h^*(\varphi \cdot h(k))$ (which can readily be verified) that $k \in I_{\varphi^{\vee}}$. Since $\chi_0 \in \sigma_*(\varphi^{\vee})$, we obtain $\hat{k}(\chi_0) = 0$. This is a contradiction.

Proof of Theorem 3.2. Assume that the w^* -spectrum of $\varphi \in wap(A)$ is compact and scattered. By Lemma 3.3, $\sigma_*(\varphi^{\vee})$ is also compact and scattered. The Loomis theorem implies that $\varphi^{\vee} \in AP(G)$. Since $(\varphi \cdot h(f))^{\vee} = \varphi^{\vee} * f$, we have $\varphi^{\vee} * f \in AP(G)$ for all $f \in L^1(G)$. Also since $h(L^1(G))$ is dense in A, this clearly implies that $(\varphi \cdot a)^{\vee} \in AP(G)$ for all $a \in A$.

Now let $F \in A^{**}$ be such that $F(\chi) = 0$ for all $\chi \in \sigma_*(\varphi)$. To prove the theorem, it suffices to show that $F(\varphi) = 0$. Let Σ be the Bohr compactification of G, and $\overline{f}(\sigma)$ ($\sigma \in \Sigma$) the Bohr extension of a function $f \in AP(G)$. For any given $\sigma \in \Sigma$, define $\sigma \cdot \varphi \in A^*$ as follows: Since G is dense in Σ , there exists a net $(g_\lambda)_{\lambda \in A}$ in G such that $g_\lambda \to \sigma$ in Σ . Taking into account Lemma 2.3, we can write

$$\lim_{\lambda} \langle g_{\lambda} \cdot \varphi, a \rangle = \lim_{\lambda} (\varphi \cdot a)^{\vee} (g_{\lambda}) = \overline{(\varphi \cdot a)^{\vee}} (\sigma), \quad a \in A.$$

Since the set $\{g_{\lambda} \cdot \varphi\}_{\lambda \in \Lambda}$ is bounded, we can define $\sigma \cdot \varphi \in A^*$ by

(3.1)
$$\sigma \cdot \varphi = w^* - \lim_{\lambda} g_{\lambda} \cdot \varphi.$$

Note that

(3.2)
$$\langle \sigma \cdot \varphi, a \rangle = \overline{(\varphi \cdot a)^{\vee}}(\sigma), \quad a \in A.$$

By Lemma 2.2, φ can be represented as $\varphi = \psi \cdot a$ for some $\psi \in \text{wap}(A)$ and $a \in A$. Since the set $\{g \cdot a : g \in G\}$ is bounded, from the identity $g \cdot \varphi = \psi \cdot (g \cdot a)$ we deduce that the set $\{g \cdot \varphi : g \in G\}$ is relatively weakly compact. Using (3.1) we get

$$\sigma \cdot \varphi = w \text{-} \lim_{\lambda} g_{\lambda} \cdot \varphi.$$

Hence, the set $\{\sigma \cdot \varphi : \sigma \in \Sigma\}$ is relatively weakly compact (since Σ is compact, this set is relatively norm-compact). Using relation (3.2) in the same way, we can see that the map $\sigma \mapsto \sigma \cdot \varphi$ is weakly continuous on Σ . Therefore, the function $g \mapsto \langle F, g \cdot \varphi \rangle$ is in AP(G). We claim that $\langle F, g \cdot \varphi \rangle = (F \cdot \varphi)^{\vee}(g)$. To see this, let $f \in L^1(G)$. Since the map $g \mapsto g \cdot \varphi$ is weakly continuous, we have

$$\begin{split} &\int_{G} \langle F, g \cdot \varphi \rangle f(g) \, dg = \left\langle F, \int_{G} (g \cdot \varphi) f(g) \, dg \right\rangle = \langle F, \varphi \cdot h(f) \rangle \\ &= \langle F \cdot \varphi, h(f) \rangle = \langle (F \cdot \varphi)^{\vee}, f \rangle. \end{split}$$

Since this is true for all $f \in L^1(G)$, our claim follows. We also note that (3.3) $\langle F, \sigma \cdot \varphi \rangle = \overline{(F \cdot \varphi)^{\vee}}(\sigma), \quad \sigma \in \Sigma.$

Let us now find the Fourier–Bohr coefficients of the function $(F \cdot \varphi)^{\vee}$. For this purpose consider the following vector-valued integral:

$$\varphi_{\chi} = \int_{\Sigma} \overline{\chi}(\sigma) (\sigma \cdot \varphi) \, d\sigma.$$

Then we have

$$\begin{split} \langle \varphi_{\chi}, a \rangle &= \int_{\Sigma} \overline{\chi}(\sigma) \langle \sigma \cdot \varphi, a \rangle \, d\sigma = \int_{\Sigma} \overline{\chi}(\sigma) \overline{(\varphi \cdot a)^{\vee}}(\sigma) \\ &= C_{\chi}[(\varphi \cdot a)^{\vee}] = \widehat{a}(\chi) C_{\chi}[\varphi^{\vee}], \quad a \in A. \end{split}$$

It follows that $\varphi_{\chi} = \chi C_{\chi}[\varphi^{\vee}]$. Further, since the mapping $\sigma \mapsto \sigma \cdot \varphi$ is weakly continuous, in view of (3.3) we obtain

$$C_{\chi}[(F \cdot \varphi)^{\vee}] = \int_{\Sigma} \overline{\chi}(\sigma) \overline{(F \cdot \varphi)^{\vee}}(\sigma) \, d\sigma = \int_{\Sigma} \overline{\chi}(\sigma) \langle F, \sigma \cdot \varphi \rangle \, d\sigma$$
$$= \langle F, \varphi_{\chi} \rangle = F(\chi) C_{\chi}[\varphi^{\vee}].$$

Since $\sigma_*(\varphi^{\vee}) \subseteq \sigma_*(\varphi)$ and $F(\chi) = 0$ for all $\chi \in \sigma_*(\varphi)$, it follows that all Fourier–Bohr coefficients of the function $(F \cdot \varphi)^{\vee}$ are zero. By the uniqueness

theorem, $(F \cdot \varphi)^{\vee} \equiv 0$. In particular, we have $F(\varphi) = (F \cdot \varphi)^{\vee}(e) = 0$. This proves the theorem.

Let us record a consequence of this theorem.

COROLLARY 3.4. Assume that there exists a continuous homomorphism $h: L^1(G) \to A$ with dense range and M_A is scattered. Then the algebra A is Arens regular if and only if $A^* = \overline{\operatorname{span}} M_A$.

Proof. It is clear that if $A^* = \overline{\operatorname{span}} M_A$, then A is Arens regular. Now assume that A is Arens regular. Then wap $(A) = A^*$ by Theorem 1 of [1]. Let $\varphi \in A^*$. By Lemma 6.1 of [8] (see also Lemma 2.2 of this note), φ is of the form $\varphi = \psi \cdot a$ for some $\psi \in A^*$ and $a \in A$. It suffices to show that $\psi \cdot h(f) \in \overline{\operatorname{span}} M_A$ for every $f \in L^1(G)$. Let $(f_i)_{i \in I}$ be a bounded approximate identity for $L^1(G)$ such that $\operatorname{supp} \widehat{f_i}$ $(i \in I)$ is compact. Then $(h(f_i))_{i \in I}$ is a bounded approximate identity for A. Since $\sigma_*(\psi)$ is scattered, from the relation

$$\sigma_*(\psi \cdot h(f)h(f_i)) \subseteq \sigma_*(\psi) \cap \operatorname{supp} f \cap \operatorname{supp} f_i$$

(which can be readily verified), we deduce that $\sigma_*(\psi \cdot h(f)h(f_i))$ is compact and scattered. By Theorem 3.2, we have $\psi \cdot h(f)h(f_i) \in \overline{\operatorname{span}} M_A$. Since $\psi \cdot h(f)h(f_i) \to \psi \cdot h(f)$ in norm, we obtain $\psi \cdot h(f) \in \overline{\operatorname{span}} M_A$. The proof is complete. \blacksquare

References

- J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 309–325.
- [2] C. F. Dunkl and D. E. Ramirez, Weakly almost periodic functionals on the Fourier algebra, Trans. Amer. Math. Soc. 185 (1973), 501–514.
- [3] P. Głowacki, On functions with scattered spectra on lca groups, Studia Math. 70 (1981), 147–152.
- C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 91–123.
- [5] E. Hewitt and K. Ross, Abstract Harmonic Analysis II, Springer, 1970.
- J. W. Kitchen, Jr., Normed modules and almost periodicity, Monatsh. Math. 70 (1966), 233-243.
- [7] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, 1974.
- [8] A. T.-M. Lau and A. Ülger, Some geometric properties on the Fourier and Fourier-Stieltjes algebras of locally compact groups, Arens regularity and related problems, Trans. Amer. Math. Soc. 337 (1993), 321–359.
- L. H. Loomis, The spectral characterization of a class of almost periodic functions, Ann. of Math. 72 (1960), 362–368.
- [10] F. Lust-Piquard, Means on $CV_p(G)$ -subspaces of $CV_p(G)$ with RNP and Schur property, Ann. Inst. Fourier (Grenoble) 39 (1989), 969–1006.
- [11] Y. I. Lyubich, Introduction to the Theory of Banach Representation Groups, Birkhäuser, 1988.

- [12] G. S. Mustafaev, Banach algebras with bounded groups of generators, and the Schur property, Math. Notes 71 (2002), 661–666.
- [13] W. Żelazko, Banach Algebras, PWN and Elsevier, Warszawa and Amsteram, 1973.

H. S. Mustafayev Institute of Mathematics and Mechanics National Academy of Sciences of Azerbaijan F. Agaev St. 9 Baku, Azerbaijan E-mail: hsmustafayev@yahoo.com Current address: Department of Mathematics Faculty of Arts and Sciences Yuzuncu Yil University 65080 Van, Turkey

Received June 30, 2004

(7403)