DIFFERENTIAL GEOMETRY

Isotropic Immersions of Complex Space Forms into Real Space Forms and Mean Curvatures

by

Nobutaka BOUMUKI

Presented by Bogdan BOJARSKI

Summary. Using an inequality related to the mean curvature, we give a sufficient condition for an isotropic immersion of a complex space form into a real space form to be parallel.

1. Introduction. Parallel submanifolds of real space forms are ones of the most interesting objects in differential geometry (cf. [F-1, T]). Here, we have in mind the following fact: "all parallel immersions of Riemannian symmetric spaces of rank one into a real space form are isotropic but there exist many isotropic immersions of these spaces into a real space form, which are not parallel." For example, the fourth standard minimal immersion f: $S^{3}(1/8) \rightarrow S^{24}(1)$ is isotropic, but not parallel. So, sufficient conditions for these isotropic immersions to be parallel are worth considering. In this paper, we are interested in parallel immersions of a complex space form into a real space form.

We have proved the following theorem in the previous paper [B]:

THEOREM A. Let f be a λ -isotropic immersion of an $n(\geq 2)$ -dimensional compact oriented real space form $M^n(c; \mathbb{R})$ of constant sectional curvature c into an m-dimensional real space form $\widetilde{M}^m(\tilde{c};\mathbb{R})$ of constant sectional curvature \tilde{c} . Suppose that the mean curvature vector field \mathfrak{h} and the mean curvature $H = \|\mathbf{h}\|$ satisfy the following two inequalities:

- (i) $H^2 \leq \frac{2(n+1)}{n}c \tilde{c},$ (ii) $0 \leq (1-n)\Delta H^2 + n\langle \mathfrak{h}, \Delta \mathfrak{h} \rangle,$

²⁰⁰⁰ Mathematics Subject Classification: 53B25, 53C40.

Key words and phrases: isotropic immersions, parallel immersions, real space forms, complex space forms, quaternionic space forms.

where Δ denotes the Laplacian on $M^n(c; \mathbb{R})$. Then f is a parallel immersion. Moreover f is locally equivalent to one of the following:

- (I) f is a totally umbilic immersion of $S^n(c)$ into $\widetilde{M}^m(\tilde{c}; \mathbb{R})$, where $c \geq \tilde{c}$ and $H^2 \equiv c - \tilde{c}$.
- (II) $f = f_2 \circ f_1 : S^n(c) \xrightarrow{f_1} S^{n+n(n+1)/2-1}(2(n+1)c/n) \xrightarrow{f_2} \widetilde{M}^m(\tilde{c}; \mathbb{R}),$ where f_1 is the second standard minimal immersion, f_2 is a totally umbilic immersion, $2(n+1)c/n \ge \tilde{c}$ and $H^2 \equiv 2(n+1)c/n - \tilde{c}.$

REMARK 1. We remark that Theorem A is no longer true if we omit condition (ii).

In this paper, we consider the case where the submanifold is a complex space form, and get the following theorem:

THEOREM 1. Let f be a λ -isotropic immersion of a complex $n(\geq 2)$ dimensional complex space form $M^n(4c; \mathbb{C})$ of constant holomorphic sectional curvature 4c into an m-dimensional real space form $\widetilde{M}^m(\tilde{c}; \mathbb{R})$ of constant sectional curvature \tilde{c} . Suppose that the mean curvature H satisfies

$$H^2 \le \frac{2(n+1)}{n} c - \tilde{c}.$$

Then f is a parallel immersion. Moreover f is locally equivalent to one of the following:

- (I) f is a totally geodesic immersion of \mathbb{C}^n (= \mathbb{R}^{2n}) into \mathbb{R}^m , where $H \equiv 0$.
- (II) f is a totally umbilic immersion of \mathbb{C}^n into $\mathbb{R}H^m(\tilde{c})$, where $H^2 \equiv -\tilde{c}$.
- (III) $f = f_2 \circ f_1 : \mathbb{C}P^n(4c) \xrightarrow{f_1} S^{n^2+2n-1}(2(n+1)c/n) \xrightarrow{f_2} \widetilde{M}^m(\tilde{c};\mathbb{R}),$ where f_1 is the first standard minimal immersion, f_2 is a totally umbilic immersion, $2(n+1)c/n \ge \tilde{c}$ and $H^2 \equiv 2(n+1)c/n - \tilde{c}.$

The main purpose of this paper is to prove Theorem 1.

REMARK 2. It is interesting to compare Theorem A with Theorem 1: the submanifold in Theorem 1 need not be compact, and Theorem 1 does not require condition (ii) of Theorem A.

The author is grateful to Professor Sadahiro Maeda for his valuable suggestions, and thanks the referee for his good advice.

2. Preliminaries. Let $f: M \to \widetilde{M}$ be an isometric immersion of a Riemannian manifold M into a Riemannian manifold \widetilde{M} with metric \langle , \rangle , and σ the second fundamental form. We recall the notion of isotropic immersion (cf. [O]): the immersion f is said to be *isotropic* if $\|\sigma(X,X)\|/\|X\|^2$ is constant for all $x \in M$ and all tangent vectors $X \ (\neq 0)$ to M at x. If we define

the function λ on M by $x \in M$ $\mapsto \|\sigma(X, X)\|/\|X\|^2$, then the immersion f is also said to be λ -*isotropic*. Note that totally umbilic immersions are isotropic, but not vice versa.

An *n*-dimensional real space form $M^n(c; \mathbb{R})$ is a Riemannian manifold of constant sectional curvature c, which is locally congruent to a standard sphere $S^n(c)$, a Euclidean space \mathbb{R}^n or a real hyperbolic space $\mathbb{R}H^n(c)$, according as c is positive, zero or negative. An *n*-dimensional complex space form $M^n(c; \mathbb{C})$ is a Kähler manifold of constant holomorphic sectional curvature c, which is locally congruent to a complex projective space $\mathbb{C}P^n(c)$, a complex Euclidean space $\mathbb{C}^n \ (= \mathbb{R}^{2n})$ or a complex hyperbolic space $\mathbb{C}H^n(c)$, according as c is positive, zero or negative. An *n*-dimensional quaternionic space form $M^n(c; \mathbb{Q})$ is a quaternionic Kähler manifold of constant quaternionic sectional curvature c, which is locally congruent to a quaternionic projective space $\mathbb{Q}P^n(c)$, a quaternionic Euclidean space \mathbb{Q}^n $(= \mathbb{R}^{4n})$ or a quaternionic hyperbolic space $\mathbb{Q}H^n(c)$, according as c is positive, zero or negative.

3. Proof of Theorem 1. Let J be the complex structure on $M^n(4c; \mathbb{C})$. Then the curvature tensor R of $M^n(4c; \mathbb{C})$ is given by

(3.1)
$$R(X,Y)Z = c\{\langle Y, Z \rangle X - \langle X, Z \rangle Y + \langle JY, Z \rangle JX - \langle JX, Z \rangle JY + 2\langle X, JY \rangle JZ\}$$

for all $X, Y, Z \in \mathfrak{X}(M^n(4c; \mathbb{C}))$, where we denote by $\mathfrak{X}(M^n(4c; \mathbb{C}))$ the set of all vector fields on $M^n(4c; \mathbb{C})$.

Since f is λ -isotropic, we have $\langle \sigma(X, X), \sigma(X, X) \rangle = \lambda^2 \langle X, X \rangle \langle X, X \rangle$ for all $X \in \mathfrak{X}(M^n(4c; \mathbb{C}))$, which is equivalent to

$$(3.2) \quad \langle \sigma(X,Y), \sigma(Z,W) \rangle + \langle \sigma(X,Z), \sigma(W,Y) \rangle + \langle \sigma(X,W), \sigma(Y,Z) \rangle \\ = \lambda^2 \{ \langle X,Y \rangle \langle Z,W \rangle + \langle X,Z \rangle \langle W,Y \rangle + \langle X,W \rangle \langle Y,Z \rangle \}$$

for all $X, Y, Z, W \in \mathfrak{X}(M^n(4c; \mathbb{C})).$

The Gauss equation is written as follows:

$$(3.3) \quad \langle \sigma(X,Y), \sigma(Z,W) \rangle - \langle \sigma(Z,Y), \sigma(X,W) \rangle \\ = \langle R(Z,X)Y,W \rangle - \tilde{c} \{ \langle X,Y \rangle \langle Z,W \rangle - \langle Z,Y \rangle \langle X,W \rangle \}$$

for all $X, Y, Z, W \in \mathfrak{X}(M^n(4c; \mathbb{C})).$

It follows from (3.1)–(3.3) that

$$(3.4) \quad \langle \sigma(X,Y), \sigma(Z,W) \rangle = \frac{\lambda^2 + 2(c - \tilde{c})}{3} \langle X,Y \rangle \langle Z,W \rangle + \frac{\lambda^2 - (c - \tilde{c})}{3} \{ \langle X,W \rangle \langle Y,Z \rangle + \langle X,Z \rangle \langle Y,W \rangle \} + c\{ \langle JX,W \rangle \langle JY,Z \rangle + \langle JX,Z \rangle \langle JY,W \rangle \}$$

for all $X, Y, Z, W \in \mathfrak{X}(M^n(4c; \mathbb{C}))$. This yields

(3.5)
$$H^{2} = \frac{(n+1)\lambda^{2} + 2(n+1)c - (2n-1)\tilde{c}}{3n},$$

(3.6)
$$\|\sigma(X, JX)\|^2 = \frac{\lambda^2 - 4c + \tilde{c}}{3},$$

where $X \in \mathfrak{X}(M^n(4c; \mathbb{C}))$ with ||X|| = 1. It follows from (3.5) and (3.6) that

$$H^{2} - \frac{2(n+1)}{n}c + \tilde{c} = \frac{n+1}{n} \|\sigma(X, JX)\|^{2} \ge 0,$$

where $X \in \mathfrak{X}(M^n(4c;\mathbb{C}))$ with ||X|| = 1.

Therefore, $H^2 \equiv 2(n+1)c/n - \tilde{c}$ by assumption, so that

(3.7)
$$\sigma(X, JX) = 0$$

for all $X \in \mathfrak{X}(M^n(4c; \mathbb{C}))$. From (3.7), we get

$$\sigma(X,Y) = \sigma(JX,JY)$$

for all $X, Y \in \mathfrak{X}(M^n(4c; \mathbb{C}))$. Consequently, the immersion f is parallel (cf. [F-2]). The classification theorem for parallel submanifolds of a real space form completes the proof (cf. [F-1, T]).

4. Quaternionic case. In this section, we consider the case where the submanifold is a quaternionic space form, and get the following theorem:

THEOREM 2. Let f be a λ -isotropic immersion of a quaternionic $n(\geq 2)$ dimensional quaternionic space form $M^n(4c; \mathbb{Q})$ of constant quaternionic sectional curvature 4c into an m-dimensional real space form $\widetilde{M}^m(\tilde{c}; \mathbb{R})$ of constant sectional curvature \tilde{c} . Suppose that the mean curvature H satisfies

$$H^2 \le \frac{2(n+1)}{n} c - \tilde{c}.$$

Then f is a parallel immersion. Moreover f is locally equivalent to one of the following:

- (I) f is a totally geodesic immersion of \mathbb{Q}^n (= \mathbb{R}^{4n}) into \mathbb{R}^m , where $H \equiv 0$.
- (II) f is a totally umbilic immersion of \mathbb{Q}^n into $\mathbb{R}H^m(\tilde{c})$, where $H^2 \equiv -\tilde{c}$.
- (III) $f = f_2 \circ f_1 : \mathbb{Q}P^n(4c) \xrightarrow{f_1} S^{2n^2+3n-1}(2(n+1)c/n) \xrightarrow{f_2} \widetilde{M}^m(\tilde{c}; \mathbb{R}),$ where f_1 is the first standard minimal immersion, f_2 is a totally umbilic immersion, $2(n+1)c/n \ge \tilde{c}$ and $H^2 \equiv 2(n+1)c/n - \tilde{c}.$

Proof. Let $\{I, J, K\}$ be the canonical local basis on $M^n(4c; \mathbb{Q})$. Then the curvature tensor R of $M^n(4c; \mathbb{Q})$ is given by

$$(4.1) \quad R(X,Y)Z = c\{\langle Y,Z \rangle X - \langle X,Z \rangle Y + \langle IY,Z \rangle IX - \langle IX,Z \rangle IY \\ + \langle JY,Z \rangle JX - \langle JX,Z \rangle JY + \langle KY,Z \rangle KX \\ - \langle KX,Z \rangle KY + 2\langle X,IY \rangle IZ \\ + 2\langle X,JY \rangle JZ + 2\langle X,KY \rangle KZ \}$$

for all $X, Y, Z \in \mathfrak{X}(M^n(4c; \mathbb{Q}))$. It follows from (3.2), (3.3) and (4.1) that

$$(4.2) \quad \langle \sigma(X,Y), \sigma(Z,W) \rangle = \frac{\lambda^2 + 2(c - \tilde{c})}{3} \langle X,Y \rangle \langle Z,W \rangle \\ + \frac{\lambda^2 - (c - \tilde{c})}{3} \{ \langle X,W \rangle \langle Y,Z \rangle \\ + \langle X,Z \rangle \langle Y,W \rangle \} + c\{ \langle IX,W \rangle \langle IY,Z \rangle \\ + \langle IX,Z \rangle \langle IY,W \rangle + \langle JX,W \rangle \langle JY,Z \rangle \\ + \langle JX,Z \rangle \langle JY,W \rangle + \langle KX,W \rangle \langle KY,Z \rangle \\ + \langle KX,Z \rangle \langle KY,W \rangle \}$$

for all $X, Y, Z, W \in \mathfrak{X}(M^n(4c; \mathbb{Q}))$. Equation (4.2) yields

(4.3)
$$H^{2} = \frac{(2n+1)\lambda^{2} + 4(n+2)c - (4n-1)\tilde{c}}{6n},$$

(4.4)
$$\|\sigma(X, IX)\|^2 = \|\sigma(X, JX)\|^2 = \|\sigma(X, KX)\|^2 = \frac{\lambda^2 - 4c + \tilde{c}}{3},$$

where $X \in \mathfrak{X}(M^n(4c; \mathbb{Q}))$ with ||X|| = 1. It follows from (4.3) and (4.4) that

$$H^{2} - \frac{2(n+1)}{n}c + \tilde{c} = \frac{2n+1}{2n} \|\sigma(X, IX)\|^{2} = \frac{2n+1}{2n} \|\sigma(X, JX)\|^{2}$$
$$= \frac{2n+1}{2n} \|\sigma(X, KX)\|^{2} \ge 0,$$

where $X \in \mathfrak{X}(M^n(4c; \mathbb{Q}))$ with ||X|| = 1. Therefore, $H^2 \equiv 2(n+1)c/n - \tilde{c}$ by assumption, so that

(4.5)
$$\sigma(X, IX) = \sigma(X, JX) = \sigma(X, KX) = 0$$

for all $X \in \mathfrak{X}(M^n(4c; \mathbb{Q}))$. From (4.5), we get

$$\sigma(X,Y) = \sigma(IX,IY) = \sigma(JX,JY) = \sigma(KX,KY)$$

for all $X, Y \in \mathfrak{X}(M^n(4c; \mathbb{Q}))$. Consequently, f is parallel (cf. [M]). The classification theorem for parallel submanifolds of a real space form completes the proof (cf. [F-1, T]).

References

- [B] N. Boumuki, Isotropic immersions and parallel immersions of space forms into space forms, Tsukuba J. Math. 28 (2004), 117–126.
- [F-1] D. Ferus, Immersions with parallel second fundamental form, Math. Z. 140 (1974), 87–92.
- [F-2] —, Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), 81–93.
- [M] S. Maeda, *Remarks on isotropic immersions*, Yokohama Math. J. 34 (1986), 83–90.
- [O] B. O'Neill, Isotropic and Kähler immersions, Canad. J. Math. 17 (1965), 905–915.
- M. Takeuchi, Parallel submanifolds of space forms, in: Manifolds and Lie Groups, in honor of Yozô Matsushima, Birkhäuser, Boston, 1981, 429–447.

Nobutaka Boumuki Department of Mathematics Faculty of Science and Engineering Shimane University Matsue 690-8504, Japan E-mail: boumuki@math.shimane-u.ac.jp

> Received June 22, 2004; received in final form November 8, 2004 (7401)