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Visible Points on Curves over Finite FieldsbyIgor E. SHPARLINSKI and José Felipe VOLOCHPresented by Andrzej SCHINZEL
Summary. For a prime p and an absolutely irreduible modulo p polynomial f(U, V ) ∈
Z[U, V ] we obtain an asymptoti formula for the number of solutions to the ongruene
f(x, y) ≡ a (mod p) in positive integers x ≤ X, y ≤ Y , with the additional ondition
gcd(x, y) = 1. Suh solutions have a natural interpretation as solutions whih are visiblefrom the origin. These formulas are derived on average over a for a �xed prime p, and alsoon average over p for a �xed integer a.1. Introdution. Let p be a prime and let f(U, V ) ∈ Z[U, V ] be abivariate polynomial with integer oe�ients.For real X and Y with 1 ≤ X, Y ≤ p and an integer a we onsider theset

Fp,a(X, Y ) = {(x, y) ∈ [1, X] × [1, Y ] : f(x, y) ≡ a (modp)}whih is the set of points on level urves of f(U, V ) modulo p.If f(x, y)− a is a nononstant absolutely irreduible polynomial modulo
p of degree at least 2, then one an easily derive from the Bombieri bound [2℄that(1) #Fp,a(X, Y ) =

XY

p
+ O(p1/2(log p)2),where the implied onstant depends only on deg f (see, e.g., [3, 4, 9, 11℄).In this paper we onsider an apparently new question of studying theardinality of the set

Np,a(X, Y ) = #{(x, y) ∈ Fp,a(X, Y ) : gcd(x, y) = 1}.These points have a natural geometri interpretation as points on Fp,a(X, Y )2000 Mathematis Subjet Classi�ation: 11A07, 11K38, 11L40.Key words and phrases: points visible from the origin, absolutely irreduible polyno-mial. [193℄ © Instytut Matematyzny PAN, 2007
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whih are �visible� from the origin (see [1, 6, 7, 10℄ and referenes therein forseveral other aspets of distribution of visible points in various regions).We show that on average over a = 0, . . . , p−1, the ardinality Np,a(X, Y )is lose to its expeted value 6XY/π2p whenever(2) XY ≥ p3/2+εfor any �xed ε > 0 and su�iently large p.We then onsider the dual situation, when a is �xed (in partiular wetake a = 0) but p varies through all primes up to T .Our approah is based on a rather straightforward appliation of theinlusion-exlusion formula involving the Möbius funtion. We apply (1) tothe lower terms of this formula whih leads to the main term. However, themain di�ulty is in getting a nontrivial estimate for the tail terms. This isexatly where we need to introdue some averaging in order to get suh anontrivial bound.We reall A ≪ B and A = O(B) both mean that |A| ≤ cB holds withsome onstant c > 0, whih may depend on some spei�ed set of parameters.2. Absolute irreduibility of level urves. We start with the follow-ing statement whih ould be of independent interest.Lemma 1. If F (U, V ) ∈ K[U, V ] is absolutely irreduible of degree n overa �eld K, then F (U, V )− a is absolutely irreduible for all but at most C(n)elements a ∈ K, where C(n) depends only on n.Proof. The set of polynomials of degree n is parametrized by a projetivespae P

s(n) of dimension s(n) = (n + 1)(n + 2)/2 over K, oordinatized bythe oe�ients. The subset X of P
k(n) onsisting of reduible polynomials isa Zariski losed subset beause it is the union of the images of the maps

P
s(k) × P

s(n−k) → P
s(n), k ≤ n/2,given by multiplying a polynomial of degree k with a polynomial of degree

n−k. The map t 7→ F (U, V )−t desribes a line in P
s(n) and by the assumptionof absolute irreduibility of F , this line is not ontained in X. So, by theBézout theorem, it meets X in at most C(n) points, where C(n) is the degreeof X. Hene for all but at most C(n) values of a, F (U, V ) − a is absolutelyirreduible.3. Visible points on almost all level urves. Throughout this se-tion, the implied onstants in the notations A ≪ B and A = O(B) maydepend on the degree n = deg f .Theorem 2. Let f be a polynomial with integer oe�ients whih isabsolutely irreduible and of degree greater than one modulo the prime p.
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Then for real X and Y with 1 ≤ X, Y ≤ p we have
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· XY
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∣
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≪ X1/2Y 1/2p3/4 log p.

Proof. Let Ap onsist of a ∈ {0, . . . , p − 1} for whih f(U, V ) − a isabsolutely irreduible modulo p.For an integer d, we de�ne
Mp,a(d; X, Y ) = #{(x, y) ∈ Fp,a(X, Y ) | gcd(x, y) ≡ 0 (modd)}.Let µ(d) denote the Möbius funtion. We reall that µ(1) = 1, µ(d) = 0if d ≥ 2 is not square-free and µ(d) = (−1)ω(d) otherwise, where ω(d) is thenumber of distint prime divisors of d. By the inlusion-exlusion priniple,we write(3) Np,a(X, Y ) =

∞
∑

d=1

µ(d)Mp,a(d; X, Y ).Writing
x = ds and y = dt,we have

Mp,a(d; X, Y ) = #{(s, t) ∈ [1, X/d] × [1, Y/d] | f(ds, dt) ≡ a (mod p)}.Thus Mp,a(d; X, Y ) is the number of points on a urve in a given box. If
a ∈ Ap and 1 ≤ d < p then f(dU, dV ) − a remains absolutely irreduiblemodulo p. Aordingly, we have an analogue of (1) whih asserts that(4) Mp,a(d; X, Y ) =

XY

d2p
+ O(p1/2(log p)2).We �x some positive parameter D < p and substitute the bound (4) in (3)for d ≤ D, getting

Np,a(X, Y )

=
∑
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where the produt is taken over all prime numbers l. Realling that

∏

l

(

1 − 1

l2

)

= ζ(2)−1 =
6

π2(see [5, Equation (17.2.2) and Theorem 280℄), we obtain
(5)
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Mp,a(d; X, Y )for every a ∈ Ap.We also remark that
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≪ XY/D.Therefore, using the bounds (5) and (6), we obtain(7) ∑
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For a 6∈ Ap we estimate Np,a(X, Y ) trivially as
Np,a(X, Y ) ≤ min{X, Y }deg f ≪

√
XY .Thus by Lemma 1,(8) ∑

a 6∈Ap
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Combining (7) and (8) and taking D = X1/2Y 1/2p−3/4(log p)−1 we onludethe proof.Corollary 3. Let f be a polynomial with integer oe�ients whih isabsolutely irreduible and of degree greater than one modulo the prime p. If
XY ≥ p3/2(log p)2+ε for some �xed ε > 0, then

Np,a(X, Y ) =

(

6

π2
+ o(1)

)

XY

pfor all but o(p) values of a = 0, . . . , p − 1.4. Visible points on almost all redutions. Throughout this setion,the implied onstants in the notations A ≪ B and A = O(B) may dependon the oe�ients of f .To simplify notation we put
Fp(X, Y ) = Fp,0(X, Y ) and Np(X, Y ) = Np,0(X, Y ).
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We only onsider polynomials f with integer oe�ients suh that theequation f(x, y) = 0 has only �nitely many integer solutions. We reall thatthe Siegel theorem guarantees this for a very general lass of polynomials.Theorem 4. Let f be a polynomial with integer oe�ients whih isabsolutely irreduible and of degree greater than one suh that the equation

f(x, y) = 0 has only �nitely many integer solutions. Then for real T , X and
Y suh that T ≥ 2max(X, Y ) and XY ≥ T 3/2 log T we have
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as T → ∞, where the sum is taken over all primes p with T/2 ≤ p ≤ T .Proof. It is enough to onsider T large enough so that f remains abso-lutely irreduible and of degree greater than one for all p, T/2 ≤ p ≤ T . Asbefore we have(9) ∣
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Mp(d; X, Y ) = #{(x, y) ∈ Fp(X, Y ) | gcd(x, y) ≡ 0 (modd)}.We also remark that
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1.

Let Z be the set of integer zeros (x, y) of f(x, y) = 0. We assume that Dis large enough so that(11) f(ds, dt) 6= 0for d > D and s, t ≥ 1.As before, we denote by ω(k) the number of prime divisors of a positiveinteger k and note that ω(k) ≪ log k. Thus for (u, v) 6∈ Z we an estimatethe inner sum over p in (10) as ω(|f(ds, dt)|) ≪ log(XY ) ≪ log T . Therefore
∑
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We also note that by the prime number theorem,
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∑
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.We now put everything together getting
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.We now take D = cX1/2Y 1/2T−3/4(log T )−1/2 for a su�iently large on-stant c depending only on f (to guarantee that we have (11) for d > D and

s, t ≥ 1), whih yields the result.Corollary 5. Let f be a polynomial with integer oe�ients whih isabsolutely irreduible and of degree greater than one suh that the equation
f(x, y) = 0 has only �nitely many integer solutions. If T ≥ 2max(X, Y ) and
XY ≥ T 3/2+ε for some �xed ε > 0, then

Np(X, Y ) =

(
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π2
+ o(1)

)

XY

pfor all but o(T/log T ) primes p ∈ [T/2, T ].5. Remarks. Certainly it is interesting to obtain an asymptoti formulafor Np,a(X, Y ) whih holds for every a. Even the ase of X = Y = p is ofinterest. We remark that for the polynomial f(U, V ) = UV suh an asymp-toti formula is given in [8℄ and is nontrivial provided XY ≥ p3/2+ε for some�xed ε > 0. However, the tehnique of [8℄ does not seem to apply to moregeneral polynomials.We remark that studying suh speial ases as visible points on the urvesof the shape f(U, V ) = V − g(U) (orresponding to points on the graph ofa univariate polynomial) and f(U, V ) = V 2 − X3 − rX − s (orrespondingto points on an ellipti urve) is also of interest and may be more aessiblethan the general ase.Aknowledgements. This work began during a pleasant visit by I. S.to University of Texas sponsored by NSF grant DMS-05-03804; the sup-port and hospitality of this institution are gratefully aknowledged. Duringthe preparation of this paper, I. S. was supported in part by ARC grantDP0556431.
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