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REAL FUNCTIONS

On Borel Classes of Sets of Fréhet Subdi�erentiabilitybyOnd°ej KURKAPresented by Czesªaw BESSAGA
Summary. We study possible Borel lasses of sets of Fréhet subdi�erentiability of on-tinuous funtions on re�exive spaes.1. Introdution and main result. Our terminology follows [2, 6℄. Wereall the most important de�nitions and notation in Setions 1 and 2. Inthis paper, all normed linear spaes are supposed to be real.Let X be a normed linear spae and f be a real funtion on X. For
x ∈ X, we de�ne the Fréhet subdi�erential of f at x by

∂f(x) =

{

u ∈ X∗ : lim inf
y→x

f(y) − f(x) − u(y − x)

‖y − x‖
≥ 0

}

.Any element of ∂f(x) is alled a Fréhet subgradient of f at x. We say that
x is a point of Fréhet subdi�erentiability of f if ∂f(x) 6= ∅. The set of allpoints of Fréhet subdi�erentiability of f is denoted by S(f).First, we reall a known result in this area.Theorem 1.1 (Holiký, Lazkovih). Let f be a lower semiontinuousfuntion on a normed linear spae X with re�exive ompletion. Then S(f)is a Σ0

4 set.The proof of this theorem an be found in [3℄. Note that the set of Fréhetsubdi�erentiability of a ontinuous funtion on a normed linear spae X maynot be Borel if the ompletion of X is not re�exive (see [3, Theorem 1.3℄).The main result of the paper follows. It says that the result of Holikýand Lazkovih is �best possible�.
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Theorem 1.2. Let X be a normed linear spae with dimX ≥ 3. Thenthere is a ontinuous real funtion f on X suh that S(f) is Σ0

4-omplete.This theorem will be proved in Setion 3.Remark 1.3. 1) If f is a ontinuous funtion on R, then S(f) is a Π0
3set by the lassial result that the Dini derivatives of f are of Baire lass 2(see, e.g., [1℄). On the other hand, by a result of Zahorski (see, e.g., [5℄),there is a Lipshitz funtion f on R suh that the set D(f) of all points ofdi�erentiability of f is Π0

3-omplete. Sine D(f) = S(f) ∩ S(−f), at leastone of the sets S(f), S(−f) is Π0
3-omplete.If f : R

2 → R is lower semiontinuous, then S(f) is Σ0
4 (by Theorem1.1) and an be Π0

3-omplete (by the result of Zahorski). We do not knowanything more about the situation in R
2.2) The set of Fréhet subdi�erentiability of a Lipshitz funtion f ona spae with re�exive ompletion is a Π0

3 set. This follows from the proofof Theorem 1.2 in [3℄ and from the observation that the norms of Fréhetsubgradients of f are uniformly bounded by the Lipshitz onstant (andthus S(f) =
⋂∞

k=1

⋃

(n1,...,nk)∈Nk AK
n1,...,nk

for some K ∈ N, where AK
n1,...,nk

=
⋃

‖u‖≤K

⋂k
i=1{x ∈ X : ‖y−x‖ < 1/ni ⇒ f(y)−f(x) ≥ u(y−x)−i−1‖y−x‖}).Together with the above-mentioned result of Zahorski, this says that Π0

3 isthe smallest Borel lass whih ontains the set of Fréhet subdi�erentiabilityof eah Lipshitz funtion on a re�exive spae.3) Let g : X → [−∞,∞) be a lower semiontinuous funtion, where X isa spae with re�exive ompletion. Then the set G = {x ∈ X : g(x) > −∞}is open, and S(g) ⊂ G an be de�ned in the same way as S(f) for �nite f .By the method of Holiký and Lazkovih, S(g) ∈ Σ0
4.4) Let X be a spae with re�exive ompletion and f : X → R be Σ0

α-measurable (i.e., f−1(U) ∈ Σ0
α whenever U ⊂ R is open). One may askwhether S(f) is Borel, or even of whih Borel lass it is. By an observationof �mídek (see [4℄), S(f) = S(g) ∩ {x ∈ X : f(x) = g(x)}, where g is thegreatest lower semiontinuous minorant of f . So S(f) is the intersetion ofa Σ0

4 set and a Π0
α set.2. Some elements of desriptive set theory. Let us reall somede�nitions and notation. A topologial spae is alled Polish if it is separableand ompletely metrizable.Given a topologial spae M , we use Σ0

α(M) and Π0
α(M), where α < ω1,for the Borel lasses (see [2℄). What is most important for us is that Σ0

4 is
Fσδσ and Π0

3 is Fσδ in the lassial notation. We say that A ⊂ M is Σ0
α-hard(resp. Π0

α-hard) if, for every zero-dimensional Polish spae P and B ∈ Σ0
α(P )(resp. B ∈ Π0

α(P )), there exists a ontinuous mapping f : P → M suh that
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f−1(A) = B. We say that A is Σ0

α-omplete (resp. Π0
α-omplete) if A is

Σ0
α-hard and A ∈ Σ0

α(M) (resp. Π0
α-hard and A ∈ Π0

α(M)).Let P be a Polish spae. It is known that being Σ0
α-omplete in P amountsto being an element of Σ0

α(P ) \ Π0
α(P ) (and similarly for Σ0

α and Π0
α inter-hanged). For example, a subset of R

3 is Σ0
4-omplete if and only if it is Fσδσ,but not Gδσδ.By ∀∞ we mean �for all but �nitely many�.Lemma 2.1 (f. [2, Exerise 23.3℄). The set

D =
{

ν ∈ {0, 1}N×N×N : ∀∞k ∈ N ∀m ∈ N ∀∞l ∈ N ν(k, l, m) = 0
}

is Σ0
4-hard in {0, 1}N×N×N.Proof. By [2, 23.A℄, the set

E =
{

σ ∈ {0, 1}N×N : ∀m ∈ N ∀∞l ∈ N σ(l, m) = 0
}

is Π0
3-omplete in {0, 1}N×N. Let P be a zero-dimensional Polish spae and

B ∈ Σ0
4(P ). Then B =

⋃∞
k=1 Bk for some B1, B2, . . . ∈ Π0

3(P ). Sine thelass Π0
3 is losed under �nite unions, we may suppose that B1 ⊂ B2 ⊂ · · · .For every k ∈ N, there exists a ontinuous mapping fk : P → {0, 1}N×N suhthat f−1

k (E) = Bk. We de�ne
f(p)(k, l, m) = fk(p)(l, m), p ∈ P, k, l, m ∈ N.It is easy to hek that f : P → {0, 1}N×N×N is ontinuous and that

f−1(D) = B, whih proves the lemma.
3. Proof of Theorem 1.2. In this setion, by c-Lipshitz we meanLipshitz with onstant c.Lemma 3.1. There are ontinuous funtions χk,l : R → [0, 1], k, l ∈ N,suh that(a) χk,l(x) ≥ χk+1,l(x) for every k, l ∈ N, x ∈ R,(b) χk,l is l-Lipshitz for every k, l ∈ N,() the set

∞
⋃

k=1

{

x ∈ R : lim
l→∞

χk,l(x) = 0
}

is Σ0
4-hard in R.Proof. We de�ne funtions nk,l : {0, 1}N×N×N → N and ϕk,l, φk,l :

{0, 1}N×N×N → [0, 1] for k, l ∈ N by
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nk,l(ν) = min({m ∈ N : ν(k, l, m) = 1} ∪ {l}),

ϕk,l(ν) =
1

nk,l(ν)
,

φk,l =











0, k > l,
l

∑

j=k

2−jϕj,l, k ≤ l.

For k ∈ N and ν ∈ {0, 1}N×N×N, we verify the following two equivalenes:
lim
l→∞

ϕk,l(ν) = 0 ⇔ lim
l→∞

nk,l(ν) = ∞ ⇔ ∀m ∈ N ∀∞l ∈ N : ν(k, l, m) = 0.The �rst equivalene is obvious; let us prove the other one. Assume that
liml→∞ nk,l(ν) = ∞. For given m ∈ N, we have to �nd p ∈ N suh that
ν(k, l, m) = 0 for every l ≥ p. We hoose p ∈ N suh that nk,l(ν) > m forevery l ≥ p. By the de�nition of nk,l, ν(k, l, j) = 0 for 1 ≤ j ≤ m and l ≥ p,whih gives the impliation �⇒�. Now, suppose

∀m ∈ N ∀∞l ∈ N : ν(k, l, m) = 0.For given m, we have to �nd p ∈ N suh that nk,l(ν) > m for every l ≥ p.If l > m, then by the de�nition of nk,l we have nk,l(ν) > m whenever
ν(k, l, i) = 0 for 1 ≤ i ≤ m. So it is enough to hoose p ∈ N suh that p > mand ν(k, l, i) = 0 for l ≥ p and for 1 ≤ i ≤ m. This proves the impliation�⇐�, and the seond equivalene is also proved.Now, we are going to prove that

∞
⋃

k=1

{

ν ∈ {0, 1}N×N×N : lim
l→∞

φk,l(ν) = 0
}

= D

for the set D from Lemma 2.1. Indeed, for ν ∈ {0, 1}N×N×N, we have
ν ∈ D ⇔ ∃k0 ∈ N ∀k ≥ k0 ∀m ∈ N ∀∞l ∈ N : ν(k, l, m) = 0

⇔ ∃k0 ∈ N ∀k ≥ k0 : lim
l→∞

ϕk,l(ν) = 0

⇔ ∃k0 ∈ N : lim
l→∞

∞
∑

j=k0

2−jϕj,l(ν) = 0

⇔ ∃k0 ∈ N : lim
l→∞

φk0,l(ν) = 0.Let π : N × N × N → N be a bijetion. We de�ne a homeomorphism hbetween {0, 1}N and {0, 1}N×N×N by
h : (αn)n∈N ∈ {0, 1}N 7→ (απ(k,l,m))(k,l,m)∈N×N×N.Consider the following metri on {0, 1}N:

̺(ν, ν ′) = max({3−n : ν(n) 6= ν ′(n)} ∪ {0}), ν, ν ′ ∈ {0, 1}N.
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Let us hek that

∀l ∈ N ∃Ll > 0 ∀k ∈ N : φk,l ◦ h is Ll-Lipshitz on ({0, 1}N, ̺).(1)It is enough to prove that there exists Lk,l > 0 suh that ϕk,l ◦ h is Lk,l-Lipshitz for every k, l ∈ N beause then we an take Ll =
∑l

j=1 2−jLj,l. Weput
Lk,l = max

{

3π(k,l,m) : 1 ≤ m ≤ l
}

, k, l ∈ N.Let ν, ν ′ ∈ {0, 1}N. If ̺(ν, ν ′) ≥ 1/Lk,l, then |(ϕk,l ◦ h)(ν) − (ϕk,l ◦ h)(ν ′)| ≤

1 ≤ Lk,l̺(ν, ν ′). If ̺(ν, ν ′) < 1/Lk,l (i.e., ̺(ν, ν ′) < 3−π(k,l,m) for 1 ≤
m ≤ l), then, by the de�nition of ̺, ν(π(k, l, m)) = ν ′(π(k, l, m)) (i.e.,
h(ν)(k, l, m) = h(ν ′)(k, l, m)) for 1 ≤ m ≤ l, and, by the de�nitions of nk,land ϕk,l, nk,l(h(ν)) = nk,l(h(ν ′)) and ϕk,l(h(ν)) = ϕk,l(h(ν ′)). So the hoieof Lk,l works, and (1) is proved.Now, de�ne g : {0, 1}N → R by

g(ν) = 2
∞
∑

k=1

(

1

3

)k

ν(k), ν ∈ {0, 1}N.One an easily hek that
1

3
|g(ν) − g(ν ′)| ≤ ̺(ν, ν ′) ≤ |g(ν) − g(ν ′)|, ν, ν ′ ∈ {0, 1}N.Set C = g({0, 1}N). We see that g is a homeomorphism of {0, 1}N onto C.Consequently, the set
∞
⋃

k=1

{

x ∈ C : lim
l→∞

(φk,l ◦ h ◦ g−1)(x) = 0
}

= g(h−1(D))is Σ0
4-hard in C by Lemma 2.1.Sine g−1 is 1-Lipshitz, the funtion φk,l ◦ h ◦ g−1 is Ll-Lipshitz for

k, l ∈ N. We an extend these funtions from C to R by
χ′

k,l = sup
{

u : R → [0, 1] : u is Ll-Lipshitz, u ≤ φk,l ◦ h ◦ g−1 on C
}

.We now prove that the following onditions hold:
(a′) χ′

k,l(x) ≥ χ′
k+1,l(x) for every k, l ∈ N, x ∈ R,

(b′) χ′
k,l is Ll-Lipshitz for every k, l ∈ N,

(c′) the set
∞
⋃

k=1

{

x ∈ R : lim
l→∞

χ′
k,l(x) = 0

}

is Σ0
4-hard in R.Let k, l ∈ N. Obviously, φk,l ≥ φk+1,l on {0, 1}N×N×N. Thus, φk,l ◦h ◦ g−1

≥ φk+1,l ◦ h ◦ g−1 on C. Hene χ′
k,l ≥ χ′

k+1,l by the de�nitions of χ′
k,l and
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χ′

k+1,l. So (a′) holds. Sine the supremum of any non-empty system of c-Lipshitz funtions with a uniform upper bound at one point is c-Lipshitz,(b′) holds. Finally, sine g(h−1(D)) = C∩
⋃∞

k=1{x ∈ R : liml→∞ χ′
k,l(x) = 0}is Σ0

4-hard in C, (′) holds.We hoose an inreasing sequene of natural numbers 1 ≤ s1 < s2 < · · ·suh that si ≥ Li for i ∈ N. For k, l ∈ N, we de�ne
χk,l =

{

1, 1 ≤ l < s1,
χ′

k,i, si ≤ l < si+1, i ∈ N,whih ompletes the proof.Proof of Theorem 1.2. It is enough to onstrut a funtion f with therequired properties on R
3 (in the general ase, X an be expressed as thetopologial sum R

3 ⊕ Y for some losed subspae Y of X, and if we de�ne
F (x + y) = f(x) for x ∈ R

3 and y ∈ Y , then S(F ) = S(f) + Y wouldalso be Σ0
4-omplete). In the proof, we use | · | for the Eulidean norm on

R
n, n = 2, 3.Let χk,l : R → [0, 1], k, l ∈ N, be as in Lemma 3.1. We de�ne funtions

f, fl : R
3 → R, l ∈ N, by

fl(x, y, z) = max{(k − 1)y − χk,l(x)|(y, z)| : 1 ≤ k ≤ l}, (x, y, z) ∈ R
3,

f(x, y, z) =







































0, y = z = 0,
(l + 1)−2 − |(y, z)|

(l + 1)−2 − (l + 2)−2
fl+1(x, y, z)

+
|(y, z)| − (l + 2)−2

(l + 1)−2 − (l + 2)−2
fl(x, y, z),

(l + 2)−2 ≤ |(y, z)| < (l + 1)−2,
f1(x, y, z), 1/4 ≤ |(y, z)|.Obviously, the funtions fl, l ∈ N, are ontinuous and the funtion f isontinuous on {(x, y, z) ∈ R

3 : (l + 2)−2 ≤ |(y, z)| < (l + 1)−2}, l ∈ N, andon {(x, y, z) ∈ R
3 : 1/4 ≤ |(y, z)|}. To prove that f is ontinuous on theunion of these sets (i.e., on {(x, y, z) ∈ R

3 : |(y, z)| > 0}), we have to hekthat for l ∈ N and (x0, y0, z0) ∈ R
3 with |(y0, z0)| = (l + 1)−2,

lim
(x,y,z)→(x0,y0,z0)

(l+2)−2≤|(y,z)|<(l+1)−2

f(x, y, z) = f(x0, y0, z0).

This holds beause both sides of the equality are equal to fl(x0, y0, z0). Theproof of the ontinuity of f will be ompleted if we verify that
|f(x, y, z)| ≤

√

|(y, z)| for (x, y, z) ∈ R
3 with |(y, z)| < 1/4(and thus that f is ontinuous at eah (x, 0, 0) for x ∈ R). Let (x, y, z) ∈ R

3and |(y, z)| < 1/4. We may suppose that |(y, z)| > 0. Let l ∈ N be suh that
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(l + 2)−2 ≤ |(y, z)| < (l + 1)−2. Sine f(x, y, z) is a onvex ombination of
fl(x, y, z) and fl+1(x, y, z), it is enough to hek that

|(y, z)| ≤ j−2 ⇒ |fj(x, y, z)| ≤
√

|(y, z)|for j ∈ N (and thus |fl(x, y, z)| ≤
√

|(y, z)| and |fl+1(x, y, z)| ≤
√

|(y, z)|).Let j ∈ N be suh that |(y, z)| ≤ j−2. Using the de�nition of fj (and the fatthat the ranges of χk,j are subsets of [0, 1]), we get |fj(x, y, z)| ≤ j|(y, z)|.We have
|fj(x, y, z)| ≤ j|(y, z)| ≤ |(y, z)|−1/2|(y, z)| =

√

|(y, z)|,and the ontinuity of f is proved.Let us proeed to the investigation of S(f). By Theorem 1.1, S(f) is
Σ0

4. By the property () of the system {χk,l}k,l∈N, to prove that S(f) is
Σ0

4-omplete, it is su�ient to prove that, for a ∈ R,
(a, 0, 0) ∈ S(f) ⇔ ∃k ∈ N : lim

l→∞
χk,l(a) = 0.Let us prove the impliation �⇒�. Suppose lim supl→∞ χk,l(a) > 0 for every

k ∈ N and let u ∈ (R3)∗. We have to hek that u is not a Fréhet subgradientof f at (a, 0, 0). Suppose the opposite, i.e., u ∈ ∂f(a, 0, 0). Let λ ∈ R. By thede�nition of fl, l ∈ N, we have fl(a, 0, λ) ≤ 0. Consequently, f(a, 0, λ) ≤ 0.We have
0 ≤ lim inf

λ→0

f(a, 0, λ) − u(0, 0, λ)

|(0, 0, λ)|
≤ lim inf

λ→0

−u(0, 0, λ)

|λ|
= −|u(0, 0, 1)|.So u(0, 0, 1) = 0 and

u(0, y, z) = cy, y, z ∈ R,where c = u(0, 1, 0). We hoose n ∈ N suh that n ≥ c + 1. There exists
ε > 0 suh that (c + 1)ε < lim supl→∞ χn,l(a). If we de�ne

pl = (l + 1)−2(0,−ε,
√

1 − ε2), l ∈ N,and use the property (a), we have
f((a, 0, 0) + pl) − u(pl)

|pl|
=

fl((a, 0, 0) + pl) − u(pl)

|pl|

=
1

(l + 1)−2
(max{(1 − k)(l + 1)−2ε − χk,l(a)(l + 1)−2 : k ≤ l}) + cε

≤ sup{(1 − k)ε − χk,l(a) : k ∈ N} + cε

≤ max{max{(1 − k)ε − χk,l(a) : 1 ≤ k ≤ n} + cε,−nε + cε}

≤ max{cε − χn,l(a),−ε}.
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By the hoie of ε, for every l0 ∈ N, there exists l ≥ l0 suh that χn,l(a) ≥
(c + 1)ε, i.e., cε − χn,l(a) ≤ −ε. Consequently,

1

|pl|

(

f((a, 0, 0) + pl) − u(pl)
)

≤ −εfor suh l. Sine pl → (0, 0, 0),
lim inf

(x,y,z)→(a,0,0)

1

|(x − a, y, z)|

(

f(x, y, z) − u(x − a, y, z)
)

≤ −ε,whih ontradits the fat that u is a Fréhet subgradient of f at (a, 0, 0).So the impliation �⇒� is proved.Now, let us prove �⇐�. We have to �nd a Fréhet subgradient of f at
(a, 0, 0) assuming that there exists k ∈ N suh that liml→∞ χk,l(a) = 0. Letus �x suh a k. We laim that

u(x, y, z) = (k − 1)y, (x, y, z) ∈ R
3,is the required Fréhet subgradient. Let ε > 0 be given. We an hoose l0 ∈ Nsuh that χk,l(a) ≤ ε/2 for every l ≥ l0. We hoose δ > 0 suh that

δ < 1/4, δ1/2 ≤ ε, δ1/6 ≤ ε/2, δ < (l0 + 1)−2, δ < (k + 1)−2.Let (x, y, z) ∈ R
3 and 0 < |(x − a, y, z)| ≤ δ. We now hek that

f(x, y, z) − u(x − a, y, z)

|(x − a, y, z)|
≥ −ε.Clearly, this holds if (y, z) = 0. So we may suppose that |(y, z)| > 0. For

l ≥ k, by the de�nition of fl,
fl(x, y, z) − (k − 1)y ≥ −χk,l(x)|(y, z)|.Sine 0 < |(y, z)| ≤ δ < 1/4, we have (l+2)−2 ≤ |(y, z)| < (l+1)−2 for some

l ∈ N. Sine (l + 2)−2 ≤ |(y, z)| ≤ δ < (k + 1)−2, it follows that l ≥ k. Sine
f(x, y, z) is a onvex ombination of fl(x, y, z) and fl+1(x, y, z), it followsthat
(2) f(x, y, z) − u(x − a, y, z) ≥ −max{χk,l(x)|(y, z)|, χk,l+1(x)|(y, z)|}.If |(y, z)| ≤ |x − a|3/2, using (2), we have

f(x, y, z) − u(x − a, y, z)

|(x − a, y, z)|
≥ −

|(y, z)|

|(x − a, y, z)|
≥ −|x − a|1/2 ≥ −δ1/2 ≥ −ε.In the other ase (i.e., if |(y, z)| > |x − a|3/2), by (b) and by the fat that

l ≥ l0 ((l + 2)−2 ≤ |(y, z)| ≤ δ < (l0 + 1)−2), using (2) again, we have
f(x, y, z) − u(x − a, y, z)

|(x − a, y, z)|
≥ −

max{χk,l(x)|(y, z)|, χk,l+1(x)|(y, z)|}

|(x − a, y, z)|

≥ −max{χk,l(x), χk,l+1(x)}
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≥ −max{χk,l(a), χk,l+1(a)} − (l + 1)|x − a|

> −ε/2 − |(y, z)|−1/2|(y, z)|2/3

≥ −ε/2 − δ1/6 ≥ −ε.So, for given ε > 0, we have found δ > 0 suh that
0 < |(x − a, y, z)| ≤ δ ⇒

f(x, y, z) − u(x − a, y, z)

|(x − a, y, z)|
≥ −ε.This means that u is a Fréhet subgradient of f at (a, 0, 0), and the impli-ation �⇐� is proved.I would like to thank Petr Holiký for helpful disussions and usefulremarks.
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