On Borel Classes of Sets of Fréchet Subdifferentiability

by
Ondřej KURKA
Presented by Czestaw BESSAGA

Summary. We study possible Borel classes of sets of Fréchet subdifferentiability of continuous functions on reflexive spaces.

1. Introduction and main result. Our terminology follows $[2,6]$. We recall the most important definitions and notation in Sections 1 and 2. In this paper, all normed linear spaces are supposed to be real.

Let X be a normed linear space and f be a real function on X. For $x \in X$, we define the Fréchet subdifferential of f at x by

$$
\partial f(x)=\left\{u \in X^{*}: \liminf _{y \rightarrow x} \frac{f(y)-f(x)-u(y-x)}{\|y-x\|} \geq 0\right\}
$$

Any element of $\partial f(x)$ is called a Fréchet subgradient of f at x. We say that x is a point of Fréchet subdifferentiability of f if $\partial f(x) \neq \emptyset$. The set of all points of Fréchet subdifferentiability of f is denoted by $S(f)$.

First, we recall a known result in this area.
THEOREM 1.1 (Holický, Laczkovich). Let f be a lower semicontinuous function on a normed linear space X with reflexive completion. Then $S(f)$ is a Σ_{4}^{0} set.

The proof of this theorem can be found in [3]. Note that the set of Fréchet subdifferentiability of a continuous function on a normed linear space X may not be Borel if the completion of X is not reflexive (see [3, Theorem 1.3]).

The main result of the paper follows. It says that the result of Holický and Laczkovich is "best possible".

[^0]Theorem 1.2. Let X be a normed linear space with $\operatorname{dim} X \geq 3$. Then there is a continuous real function f on X such that $S(f)$ is Σ_{4}^{0}-complete.

This theorem will be proved in Section 3.
REMARK 1.3. 1) If f is a continuous function on \mathbb{R}, then $S(f)$ is a Π_{3}^{0} set by the classical result that the Dini derivatives of f are of Baire class 2 (see, e.g., [1]). On the other hand, by a result of Zahorski (see, e.g., [5]), there is a Lipschitz function f on \mathbb{R} such that the set $D(f)$ of all points of differentiability of f is Π_{3}^{0}-complete. Since $D(f)=S(f) \cap S(-f)$, at least one of the sets $S(f), S(-f)$ is Π_{3}^{0}-complete.

If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is lower semicontinuous, then $S(f)$ is Σ_{4}^{0} (by Theorem 1.1) and can be Π_{3}^{0}-complete (by the result of Zahorski). We do not know anything more about the situation in \mathbb{R}^{2}.
2) The set of Fréchet subdifferentiability of a Lipschitz function f on a space with reflexive completion is a Π_{3}^{0} set. This follows from the proof of Theorem 1.2 in [3] and from the observation that the norms of Fréchet subgradients of f are uniformly bounded by the Lipschitz constant (and thus $S(f)=\bigcap_{k=1}^{\infty} \bigcup_{\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k}} A_{n_{1}, \ldots, n_{k}}^{K}$ for some $K \in \mathbb{N}$, where $A_{n_{1}, \ldots, n_{k}}^{K}=$ $\left.\bigcup_{\|u\| \leq K} \bigcap_{i=1}^{k}\left\{x \in X:\|y-x\|<1 / n_{i} \Rightarrow f(y)-f(x) \geq u(y-x)-i^{-1}\|y-x\|\right\}\right)$. Together with the above-mentioned result of Zahorski, this says that Π_{3}^{0} is the smallest Borel class which contains the set of Fréchet subdifferentiability of each Lipschitz function on a reflexive space.
3) Let $g: X \rightarrow[-\infty, \infty)$ be a lower semicontinuous function, where X is a space with reflexive completion. Then the set $G=\{x \in X: g(x)>-\infty\}$ is open, and $S(g) \subset G$ can be defined in the same way as $S(f)$ for finite f. By the method of Holický and Laczkovich, $S(g) \in \Sigma_{4}^{0}$.
4) Let X be a space with reflexive completion and $f: X \rightarrow \mathbb{R}$ be Σ_{α}^{0} measurable (i.e., $f^{-1}(U) \in \Sigma_{\alpha}^{0}$ whenever $U \subset \mathbb{R}$ is open). One may ask whether $S(f)$ is Borel, or even of which Borel class it is. By an observation of Šmídek (see [4]), $S(f)=S(g) \cap\{x \in X: f(x)=g(x)\}$, where g is the greatest lower semicontinuous minorant of f. So $S(f)$ is the intersection of a Σ_{4}^{0} set and a Π_{α}^{0} set.
2. Some elements of descriptive set theory. Let us recall some definitions and notation. A topological space is called Polish if it is separable and completely metrizable.

Given a topological space M, we use $\Sigma_{\alpha}^{0}(M)$ and $\Pi_{\alpha}^{0}(M)$, where $\alpha<\omega_{1}$, for the Borel classes (see [2]). What is most important for us is that Σ_{4}^{0} is $F_{\sigma \delta \sigma}$ and Π_{3}^{0} is $F_{\sigma \delta}$ in the classical notation. We say that $A \subset M$ is Σ_{α}^{0}-hard (resp. Π_{α}^{0}-hard) if, for every zero-dimensional Polish space P and $B \in \Sigma_{\alpha}^{0}(P)$ (resp. $B \in \Pi_{\alpha}^{0}(P)$), there exists a continuous mapping $f: P \rightarrow M$ such that
$f^{-1}(A)=B$. We say that A is Σ_{α}^{0}-complete (resp. Π_{α}^{0}-complete) if A is Σ_{α}^{0}-hard and $A \in \Sigma_{\alpha}^{0}(M)$ (resp. Π_{α}^{0}-hard and $\left.A \in \Pi_{\alpha}^{0}(M)\right)$.

Let P be a Polish space. It is known that being Σ_{α}^{0}-complete in P amounts to being an element of $\Sigma_{\alpha}^{0}(P) \backslash \Pi_{\alpha}^{0}(P)$ (and similarly for Σ_{α}^{0} and Π_{α}^{0} interchanged). For example, a subset of \mathbb{R}^{3} is Σ_{4}^{0}-complete if and only if it is $F_{\sigma \delta \sigma}$, but not $G_{\delta \sigma \delta}$.

By \forall^{∞} we mean "for all but finitely many".
Lemma 2.1 (cf. [2, Exercise 23.3]). The set

$$
D=\left\{\nu \in\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}: \forall^{\infty} k \in \mathbb{N} \forall m \in \mathbb{N} \forall^{\infty} l \in \mathbb{N} \nu(k, l, m)=0\right\}
$$

is Σ_{4}^{0}-hard in $\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$.
Proof. By [2, 23.A], the set

$$
E=\left\{\sigma \in\{0,1\}^{\mathbb{N} \times \mathbb{N}}: \forall m \in \mathbb{N} \forall^{\infty} l \in \mathbb{N} \sigma(l, m)=0\right\}
$$

is Π_{3}^{0}-complete in $\{0,1\}^{\mathbb{N} \times \mathbb{N}}$. Let P be a zero-dimensional Polish space and $B \in \Sigma_{4}^{0}(P)$. Then $B=\bigcup_{k=1}^{\infty} B_{k}$ for some $B_{1}, B_{2}, \ldots \in \Pi_{3}^{0}(P)$. Since the class Π_{3}^{0} is closed under finite unions, we may suppose that $B_{1} \subset B_{2} \subset \cdots$. For every $k \in \mathbb{N}$, there exists a continuous mapping $f_{k}: P \rightarrow\{0,1\}^{\mathbb{N} \times \mathbb{N}}$ such that $f_{k}^{-1}(E)=B_{k}$. We define

$$
f(p)(k, l, m)=f_{k}(p)(l, m), \quad p \in P, k, l, m \in \mathbb{N} .
$$

It is easy to check that $f: P \rightarrow\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$ is continuous and that $f^{-1}(D)=B$, which proves the lemma.
3. Proof of Theorem 1.2. In this section, by c-Lipschitz we mean Lipschitz with constant c.

Lemma 3.1. There are continuous functions $\chi_{k, l}: \mathbb{R} \rightarrow[0,1], k, l \in \mathbb{N}$, such that
(a) $\chi_{k, l}(x) \geq \chi_{k+1, l}(x)$ for every $k, l \in \mathbb{N}, x \in \mathbb{R}$,
(b) $\chi_{k, l}$ is l-Lipschitz for every $k, l \in \mathbb{N}$,
(c) the set

$$
\bigcup_{k=1}^{\infty}\left\{x \in \mathbb{R}: \lim _{l \rightarrow \infty} \chi_{k, l}(x)=0\right\}
$$

is Σ_{4}^{0}-hard in \mathbb{R}.
Proof. We define functions $n_{k, l}:\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}} \rightarrow \mathbb{N}$ and $\varphi_{k, l}, \phi_{k, l}:$ $\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}} \rightarrow[0,1]$ for $k, l \in \mathbb{N}$ by

$$
\begin{aligned}
n_{k, l}(\nu) & =\min (\{m \in \mathbb{N}: \nu(k, l, m)=1\} \cup\{l\}), \\
\varphi_{k, l}(\nu) & =\frac{1}{n_{k, l}(\nu)}, \\
\phi_{k, l} & = \begin{cases}0, & k>l \\
\sum_{j=k}^{l} 2^{-j} \varphi_{j, l}, & k \leq l\end{cases}
\end{aligned}
$$

For $k \in \mathbb{N}$ and $\nu \in\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$, we verify the following two equivalences:
$\lim _{l \rightarrow \infty} \varphi_{k, l}(\nu)=0 \Leftrightarrow \lim _{l \rightarrow \infty} n_{k, l}(\nu)=\infty \Leftrightarrow \forall m \in \mathbb{N} \forall^{\infty} l \in \mathbb{N}: \nu(k, l, m)=0$.
The first equivalence is obvious; let us prove the other one. Assume that $\lim _{l \rightarrow \infty} n_{k, l}(\nu)=\infty$. For given $m \in \mathbb{N}$, we have to find $p \in \mathbb{N}$ such that $\nu(k, l, m)=0$ for every $l \geq p$. We choose $p \in \mathbb{N}$ such that $n_{k, l}(\nu)>m$ for every $l \geq p$. By the definition of $n_{k, l}, \nu(k, l, j)=0$ for $1 \leq j \leq m$ and $l \geq p$, which gives the implication " \Rightarrow ". Now, suppose

$$
\forall m \in \mathbb{N} \forall^{\infty} l \in \mathbb{N}: \nu(k, l, m)=0
$$

For given m, we have to find $p \in \mathbb{N}$ such that $n_{k, l}(\nu)>m$ for every $l \geq p$. If $l>m$, then by the definition of $n_{k, l}$ we have $n_{k, l}(\nu)>m$ whenever $\nu(k, l, i)=0$ for $1 \leq i \leq m$. So it is enough to choose $p \in \mathbb{N}$ such that $p>m$ and $\nu(k, l, i)=0$ for $l \geq p$ and for $1 \leq i \leq m$. This proves the implication " \Leftarrow ", and the second equivalence is also proved.

Now, we are going to prove that

$$
\bigcup_{k=1}^{\infty}\left\{\nu \in\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}: \lim _{l \rightarrow \infty} \phi_{k, l}(\nu)=0\right\}=D
$$

for the set D from Lemma 2.1. Indeed, for $\nu \in\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$, we have

$$
\begin{aligned}
\nu \in D & \Leftrightarrow \exists k_{0} \in \mathbb{N} \forall k \geq k_{0} \forall m \in \mathbb{N} \forall^{\infty} l \in \mathbb{N}: \nu(k, l, m)=0 \\
& \Leftrightarrow \exists k_{0} \in \mathbb{N} \forall k \geq k_{0}: \lim _{l \rightarrow \infty} \varphi_{k, l}(\nu)=0 \\
& \Leftrightarrow \exists k_{0} \in \mathbb{N}: \lim _{l \rightarrow \infty} \sum_{j=k_{0}}^{\infty} 2^{-j} \varphi_{j, l}(\nu)=0 \\
& \Leftrightarrow \exists k_{0} \in \mathbb{N}: \lim _{l \rightarrow \infty} \phi_{k_{0}, l}(\nu)=0 .
\end{aligned}
$$

Let $\pi: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be a bijection. We define a homeomorphism h between $\{0,1\}^{\mathbb{N}}$ and $\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$ by

$$
h:\left(\alpha_{n}\right)_{n \in \mathbb{N}} \in\{0,1\}^{\mathbb{N}} \mapsto\left(\alpha_{\pi(k, l, m)}\right)_{(k, l, m) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}}
$$

Consider the following metric on $\{0,1\}^{\mathbb{N}}$:

$$
\varrho\left(\nu, \nu^{\prime}\right)=\max \left(\left\{3^{-n}: \nu(n) \neq \nu^{\prime}(n)\right\} \cup\{0\}\right), \quad \nu, \nu^{\prime} \in\{0,1\}^{\mathbb{N}} .
$$

Let us check that
(1) $\quad \forall l \in \mathbb{N} \exists L_{l}>0 \forall k \in \mathbb{N}: \phi_{k, l} \circ h$ is L_{l}-Lipschitz on $\left(\{0,1\}^{\mathbb{N}}, \varrho\right)$.

It is enough to prove that there exists $L_{k, l}>0$ such that $\varphi_{k, l} \circ h$ is $L_{k, l^{-}}$ Lipschitz for every $k, l \in \mathbb{N}$ because then we can take $L_{l}=\sum_{j=1}^{l} 2^{-j} L_{j, l}$. We put

$$
L_{k, l}=\max \left\{3^{\pi(k, l, m)}: 1 \leq m \leq l\right\}, \quad k, l \in \mathbb{N}
$$

Let $\nu, \nu^{\prime} \in\{0,1\}^{\mathbb{N}}$. If $\varrho\left(\nu, \nu^{\prime}\right) \geq 1 / L_{k, l}$, then $\left|\left(\varphi_{k, l} \circ h\right)(\nu)-\left(\varphi_{k, l} \circ h\right)\left(\nu^{\prime}\right)\right| \leq$ $1 \leq L_{k, l} \varrho\left(\nu, \nu^{\prime}\right)$. If $\varrho\left(\nu, \nu^{\prime}\right)<1 / L_{k, l}$ (i.e., $\varrho\left(\nu, \nu^{\prime}\right)<3^{-\pi(k, l, m)}$ for $1 \leq$ $m \leq l)$, then, by the definition of $\varrho, \nu(\pi(k, l, m))=\nu^{\prime}(\pi(k, l, m))$ (i.e., $\left.h(\nu)(k, l, m)=h\left(\nu^{\prime}\right)(k, l, m)\right)$ for $1 \leq m \leq l$, and, by the definitions of $n_{k, l}$ and $\varphi_{k, l}, n_{k, l}(h(\nu))=n_{k, l}\left(h\left(\nu^{\prime}\right)\right)$ and $\varphi_{k, l}(h(\nu))=\varphi_{k, l}\left(h\left(\nu^{\prime}\right)\right)$. So the choice of $L_{k, l}$ works, and (1) is proved.

Now, define $g:\{0,1\}^{\mathbb{N}} \rightarrow \mathbb{R}$ by

$$
g(\nu)=2 \sum_{k=1}^{\infty}\left(\frac{1}{3}\right)^{k} \nu(k), \quad \nu \in\{0,1\}^{\mathbb{N}}
$$

One can easily check that

$$
\frac{1}{3}\left|g(\nu)-g\left(\nu^{\prime}\right)\right| \leq \varrho\left(\nu, \nu^{\prime}\right) \leq\left|g(\nu)-g\left(\nu^{\prime}\right)\right|, \quad \nu, \nu^{\prime} \in\{0,1\}^{\mathbb{N}}
$$

Set $C=g\left(\{0,1\}^{\mathbb{N}}\right)$. We see that g is a homeomorphism of $\{0,1\}^{\mathbb{N}}$ onto C. Consequently, the set

$$
\bigcup_{k=1}^{\infty}\left\{x \in C: \lim _{l \rightarrow \infty}\left(\phi_{k, l} \circ h \circ g^{-1}\right)(x)=0\right\}=g\left(h^{-1}(D)\right)
$$

is Σ_{4}^{0}-hard in C by Lemma 2.1.
Since g^{-1} is 1 -Lipschitz, the function $\phi_{k, l} \circ h \circ g^{-1}$ is L_{l}-Lipschitz for $k, l \in \mathbb{N}$. We can extend these functions from C to \mathbb{R} by
$\chi_{k, l}^{\prime}=\sup \left\{u: \mathbb{R} \rightarrow[0,1]: u\right.$ is L_{l}-Lipschitz, $u \leq \phi_{k, l} \circ h \circ g^{-1}$ on $\left.C\right\}$.
We now prove that the following conditions hold:
(a') $\chi_{k, l}^{\prime}(x) \geq \chi_{k+1, l}^{\prime}(x)$ for every $k, l \in \mathbb{N}, x \in \mathbb{R}$,
(b^{\prime}) $\chi_{k, l}^{\prime}$ is L_{l}-Lipschitz for every $k, l \in \mathbb{N}$,
(c^{\prime}) the set

$$
\bigcup_{k=1}^{\infty}\left\{x \in \mathbb{R}: \lim _{l \rightarrow \infty} \chi_{k, l}^{\prime}(x)=0\right\}
$$

is Σ_{4}^{0}-hard in \mathbb{R}.
Let $k, l \in \mathbb{N}$. Obviously, $\phi_{k, l} \geq \phi_{k+1, l}$ on $\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$. Thus, $\phi_{k, l} \circ h \circ g^{-1}$ $\geq \phi_{k+1, l} \circ h \circ g^{-1}$ on C. Hence $\chi_{k, l}^{\prime} \geq \chi_{k+1, l}^{\prime}$ by the definitions of $\chi_{k, l}^{\prime}$ and
$\chi_{k+1, l}^{\prime}$. So (a^{\prime}) holds. Since the supremum of any non-empty system of c Lipschitz functions with a uniform upper bound at one point is c-Lipschitz, (b^{\prime}) holds. Finally, since $g\left(h^{-1}(D)\right)=C \cap \bigcup_{k=1}^{\infty}\left\{x \in \mathbb{R}: \lim _{l \rightarrow \infty} \chi_{k, l}^{\prime}(x)=0\right\}$ is Σ_{4}^{0}-hard in C, (c $\left.c^{\prime}\right)$ holds.

We choose an increasing sequence of natural numbers $1 \leq s_{1}<s_{2}<\cdots$ such that $s_{i} \geq L_{i}$ for $i \in \mathbb{N}$. For $k, l \in \mathbb{N}$, we define

$$
\chi_{k, l}= \begin{cases}1, & 1 \leq l<s_{1} \\ \chi_{k, i}^{\prime}, & s_{i} \leq l<s_{i+1}, i \in \mathbb{N}\end{cases}
$$

which completes the proof.
Proof of Theorem 1.2. It is enough to construct a function f with the required properties on \mathbb{R}^{3} (in the general case, X can be expressed as the topological sum $\mathbb{R}^{3} \oplus Y$ for some closed subspace Y of X, and if we define $F(x+y)=f(x)$ for $x \in \mathbb{R}^{3}$ and $y \in Y$, then $S(F)=S(f)+Y$ would also be Σ_{4}^{0}-complete). In the proof, we use $|\cdot|$ for the Euclidean norm on $\mathbb{R}^{n}, n=2,3$.

Let $\chi_{k, l}: \mathbb{R} \rightarrow[0,1], k, l \in \mathbb{N}$, be as in Lemma 3.1. We define functions $f, f_{l}: \mathbb{R}^{3} \rightarrow \mathbb{R}, l \in \mathbb{N}$, by

$$
\begin{aligned}
& f_{l}(x, y, z)=\max \left\{(k-1) y-\chi_{k, l}(x)|(y, z)|: 1 \leq k \leq l\right\}, \quad(x, y, z) \in \mathbb{R}^{3}, \\
& f(x, y, z)= \begin{cases}0, & y=z=0 \\
\frac{(l+1)^{-2}-|(y, z)|}{(l+1)^{-2}-(l+2)^{-2}} f_{l+1}(x, y, z) \\
+\frac{|(y, z)|-(l+2)^{-2}}{(l+1)^{-2}-(l+2)^{-2}} & f_{l}(x, y, z) \\
& (l+2)^{-2} \leq|(y, z)|<(l+1)^{-2} \\
f_{1}(x, y, z), & 1 / 4 \leq|(y, z)|\end{cases}
\end{aligned}
$$

Obviously, the functions $f_{l}, l \in \mathbb{N}$, are continuous and the function f is continuous on $\left\{(x, y, z) \in \mathbb{R}^{3}:(l+2)^{-2} \leq|(y, z)|<(l+1)^{-2}\right\}, l \in \mathbb{N}$, and on $\left\{(x, y, z) \in \mathbb{R}^{3}: 1 / 4 \leq|(y, z)|\right\}$. To prove that f is continuous on the union of these sets (i.e., on $\left\{(x, y, z) \in \mathbb{R}^{3}:|(y, z)|>0\right\}$), we have to check that for $l \in \mathbb{N}$ and $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ with $\left|\left(y_{0}, z_{0}\right)\right|=(l+1)^{-2}$,

$$
\lim _{\substack{(x, y, z) \rightarrow\left(x_{0}, y_{0}, z_{0}\right) \\(l+2)^{-2} \leq|(y, z)|<(l+1)^{-2}}} f(x, y, z)=f\left(x_{0}, y_{0}, z_{0}\right)
$$

This holds because both sides of the equality are equal to $f_{l}\left(x_{0}, y_{0}, z_{0}\right)$. The proof of the continuity of f will be completed if we verify that

$$
|f(x, y, z)| \leq \sqrt{|(y, z)|} \quad \text { for }(x, y, z) \in \mathbb{R}^{3} \text { with }|(y, z)|<1 / 4
$$

(and thus that f is continuous at each $(x, 0,0)$ for $x \in \mathbb{R}$). Let $(x, y, z) \in \mathbb{R}^{3}$ and $|(y, z)|<1 / 4$. We may suppose that $|(y, z)|>0$. Let $l \in \mathbb{N}$ be such that
$(l+2)^{-2} \leq|(y, z)|<(l+1)^{-2}$. Since $f(x, y, z)$ is a convex combination of $f_{l}(x, y, z)$ and $f_{l+1}(x, y, z)$, it is enough to check that

$$
|(y, z)| \leq j^{-2} \Rightarrow\left|f_{j}(x, y, z)\right| \leq \sqrt{|(y, z)|}
$$

for $j \in \mathbb{N}$ (and thus $\left|f_{l}(x, y, z)\right| \leq \sqrt{|(y, z)|}$ and $\left.\left|f_{l+1}(x, y, z)\right| \leq \sqrt{|(y, z)|}\right)$. Let $j \in \mathbb{N}$ be such that $|(y, z)| \leq j^{-2}$. Using the definition of f_{j} (and the fact that the ranges of $\chi_{k, j}$ are subsets of $\left.[0,1]\right)$, we get $\left|f_{j}(x, y, z)\right| \leq j|(y, z)|$. We have

$$
\left|f_{j}(x, y, z)\right| \leq j|(y, z)| \leq|(y, z)|^{-1 / 2}|(y, z)|=\sqrt{|(y, z)|},
$$

and the continuity of f is proved.
Let us proceed to the investigation of $S(f)$. By Theorem 1.1, $S(f)$ is Σ_{4}^{0}. By the property (c) of the system $\left\{\chi_{k, l}\right\}_{k, l \in \mathbb{N}}$, to prove that $S(f)$ is Σ_{4}^{0}-complete, it is sufficient to prove that, for $a \in \mathbb{R}$,

$$
(a, 0,0) \in S(f) \Leftrightarrow \exists k \in \mathbb{N}: \lim _{l \rightarrow \infty} \chi_{k, l}(a)=0 .
$$

Let us prove the implication " \Rightarrow ". Suppose $\lim _{\sup }^{l \rightarrow \infty}$ $\chi_{k, l}(a)>0$ for every $k \in \mathbb{N}$ and let $u \in\left(\mathbb{R}^{3}\right)^{*}$. We have to check that u is not a Fréchet subgradient of f at $(a, 0,0)$. Suppose the opposite, i.e., $u \in \partial f(a, 0,0)$. Let $\lambda \in \mathbb{R}$. By the definition of $f_{l}, l \in \mathbb{N}$, we have $f_{l}(a, 0, \lambda) \leq 0$. Consequently, $f(a, 0, \lambda) \leq 0$. We have

$$
0 \leq \liminf _{\lambda \rightarrow 0} \frac{f(a, 0, \lambda)-u(0,0, \lambda)}{|(0,0, \lambda)|} \leq \liminf _{\lambda \rightarrow 0} \frac{-u(0,0, \lambda)}{|\lambda|}=-|u(0,0,1)| .
$$

So $u(0,0,1)=0$ and

$$
u(0, y, z)=c y, \quad y, z \in \mathbb{R},
$$

where $c=u(0,1,0)$. We choose $n \in \mathbb{N}$ such that $n \geq c+1$. There exists $\varepsilon>0$ such that $(c+1) \varepsilon<\lim \sup _{l \rightarrow \infty} \chi_{n, l}(a)$. If we define

$$
p_{l}=(l+1)^{-2}\left(0,-\varepsilon, \sqrt{1-\varepsilon^{2}}\right), \quad l \in \mathbb{N},
$$

and use the property (a), we have

$$
\begin{aligned}
& \frac{f\left((a, 0,0)+p_{l}\right)-u\left(p_{l}\right)}{\left|p_{l}\right|}=\frac{f_{l}\left((a, 0,0)+p_{l}\right)-u\left(p_{l}\right)}{\left|p_{l}\right|} \\
& \quad=\frac{1}{(l+1)^{-2}}\left(\max \left\{(1-k)(l+1)^{-2} \varepsilon-\chi_{k, l}(a)(l+1)^{-2}: k \leq l\right\}\right)+c \varepsilon \\
& \quad \leq \sup \left\{(1-k) \varepsilon-\chi_{k, l}(a): k \in \mathbb{N}\right\}+c \varepsilon \\
& \quad \leq \max \left\{\max \left\{(1-k) \varepsilon-\chi_{k, l}(a): 1 \leq k \leq n\right\}+c \varepsilon,-n \varepsilon+c \varepsilon\right\} \\
& \quad \leq \max \left\{c \varepsilon-\chi_{n, l}(a),-\varepsilon\right\} .
\end{aligned}
$$

By the choice of ε, for every $l_{0} \in \mathbb{N}$, there exists $l \geq l_{0}$ such that $\chi_{n, l}(a) \geq$ $(c+1) \varepsilon$, i.e., $c \varepsilon-\chi_{n, l}(a) \leq-\varepsilon$. Consequently,

$$
\frac{1}{\left|p_{l}\right|}\left(f\left((a, 0,0)+p_{l}\right)-u\left(p_{l}\right)\right) \leq-\varepsilon
$$

for such l. Since $p_{l} \rightarrow(0,0,0)$,

$$
\liminf _{(x, y, z) \rightarrow(a, 0,0)} \frac{1}{|(x-a, y, z)|}(f(x, y, z)-u(x-a, y, z)) \leq-\varepsilon
$$

which contradicts the fact that u is a Fréchet subgradient of f at $(a, 0,0)$. So the implication " \Rightarrow " is proved.

Now, let us prove " \Leftarrow ". We have to find a Fréchet subgradient of f at $(a, 0,0)$ assuming that there exists $k \in \mathbb{N}$ such that $\lim _{l \rightarrow \infty} \chi_{k, l}(a)=0$. Let us fix such a k. We claim that

$$
u(x, y, z)=(k-1) y, \quad(x, y, z) \in \mathbb{R}^{3}
$$

is the required Fréchet subgradient. Let $\varepsilon>0$ be given. We can choose $l_{0} \in \mathbb{N}$ such that $\chi_{k, l}(a) \leq \varepsilon / 2$ for every $l \geq l_{0}$. We choose $\delta>0$ such that

$$
\delta<1 / 4, \quad \delta^{1 / 2} \leq \varepsilon, \quad \delta^{1 / 6} \leq \varepsilon / 2, \quad \delta<\left(l_{0}+1\right)^{-2}, \quad \delta<(k+1)^{-2}
$$

Let $(x, y, z) \in \mathbb{R}^{3}$ and $0<|(x-a, y, z)| \leq \delta$. We now check that

$$
\frac{f(x, y, z)-u(x-a, y, z)}{|(x-a, y, z)|} \geq-\varepsilon .
$$

Clearly, this holds if $(y, z)=0$. So we may suppose that $|(y, z)|>0$. For $l \geq k$, by the definition of f_{l},

$$
f_{l}(x, y, z)-(k-1) y \geq-\chi_{k, l}(x)|(y, z)|
$$

Since $0<|(y, z)| \leq \delta<1 / 4$, we have $(l+2)^{-2} \leq|(y, z)|<(l+1)^{-2}$ for some $l \in \mathbb{N}$. Since $(l+2)^{-2} \leq|(y, z)| \leq \delta<(k+1)^{-2}$, it follows that $l \geq k$. Since $f(x, y, z)$ is a convex combination of $f_{l}(x, y, z)$ and $f_{l+1}(x, y, z)$, it follows that

$$
\begin{equation*}
f(x, y, z)-u(x-a, y, z) \geq-\max \left\{\chi_{k, l}(x)|(y, z)|, \chi_{k, l+1}(x)|(y, z)|\right\} \tag{2}
\end{equation*}
$$

If $|(y, z)| \leq|x-a|^{3 / 2}$, using (2), we have

$$
\frac{f(x, y, z)-u(x-a, y, z)}{|(x-a, y, z)|} \geq-\frac{|(y, z)|}{|(x-a, y, z)|} \geq-|x-a|^{1 / 2} \geq-\delta^{1 / 2} \geq-\varepsilon
$$

In the other case (i.e., if $|(y, z)|>|x-a|^{3 / 2}$), by (b) and by the fact that $l \geq l_{0}\left((l+2)^{-2} \leq|(y, z)| \leq \delta<\left(l_{0}+1\right)^{-2}\right)$, using (2) again, we have

$$
\begin{aligned}
\frac{f(x, y, z)-u(x-a, y, z)}{|(x-a, y, z)|} & \geq-\frac{\max \left\{\chi_{k, l}(x)|(y, z)|, \chi_{k, l+1}(x)|(y, z)|\right\}}{|(x-a, y, z)|} \\
& \geq-\max \left\{\chi_{k, l}(x), \chi_{k, l+1}(x)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \geq-\max \left\{\chi_{k, l}(a), \chi_{k, l+1}(a)\right\}-(l+1)|x-a| \\
& >-\varepsilon / 2-|(y, z)|^{-1 / 2}|(y, z)|^{2 / 3} \\
& \geq-\varepsilon / 2-\delta^{1 / 6} \geq-\varepsilon .
\end{aligned}
$$

So, for given $\varepsilon>0$, we have found $\delta>0$ such that

$$
0<|(x-a, y, z)| \leq \delta \Rightarrow \frac{f(x, y, z)-u(x-a, y, z)}{|(x-a, y, z)|} \geq-\varepsilon
$$

This means that u is a Fréchet subgradient of f at $(a, 0,0)$, and the implication " \Leftarrow " is proved.

I would like to thank Petr Holický for helpful discussions and useful remarks.

References

[1] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Springer, 1978.
[2] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, New York, 1995.
[3] O. Kurka, Reflexivity and sets of Fréchet subdifferentiability, 2007/230 at http:// www.karlin.mff.cuni.cz/kma-preprints/.
[4] M. Šmídek, Measurability of some subsets of spaces of functions, Charles Univ., 1994 (in Czech).
[5] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54.
[6] L. Zajíček, Fréchet differentiability, strict differentiability and subdifferentiability, Czechoslovak Math. J. 41 (1991), 471-489.

Ondřej Kurka
Department of Mathematical Analysis
Faculty of Mathematics and Physics
Charles University
Sokolovská 83
18675 Praha 8, Czech Republic
E-mail: ondrej.kurka@mff.cuni.cz

[^0]: 2000 Mathematics Subject Classification: 26B05, 54H05.
 Key words and phrases: set of Fréchet subdifferentiability, Σ_{4}^{0}-complete set.

