FUNCTIONAL ANALYSIS

Quotients of Continuous Convex Functions on Nonreflexive Banach Spaces

by

P. HOLICKÝ, O. F. K. KALENDA, L. VESELÝ and L. ZAJÍČEK

Presented by Aleksander PEŁCZYŃSKI

Summary. On each nonreflexive Banach space X there exists a positive continuous convex function f such that 1/f is not a d.c. function (i.e., a difference of two continuous convex functions). This result together with known ones implies that X is reflexive if and only if each everywhere defined quotient of two continuous convex functions is a d.c. function. Our construction also gives a stronger version of Klee's result concerning renormings of nonreflexive spaces and non-norm-attaining functionals.

A function on a Banach space X is called a *d.c. function* if it can be represented as a difference of two continuous convex functions (all functions considered in this note are real-valued). Thus the system of all d.c. functions on X is the smallest vector space containing all continuous convex functions. Moreover, it is well known (see, e.g., [3, III.2]), and not difficult to show, that it is also closed with respect to taking products and pointwise maxima; hence it is even an algebra and a lattice. While an everywhere defined quotient g/f of two d.c. functions on a finite-dimensional Banach space is always d.c. (cf. [2, Corollary]), the situation is completely different for infinite-dimensional spaces: by [7, Corollary 5.6], on each infinitedimensional Banach space there exists a positive d.c. function such that 1/fis not d.c.

²⁰⁰⁰ Mathematics Subject Classification: 46B10, 46B03.

Key words and phrases: reflexivity, d.c. functions, non-norm-attaining functionals, renormings.

The third author was supported in part by the Ministero dell'Università e della Ricerca of Italy. The other authors were supported by MSM 0021620839 financed by MSMT of Czech Republic, by GAČR 201/06/0198 and GAČR 201/06/0018.

The following natural question arises:

Is the quotient g/f of two continuous <u>convex</u> functions on X d.c. if $f \neq 0$?

Quite surprisingly, the answer is affirmative for all reflexive spaces X; indeed, it is proved in [7, Remark 3.5(i)] that 1/f ($f \neq 0$ continuous and convex) is d.c. on X whenever X is reflexive. The main aim of this note is to show that the above question has a negative answer for each nonreflexive Banach space X.

The following criterion for non-d.c. functions (cf. [7, Lemma 5.1]) suggests how to construct a counterexample.

LEMMA 1. Let X be a Banach space and $h: X \to \mathbb{R}$ be a function. If there exist sets $M \subset X$ of arbitrarily small diameter such that h is unbounded on M, then h is not a d.c. function.

If there exists a continuous convex function f on X such that

(1) f > 0, and there exist sets M of arbitrarily small diameters with $\inf f(M) = 0$,

then 1/f is not a d.c. function by Lemma 1. (Of course, such an f cannot exist if X is reflexive since, in this case, f attains its minimum on any closed ball.)

To construct f, it might seem natural to proceed by finding an $x^* \in X^*$ such that

(2) x^* does not attain its norm, and there exist sets $M \subset B_X$ of arbitrarily small diameter such that $\sup x^*(M) = ||x^*||_*$.

Indeed, if we had such an x^* , it would be sufficient to put $f(x) := ||x|| - ||x^*||_*$ if $x^*(x) = ||x^*||_*$, and to extend f to the whole X so that f is constant on each line parallel to a fixed vector $v \in X$ such that $x^*(v) \neq 0$. While it is not difficult to check that no such x^* exists in the classical nonreflexive spaces c_0 and ℓ_1 (with their canonical norms), it is possible to prove (see below) that such an x^* always exists after a suitable equivalent renorming of (a nonreflexive) X.

However, we proceed in a different order. First, using James' sequential characterization of nonreflexivity, we construct a continuous convex function f on X, satisfying (1), as a distance function from a certain bounded convex set in $X \oplus \mathbb{R}$. Using this f, we easily prove our main Theorem 4, which also gives a modification of the well known characterization of nonreflexive spaces by monotone sequences of closed convex sets. Then, using the existence of such f on each hyperplane of X, we show that, if X is nonreflexive, each nonzero functional $x^* \in X^*$ satisfies (2) with respect to a suitable equivalent norm on X. This last assertion is the content of Proposition 5 which we believe to be of independent interest since it improves the following result

of Klee [5]: each nonzero bounded linear functional on a nonreflexive Banach space X is non-norm-attaining for some equivalent norm on X.

Let us start by fixing some notations. We consider only Banach spaces over the reals. We denote by B_X or $B_{(X,\|\cdot\|)}$ the closed unit ball in a Banach space X endowed with a norm $\|\cdot\|$. By $\|\cdot\|_*$ we denote the corresponding dual norm on X^* (the topological dual of X).

In what follows, we consider $X \oplus \mathbb{R}$ equipped with the maximum norm, and we identify $x \in X$ with $(x, 0) \in X \oplus \mathbb{R}$ (and so X with $X \times \{0\}$).

LEMMA 2. Let X be a nonreflexive Banach space. Then there exists a nonempty bounded convex set $C \subset X \oplus \mathbb{R}$ such that

- (a) $\varphi(x) := \operatorname{dist}(x, C) > 0$ for every $x \in X$,
- (b) for each $\varepsilon > 0$ there is a set $M_{\varepsilon} \subset X$ with diam $M_{\varepsilon} < \varepsilon$ and $\inf \varphi(M_{\varepsilon}) = 0$.

Proof. Since X is nonreflexive, by [4, Theorem 1] (see, e.g., [1, Theorem 10.3] or [6, Theorem 1.13.4] for simpler proofs) there exist unit vectors $\{e_i\}_{i=1}^{\infty}$ in X and unit functionals $\{e_i^*\}_{i=1}^{\infty}$ in X^{*} such that

(3)
$$e_i^*(e_j) = 0 \quad \text{if } i > j, \quad e_i^*(e_j) > 1/2 \quad \text{if } i \le j.$$

Set $e_{\infty} := (0,1) \in X \oplus \mathbb{R}$, and let $f_i \in (X \oplus \mathbb{R})^*$ be the extension of e_i^* for which $f_i(e_{\infty}) = 1$. Clearly $||f_i||_* = 2$. For 0 < k < n in \mathbb{N} , we define

$$x_{k,n} := 2e_k + \frac{2}{k}e_n + \frac{1}{n}e_{\infty}.$$

Clearly

(4)
$$f_i(x_{k,n}) \ge 1 \quad \text{for } 1 \le i \le k,$$

(5)
$$f_i(x_{k,n}) \ge \frac{1}{k} \quad \text{for } k < i \le n.$$

(6)
$$f_i(x_{k,n}) = \frac{1}{n} \quad \text{for } i > n.$$

We define

$$C := \operatorname{conv} \{ x_{k,n} : 0 < k < n, \, k, n \in \mathbb{N} \}, \quad X_0 := \overline{\operatorname{span}} \{ e_j : j \in \mathbb{N} \}.$$

To prove (a), we need to show $\overline{C} \cap X = \emptyset$. Since clearly $\overline{C} \cap X \subset X_0$, it is sufficient to show that $\overline{C} \cap X_0 = \emptyset$. So, suppose to the contrary that an $x_0 \in \overline{C} \cap X_0$ is given. As $\|f_i\|_* = 2$ and $\lim_{i\to\infty} f_i(e_j) = 0$ for each $j \in \mathbb{N}$, it is easy to check that $\lim_{i\to\infty} f_i(x) = 0$ for every $x \in X_0$. So, we may find natural numbers $i_1 < i_2 < i_3$ such that

(7)
$$f_{i_1}(x_0) < \frac{1}{3}, \quad i_1 f_{i_2}(x_0) < \frac{1}{3}, \quad i_2 f_{i_3}(x_0) < \frac{1}{3}.$$

Since $x_0 \in \overline{C}$ and $f_{i_1}, f_{i_2}, f_{i_3}$ are continuous, we can find $c \in C$ so close to

 x_0 that

(8)
$$f_{i_1}(c) < \frac{1}{3}, \quad i_1 f_{i_2}(c) < \frac{1}{3}, \quad i_2 f_{i_3}(c) < \frac{1}{3}.$$

Since $c \in C$, we can assign to each (k, n) with $1 \leq k < n$ a number $\alpha_{k,n} \geq 0$ so that $\sum \alpha_{k,n} = 1$, the set $\{(k, n) : \alpha_{k,n} \neq 0\}$ is finite, and $c = \sum \alpha_{k,n} x_{k,n}$. Using (4), (5), and (6) in turn, we obtain

(9)
$$f_{i_1}(c) = \sum \alpha_{k,n} f_{i_1}(x_{k,n}) \ge \sum_{\substack{k \ge i_1 \\ n > k}} \alpha_{k,n} ,$$

(10)
$$f_{i_2}(c) = \sum \alpha_{k,n} f_{i_2}(x_{k,n}) \ge \sum_{\substack{k < i_1 \\ n \ge i_2}} \frac{1}{k} \alpha_{k,n} \ge \frac{1}{i_1} \sum_{\substack{k < i_1 \\ n \ge i_2}} \alpha_{k,n},$$

(11)
$$f_{i_3}(c) = \sum \alpha_{k,n} f_{i_3}(x_{k,n}) \ge \sum_{\substack{k < i_1 \\ n < i_2}} \frac{1}{n} \alpha_{k,n} \ge \frac{1}{i_2} \sum_{\substack{k < i_1 \\ n < i_2}} \alpha_{k,n}$$

Using (9), (10), (11) and (8), we easily obtain $\sum \alpha_{k,n} < 1$, which is a contradiction.

To prove (b), consider an arbitrary $\varepsilon > 0$. Choose $k_0 \in \mathbb{N}$ with $4/k_0 < \varepsilon$ and set $M_{\varepsilon} := \{2e_{k_0} + (2/k_0)e_n : n > k_0\}$. Then clearly diam $M_{\varepsilon} \leq 4/k_0 < \varepsilon$. The other desired property of M_{ε} also holds, since, for each $n > k_0$,

$$\inf \varphi(M_{\varepsilon}) = \operatorname{dist}(M_{\varepsilon}, C) \\ \leq \|(2e_{k_0} + (2/k_0)e_n) - (2e_{k_0} + (2/k_0)e_n + (1/n)e_{\infty})\| = 1/n. \bullet$$

Remark 3.

- (i) To obtain C with the weaker property $\inf_{x \in X} \varphi(x) = 0$ instead of (b) in Lemma 2, it is sufficient to put $C := \operatorname{conv} \{2e_k + (1/k)e_\infty : k \in \mathbb{N}\},\$ and the proof becomes simpler.
- (ii) Set $C := \operatorname{conv} \{2e_k + (2/k)e_n + (2/n)e_m + (1/m)e_\infty : 0 < k < n < m, k, n, m \in \mathbb{N}\}$. An easy modification of the proof of Lemma 2 gives the following property which is slightly stronger than (b):
 - (b²) there exist sets $M \subset X$ of arbitrarily small diameter such that M contains sets A of arbitrarily small diameter with $\inf \varphi(A) = 0$.

(Analogously, using indices $0 < k_1 < \cdots < k_{p+1}$ in the definition of C, it is possible to obtain the corresponding iterated property (b^p) .)

Now, we are ready to state the following main result of the present paper.

THEOREM 4. The following properties of a Banach space X are equivalent.

- (a) X is nonreflexive.
- (b) There is a continuous convex function $f: X \to (0, \infty)$ such that 1/f is not representable as a difference of two continuous convex functions.
- (c) There is a decreasing sequence $\{C_n\}_{n=1}^{\infty}$ of bounded closed convex subsets of X such that

$$\bigcap_{n=1}^{\infty} C_n = \emptyset, \quad \bigcap_{n=1}^{\infty} (C_n + \varepsilon B_X) \neq \emptyset \quad for \ every \ \varepsilon > 0$$

Proof. If X is nonreflexive, take $f := \varphi$ where φ is as in Lemma 2. By Lemma 1, 1/f is not d.c. on X. On the other hand, if X is reflexive and f is a positive continuous convex function, then 1/f is d.c. on X by [7, Remark 3.5(i)]. Thus (a) and (b) are equivalent.

Let us show that (a) and (c) are equivalent. If X is nonreflexive, let φ be again the function from Lemma 2. The sets $C_n := \{x \in X : \varphi(x) \leq 1/n\}$, $n \in \mathbb{N}$, are nonempty, closed, convex, bounded (since the set C in Lemma 2 is bounded) and their intersection is empty. Let $\varepsilon > 0$. By the properties of φ , there exists $x \in X$ such that, for each n, there is $y \in B(x,\varepsilon)$ with $\varphi(y) \leq 1/n$, i.e. $y \in C_n$. In other words, $x \in \bigcap_{n=1}^{\infty} (C_n + \varepsilon B_X)$. Hence (a) implies (c). On the other hand, if X is reflexive, then each decreasing sequence $\{C_n\}$ of nonempty closed bounded convex subsets of X has a nonempty intersection, since each C_n is weakly compact.

Let us conclude our paper with the promised strengthening of a result from [5].

PROPOSITION 5. Let Y be a nonreflexive Banach space and $0 \neq y^* \in Y^*$. Then there exists an equivalent norm $|\cdot|$ on Y such that

- (a) y^* does not attain its norm on $B_{(Y,|\cdot|)}$,
- (b) for each $\varepsilon > 0$, there is $M_{\varepsilon} \subset \dot{B}_{(Y,|\cdot|)}$ such that diam $M_{\varepsilon} < \varepsilon$ and $\sup y^*(M_{\varepsilon}) = |y^*|_*$.

Proof. Set $X := \{y \in Y : y^*(y) = 0\}$ and choose $e \in Y$ with $y^*(e) = 1$. Up to renorming, we may suppose that the norm on Y satisfies

 $||y|| = \max\{||y - y^*(y)e||, |y^*(y)|\}$ for all $y \in Y$.

In this way we may identify Y with $X \oplus_{\infty} \mathbb{R}$ so that $y^*((x,t)) = t$ for $(x,t) \in X \times \mathbb{R}$.

As Y is not reflexive, neither is X. Let φ be the function on X given by Lemma 2. Choose $\alpha > \varphi(0)$ and set

$$A = \{ x \in X : \varphi(x) < \alpha \}.$$

By the properties of φ the set A is bounded. Therefore we can choose r > 0 such that $A \subset B(0, r)$. Choose $\beta > \sup \varphi(B(0, r))$; this is possible as φ is

1-Lipschitz. Further, define

$$D = \{(x,t) \in X \times \mathbb{R} : x \in B(0,r), t = \varphi(x) - \beta\},\$$

$$C = \overline{\text{conv}}(D \cup (-D)).$$

Then C is clearly a bounded closed convex symmetric set. Further, $0 \in \operatorname{int} C$, as $0 \in A$ and $A \times (\alpha - \beta, \beta - \alpha) \subset C$. It follows that there exists an equivalent norm $|\cdot|$ on $X \times \mathbb{R}$ such that C is the closed unit ball in this norm. We will show that this norm has the required properties.

We have

$$-|y^*|_* = \inf y^*(C) = \inf y^*(D \cup (-D)) = \inf y^*(D)$$

= $\inf \{\varphi(x) - \beta : x \in B(0, r)\} = -\beta,$

as clearly $\inf \varphi(B(0,r)) = \inf \varphi(X) = 0$. Thus $|y^*|_* = \beta$.

Next we show that y^* does not attain its norm on C. Suppose it does. Then there is a point $z = (x_0, -\beta) \in C$ (recall that $y^*((x, t)) = t$). Note that

$$C \subset \{(x,t) \in X \times \mathbb{R} : x \in B(0,r) \& t \ge \varphi(x) - \beta\}.$$

The reason is that the set on the right hand side is closed and convex and it contains both D and -D. It follows that z belongs to the set on the right hand side, i.e. $-\beta \ge \varphi(x_0) - \beta$. So $\varphi(x_0) \le 0$, a contradiction.

It remains to show (b). Let $\varepsilon > 0$ be given. By the properties of φ we can choose a set $P_{\varepsilon} \subset A$ such that diam $P_{\varepsilon} < \varepsilon$ and $\inf \varphi(P_{\varepsilon}) = 0$. (Note that $\varphi \ge \alpha$ outside A.) Now set

$$P_{\varepsilon}^* := \{ (x,t) \in X \times \mathbb{R} : x \in P_{\varepsilon}, t = \varphi(x) - \beta \}.$$

Then clearly $P_{\varepsilon}^* \subset C$ and

$$\inf_{z \in P_{\varepsilon}^*} y^*(z) = -\beta = -|y^*|_*.$$

As φ is 1-Lipschitz with respect to $\|\cdot\|$, we see that $\|\cdot\|$ -diam $P_{\varepsilon}^* < \varepsilon$. Set $M_{\varepsilon} := -P_{\varepsilon/K}^*$, where K > 0 is such that $|\cdot| \leq K \|\cdot\|$ on $X \times \mathbb{R}$. Then M_{ε} has all required properties and the proof is complete.

References

- D. van Dulst, Reflexive and Superreflexive Banach Spaces, Math. Centre Tracts 102, Math. Centrum, Amsterdam, 1978.
- P. Hartman, On functions representable as a difference of convex functions, Pacific J. Math. 9 (1959), 707–713.
- [3] J.-B. Hiriart-Urruty, Generalized differentiability, duality and optimization for problems dealing with differences of convex functions, in: Convexity and Duality in Optimization (Groningen, 1984), Lecture Notes in Econom. and Math. Systems 256, Springer, Berlin, 1985, 37-70.
- [4] R. C. James, *Characterizations of reflexivity*, Studia Math. 23 (1964), 205–216.
- [5] V. L. Klee, Jr., Some characterizations of reflexivity, Rev. Ci. Lima 52 (1950), 15–23.

- [6] R. E. Megginson, An Introduction to Banach Space Theory, Grad. Texts in Math. 183, Springer, New York, 1998.
- [7] L. Veselý and L. Zajíček, On compositions of delta-convex mappings and functions, preprint, http://arxiv.org/abs/0706.0624, 2007.

P. Holický, O. F. K. Kalenda and L. Zajíček Faculty of Mathematics and Physics Charles University Sokolovská 83 18675 Praha 8, Czech Republic E-mail: holicky@karlin.mff.cuni.cz kalenda@karlin.mff.cuni.cz zajicek@karlin.mff.cuni.cz

L. Veselý

Dipartimento di Matematica "F. Enriques" Università degli Studi di Milano Via C. Saldini 50 20133 Milano, Italy E-mail: vesely@mat.unimi.it

> Received June 6, 2007; received in final form September 3, 2007 (7605)