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FUNCTIONAL ANALYSIS

Quotients of Continuous Convex Funtionson Nonre�exive Banah SpaesbyP. HOLICKÝ, O. F. K. KALENDA,L. VESELÝ and L. ZAJÍ�EKPresented by Aleksander PE�CZY�SKI
Summary. On eah nonre�exive Banah spae X there exists a positive ontinuous on-vex funtion f suh that 1/f is not a d.. funtion (i.e., a di�erene of two ontinuousonvex funtions). This result together with known ones implies that X is re�exive if andonly if eah everywhere de�ned quotient of two ontinuous onvex funtions is a d.. fun-tion. Our onstrution also gives a stronger version of Klee's result onerning renormingsof nonre�exive spaes and non-norm-attaining funtionals.A funtion on a Banah spae X is alled a d.. funtion if it an berepresented as a di�erene of two ontinuous onvex funtions (all funtionsonsidered in this note are real-valued). Thus the system of all d.. fun-tions on X is the smallest vetor spae ontaining all ontinuous onvexfuntions. Moreover, it is well known (see, e.g., [3, III.2℄), and not di�ultto show, that it is also losed with respet to taking produts and point-wise maxima; hene it is even an algebra and a lattie. While an everywherede�ned quotient g/f of two d.. funtions on a �nite-dimensional Banahspae is always d.. (f. [2, Corollary℄), the situation is ompletely di�er-ent for in�nite-dimensional spaes: by [7, Corollary 5.6℄, on eah in�nite-dimensional Banah spae there exists a positive d.. funtion suh that 1/fis not d..2000 Mathematis Subjet Classi�ation: 46B10, 46B03.Key words and phrases: re�exivity, d.. funtions, non-norm-attaining funtionals,renormings.The third author was supported in part by the Ministero dell'Università e della Rieraof Italy. The other authors were supported by MSM 0021620839 �naned by MSMT ofCzeh Republi, by GA�R 201/06/0198 and GA�R 201/06/0018.[211℄ © Instytut Matematyzny PAN, 2007
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The following natural question arises:Is the quotient g/f of two ontinuous onvex funtions on X d.. if f 6= 0 ?Quite surprisingly, the answer is a�rmative for all re�exive spaes X; indeed,it is proved in [7, Remark 3.5(i)℄ that 1/f (f 6= 0 ontinuous and onvex)is d.. on X whenever X is re�exive. The main aim of this note is to showthat the above question has a negative answer for eah nonre�exive Banahspae X.The following riterion for non-d.. funtions (f. [7, Lemma 5.1℄) suggestshow to onstrut a ounterexample.Lemma 1. Let X be a Banah spae and h: X → R be a funtion. If thereexist sets M ⊂ X of arbitrarily small diameter suh that h is unboundedon M , then h is not a d.. funtion.If there exists a ontinuous onvex funtion f on X suh that(1) f > 0, and there exist sets M of arbitrarily small diameters with

inf f(M) = 0 ,then 1/f is not a d.. funtion by Lemma 1. (Of ourse, suh an f annotexist if X is re�exive sine, in this ase, f attains its minimum on any losedball.)To onstrut f , it might seem natural to proeed by �nding an x∗ ∈ X∗suh that(2) x∗ does not attain its norm, and there exist sets M ⊂ BX of arbitrarilysmall diameter suh that supx∗(M) = ‖x∗‖∗.Indeed, if we had suh an x∗, it would be su�ient to put f(x) := ‖x‖−‖x∗‖∗if x∗(x) = ‖x∗‖∗, and to extend f to the whole X so that f is onstant oneah line parallel to a �xed vetor v ∈ X suh that x∗(v) 6= 0. While itis not di�ult to hek that no suh x∗ exists in the lassial nonre�exivespaes c0 and ℓ1 (with their anonial norms), it is possible to prove (seebelow) that suh an x∗ always exists after a suitable equivalent renormingof (a nonre�exive) X.However, we proeed in a di�erent order. First, using James' sequentialharaterization of nonre�exivity, we onstrut a ontinuous onvex fun-tion f on X, satisfying (1), as a distane funtion from a ertain boundedonvex set in X⊕R. Using this f , we easily prove our main Theorem 4, whihalso gives a modi�ation of the well known haraterization of nonre�exivespaes by monotone sequenes of losed onvex sets. Then, using the exis-tene of suh f on eah hyperplane of X, we show that, if X is nonre�exive,eah nonzero funtional x∗ ∈ X∗ satis�es (2) with respet to a suitable equiv-alent norm on X. This last assertion is the ontent of Proposition 5 whihwe believe to be of independent interest sine it improves the following result
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of Klee [5℄: eah nonzero bounded linear funtional on a nonre�exive Banahspae X is non-norm-attaining for some equivalent norm on X.Let us start by �xing some notations. We onsider only Banah spaesover the reals. We denote by BX or B(X,‖·‖) the losed unit ball in a Banahspae X endowed with a norm ‖ · ‖. By ‖ · ‖∗ we denote the orrespondingdual norm on X∗ (the topologial dual of X).In what follows, we onsider X ⊕ R equipped with the maximum norm,and we identify x ∈ X with (x, 0) ∈ X ⊕ R (and so X with X × {0}).Lemma 2. Let X be a nonre�exive Banah spae. Then there exists anonempty bounded onvex set C ⊂ X ⊕ R suh that(a) ϕ(x) := dist(x, C) > 0 for every x ∈ X,(b) for eah ε > 0 there is a set Mε ⊂ X with diam Mε < ε and

inf ϕ(Mε) = 0.Proof. Sine X is nonre�exive, by [4, Theorem 1℄ (see, e.g., [1, Theorem10.3℄ or [6, Theorem 1.13.4℄ for simpler proofs) there exist unit vetors {ei}
∞
i=1in X and unit funtionals {e∗i }∞i=1 in X∗ suh that

e∗i (ej) = 0 if i > j, e∗i (ej) > 1/2 if i ≤ j.(3)Set e∞ := (0, 1) ∈ X ⊕ R, and let fi ∈ (X ⊕ R)∗ be the extension of e∗i forwhih fi(e∞) = 1. Clearly ‖fi‖∗ = 2. For 0 < k < n in N, we de�ne
xk,n := 2ek +

2

k
en +

1

n
e∞.Clearly

fi(xk,n) ≥ 1 for 1 ≤ i ≤ k,(4)

fi(xk,n) ≥
1

k
for k < i ≤ n,(5)

fi(xk,n) =
1

n
for i > n.(6)We de�ne

C := conv {xk,n : 0 < k < n, k, n ∈ N}, X0 := span{ej : j ∈ N}.To prove (a), we need to show C ∩ X = ∅. Sine learly C ∩ X ⊂ X0, itis su�ient to show that C ∩ X0 = ∅. So, suppose to the ontrary that an
x0 ∈ C ∩ X0 is given. As ‖fi‖∗ = 2 and limi→∞ fi(ej) = 0 for eah j ∈ N,it is easy to hek that limi→∞ fi(x) = 0 for every x ∈ X0. So, we may �ndnatural numbers i1 < i2 < i3 suh that

fi1(x0) <
1

3
, i1fi2(x0) <

1

3
, i2fi3(x0) <

1

3
.(7)Sine x0 ∈ C and fi1 , fi2 , fi3 are ontinuous, we an �nd c ∈ C so lose to
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x0 that

fi1(c) <
1

3
, i1fi2(c) <

1

3
, i2fi3(c) <

1

3
.(8)Sine c ∈ C, we an assign to eah (k, n) with 1 ≤ k < n a number αk,n ≥ 0so that ∑

αk,n = 1, the set {(k, n) : αk,n 6= 0} is �nite, and c =
∑

αk,nxk,n.Using (4), (5), and (6) in turn, we obtain
fi1(c) =

∑
αk,nfi1(xk,n) ≥

∑

k≥i1
n>k

αk,n ,(9)

fi2(c) =
∑

αk,nfi2(xk,n) ≥
∑

k<i1
n≥i2

1

k
αk,n ≥

1

i1

∑

k<i1
n≥i2

αk,n ,(10)

fi3(c) =
∑

αk,nfi3(xk,n) ≥
∑

k<i1
n<i2

1

n
αk,n ≥

1

i2

∑

k<i1
n<i2

αk,n .(11)

Using (9), (10), (11) and (8), we easily obtain ∑
αk,n < 1, whih is a on-tradition.To prove (b), onsider an arbitrary ε > 0. Choose k0 ∈ N with 4/k0 < εand set Mε := {2ek0

+(2/k0)en : n > k0}. Then learly diam Mε ≤ 4/k0 < ε.The other desired property of Mε also holds, sine, for eah n > k0,
inf ϕ(Mε) = dist(Mε, C)

≤ ‖(2ek0
+ (2/k0)en) − (2ek0

+ (2/k0)en + (1/n)e∞)‖ = 1/n.Remark 3.(i) To obtain C with the weaker property infx∈X ϕ(x) = 0 instead of (b)in Lemma 2, it is su�ient to put C := conv {2ek+(1/k)e∞ : k ∈ N},and the proof beomes simpler.(ii) Set C := conv {2ek+(2/k)en+(2/n)em+(1/m)e∞ : 0 < k < n < m,
k, n, m ∈ N}. An easy modi�ation of the proof of Lemma 2 givesthe following property whih is slightly stronger than (b):
(b2) there exist sets M⊂X of arbitrarily small diameter suh that Montains sets A of arbitrarily small diameter with inf ϕ(A) = 0.(Analogously, using indies 0 < k1 < · · ·< kp+1 in the de�nition of C,it is possible to obtain the orresponding iterated property (bp).)Now, we are ready to state the following main result of the present paper.Theorem 4. The following properties of a Banah spae X are equiva-lent.
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(a) X is nonre�exive.(b) There is a ontinuous onvex funtion f : X → (0,∞) suh that 1/f isnot representable as a di�erene of two ontinuous onvex funtions.() There is a dereasing sequene {Cn}

∞
n=1 of bounded losed onvexsubsets of X suh that

∞⋂

n=1

Cn = ∅,
∞⋂

n=1

(Cn + εBX) 6= ∅ for every ε > 0.Proof. If X is nonre�exive, take f := ϕ where ϕ is as in Lemma 2. ByLemma 1, 1/f is not d.. on X. On the other hand, if X is re�exive and fis a positive ontinuous onvex funtion, then 1/f is d.. on X by [7, Re-mark 3.5(i)℄. Thus (a) and (b) are equivalent.Let us show that (a) and () are equivalent. If X is nonre�exive, let ϕ beagain the funtion from Lemma 2. The sets Cn := {x ∈ X : ϕ(x) ≤ 1/n},
n ∈ N, are nonempty, losed, onvex, bounded (sine the set C in Lemma 2is bounded) and their intersetion is empty. Let ε > 0. By the propertiesof ϕ, there exists x ∈ X suh that, for eah n, there is y ∈ B(x, ε) with
ϕ(y) ≤ 1/n, i.e. y ∈ Cn. In other words, x ∈

⋂∞
n=1(Cn + εBX). Hene(a) implies (). On the other hand, if X is re�exive, then eah dereas-ing sequene {Cn} of nonempty losed bounded onvex subsets of X has anonempty intersetion, sine eah Cn is weakly ompat.Let us onlude our paper with the promised strengthening of a resultfrom [5℄.Proposition 5. Let Y be a nonre�exive Banah spae and 0 6= y∗ ∈ Y ∗.Then there exists an equivalent norm | · | on Y suh that(a) y∗ does not attain its norm on B(Y,|·|),(b) for eah ε > 0, there is Mε ⊂ B(Y,|·|) suh that diamMε < ε and

sup y∗(Mε) = |y∗|∗.Proof. Set X := {y ∈ Y : y∗(y) = 0} and hoose e ∈ Y with y∗(e) = 1.Up to renorming, we may suppose that the norm on Y satis�es
‖y‖ = max{‖y − y∗(y)e‖, |y∗(y)|} for all y ∈ Y .In this way we may identify Y with X ⊕∞ R so that y∗((x, t)) = t for

(x, t) ∈ X × R.As Y is not re�exive, neither is X. Let ϕ be the funtion on X given byLemma 2. Choose α > ϕ(0) and set
A = {x ∈ X : ϕ(x) < α}.By the properties of ϕ the set A is bounded. Therefore we an hoose r > 0suh that A ⊂ B(0, r). Choose β > supϕ(B(0, r)); this is possible as ϕ is
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1-Lipshitz. Further, de�ne

D = {(x, t) ∈ X × R : x ∈ B(0, r), t = ϕ(x) − β},

C = conv(D ∪ (−D)).Then C is learly a bounded losed onvex symmetri set. Further, 0 ∈ intC,as 0 ∈ A and A×(α−β, β−α) ⊂ C. It follows that there exists an equivalentnorm | · | on X ×R suh that C is the losed unit ball in this norm. We willshow that this norm has the required properties.We have
−|y∗|∗ = inf y∗(C) = inf y∗(D ∪ (−D)) = inf y∗(D)

= inf{ϕ(x) − β : x ∈ B(0, r)} = −β,as learly inf ϕ(B(0, r)) = inf ϕ(X) = 0. Thus |y∗|∗ = β.Next we show that y∗ does not attain its norm on C. Suppose it does.Then there is a point z = (x0,−β) ∈ C (reall that y∗((x, t)) = t). Note that
C ⊂ {(x, t) ∈ X × R : x ∈ B(0, r) & t ≥ ϕ(x) − β}.The reason is that the set on the right hand side is losed and onvex andit ontains both D and −D. It follows that z belongs to the set on the righthand side, i.e. −β ≥ ϕ(x0) − β. So ϕ(x0) ≤ 0, a ontradition.It remains to show (b). Let ε > 0 be given. By the properties of ϕ we anhoose a set Pε ⊂ A suh that diamPε < ε and inf ϕ(Pε) = 0. (Note that

ϕ ≥ α outside A.) Now set
P ∗

ε := {(x, t) ∈ X × R : x ∈ Pε, t = ϕ(x) − β}.Then learly P ∗
ε ⊂ C and

inf
z∈P ∗

ε

y∗(z) = −β = −|y∗|∗.As ϕ is 1-Lipshitz with respet to ‖ · ‖, we see that ‖ · ‖-diamP ∗
ε < ε.Set Mε := −P ∗

ε/K , where K > 0 is suh that | · | ≤ K‖ · ‖ on X × R. Then
Mε has all required properties and the proof is omplete.
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