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Summary. Suppose that K is a CW-omplex, X is an inverse sequene of strati�ablespaes, and X = limX. Using the onept of semi-sequene, we provide a neessary andsu�ient ondition for X to be an absolute o-extensor for K in terms of the inversesequene X and without reourse to any spei� properties of its limit. To say that X isan absolute o-extensor for K is the same as saying that K is an absolute extensor for X,i.e., that eah map f : A → K from a losed subset A of X extends to a map F : X → K.In ase K is a polyhedron |K|CW (the set |K| with the weak topology CW), we determinea similar haraterization that takes into aount the simpliial struture of K.1. Introdution. The following limit theorem of K. Nagami [13℄ hasbeen used frequently sine its �rst appearane in 1959 (see [14℄ for proofdetails).Theorem 1.1. Let X = (Xi, p

i+1
i ) be an inverse sequene of metrizablespaes, X = limX, and suppose that for eah i ∈ N, dim Xi ≤ n. Then

dimX ≤ n.This theorem, however, an be seen as a result in extension theory (seee.g. [5℄) for the following reasons. If K is a CW-omplex and X is a spae,then one says that K is an absolute extensor for X, K ∈ AE(X), or that Xis an absolute o-extensor for K, XτK, if for eah losed subset A of X andmap (i.e., ontinuous funtion) f : A → K, there exists a map F : X → Ksuh that F is an extension of f . Sine it is well-known that for a metrizable2000 Mathematis Subjet Classi�ation: 54C55, 54B35, 54F45.Key words and phrases: absolute o-extensor, absolute extensor, absolute neigh-borhood extensor, anonial map, ohomologial dimension, ontiguity, CW-omplex,Eilenberg�MaLane omplex, extension theory, inverse limit, inverse sequene, K-modi�ation, nerve, polyhedron, semi-sequene, semi-limit, simpliial omplex, strati�ablespae. [243℄ © Instytut Matematyzny PAN, 2007
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(or even strati�able) spae X, dimX ≤ n if and only if X is an absoluteo-extensor for Sn, Theorem 1.1 an be stated in the following way.Theorem 1.2. Let X = (Xi, p

i+1
i ) be an inverse sequene of metrizablespaes, X = limX, and suppose that for eah i ∈ N, Xi is an absoluteo-extensor for Sn. Then X is an absolute o-extensor for Sn.A diret generalization of Theorem 1.2 was given by L. Rubin and P.Shapiro in [17℄:Theorem 1.3. Let K be a CW-omplex , X = (Xi, p

i+1
i ) an inversesequene of metrizable spaes suh that for eah i ∈ N, Xi is an absolute o-extensor for K, and X = limX. Then X is an absolute o-extensor for K.Several generalizations between Theorem 1.2 and Theorem 1.3 are listedin [17℄. Theorem 1.3 has already been applied in [4℄ and [9℄.Another step was taken in [16℄. Instead of requiring that Xi is an absoluteo-extensor for K for eah i ∈ N, a ondition was plaed on the bonding maps

pi+1
i . The requirement was that for eah i ∈ N, losed subset A of Xi, andmap f : A → K, there are to exist j ≥ i and a map F : Xj → K havingthe property that F (x) = f(pj

i (x)) for eah x ∈ (pj
i )

−1(A). S. Marde²i¢ [10℄extended the work in [16℄ to the lass of strati�able spaes. More reentlythe notion of semi-sequene was introdued in [7℄ and a limit theorem inextension theory was proved there for a semi-limit within the inverse limit ofan inverse sequene of strati�able spaes and for arbitrary CW-omplexes.All the previous theorems ontain only su�ient onditions for XτKwhen X = limX. In this paper, we go further and haraterize the existeneof the absolute o-extensor property in the limit with respet to a given CW-omplex K (Theorem 3.1), or polyhedron |K|CW (Theorem 3.2), in termsonly of the sequene itself.If K denotes a simpliial omplex whose polyhedron is |K|CW, thenthe haraterization Theorem 3.2 takes into aount the simpliial stru-ture of K. We note here that by |K|CW we mean the polyhedron with theweak topology CW indued by the triangulation K. Suh a polyhedron willalso be treated as a CW-omplex, its CW-struture oming from the trian-gulation K in a anonial way. All this is done within the lass of strati�ablespaes ([1℄, [3℄) that ontains the lass of metrizable spaes. This lass hasmany properties onvenient for extension theory, like the homotopy extensionproperty with respet to CW omplexes, being hereditarily paraompat, andothers (1).
(1) In [8℄ this haraterization is used to prove a limit theorem under a loal σ-typeondition on X; one an also �nd there a list of properties of strati�able spaes that weuse herein.
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Our main results, Theorems 3.1 and 3.2, appear in Setion 3, and arestated in terms of semi-sequenes and semi-limits. As mentioned above, theseonepts were introdued in [7℄, but we shall shortly provide all that is neededto understand the theorems. We shall de�ne, for example, the notion of amap of a semi-sequene to a spae, K-modi�ation and ontiguity of suhmaps, and homotopy of suh maps.Theorems 3.1 and 3.2 lead to haraterizations (Theorems 3.3 and 3.4)of the absolute o-extensor property for spaes. They are given in terms ofpairs of open sets and a map of one of them to the given CW-omplex K orpolyhedron |K|CW.Some information about semi-sequenes is presented in Setion 2, whileSetion 4 ontains our Main Lemma. The proofs of Theorems 3.1 and 3.2are given in Setion 5.2. Semi-sequenes. In this setion we are going to provide a portionof the theory of semi-sequenes. For the remainder of this setion X =

(Xi, p
i+1
i ) will denote an inverse sequene of spaes and X = limX. Letus repeat De�nition 1.3 of [7℄.Definition 2.1. Let N

∗ be an in�nite subset of N, and for eah i ∈ N
∗,

Mi a subset of Xi. We shall refer to M = (Mi, N
∗) as a semi-sequene of Xand de�ne slimM to be those x ∈ X having the property that there exists

i ∈ N
∗ suh that xj ∈ Mj for all j ∈ N

∗ and j ≥ i. We all M = slimM thesemi-limit of M.In this paper, however, we shall always use N
∗ = N, so let us just write

M = (Mi) instead of (Mi, N). We may always treat X as (Xi), i.e., we maythink of X as a semi-sequene of X. As usual, pi : X = slimX → Xi willdenote the ith oordinate projetion.Whenever x ∈ slimM then there exists a �rst i ∈ N suh that xj ∈ Mjfor all j ≥ i. We shall denote this by i = φM(x) and all it the M-birth indexof x.Definition 2.2. Let M = (Mi), H = (Hi) be semi-sequenes of X.(1) We shall all M a subsemi-sequene of H if for eah i ∈ N, Mi ⊂ Hi.(2) De�ne the union of M and H, M ∪ H, to be the semi-sequene
(Mi ∪ Hi) of X. The intersetion M ∩ H is de�ned as (Mi ∩ Hi).(3) Let us say that M is open (resp., losed) in X if for eah i ∈ N, Miis open (resp., losed) in Xi.(4) Call M an expanding semi-sequene of X if (pi+1

i )−1(Mi) ⊂ Mi+1 foreah i ∈ N.
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(5) Assume that K is a spae, and for eah i ∈ N, gi : Hi → K is a map.We shall then say that g = (gi) is a map of H to K and denote thisby g : H → K if the onsisteny equation, gi+1(x) = gi ◦ pi+1

i (x), issatis�ed whenever x ∈ (pi+1
i )−1(Hi) ∩ Hi+1 and i ∈ N.(6) Let g = (gi) : H → K, h = (hi) : M → K be maps, M a subsemi-sequene of H, and hi = gi|Mi : Mi → K for eah i ∈ N. Then wesay that h is the restrition of g to M, written h = g|M, and g isan extension of h to H.We shall use I to denote the losed unit interval [0, 1]. The followingexample should help the reader gain an understanding of semi-sequenesand their semi-limits.Example 2.3. Let I = (Ii, p
i+1
i ) where for eah i, Ii = I and pi+1

i is theidentity map. Put Mi equal to the union of the 2i−1 losed intervals that oneuses in the standard onstrution of the Cantor set and Hi = Ii \ Mi. Let
M = (Mi) and H = (Hi). Then of ourse both M and H are semi-sequenesof I, and one may even treat the former as an inverse subsequene of Iwhose bonding maps are the restritions of the identity maps, whih are justinlusions. Clearly slimM equals the Cantor set if we identify lim I with I.But also H is an expanding open semi-sequene of I, and slimH equals theomplement of the Cantor set under this identi�ation.Let us point out the following. Let M be a semi-sequene of X, K a spae,and g = (gi) : M → K a map. Then there is a funtion g : slimM → Kgiven by g(x) = gi ◦pi(x) for eah x ∈ slimM and i ≥ φM(x). If in addition,
α : K → K0 is a map, then h = (α ◦ gi) is a map of M to K0. We shall referto g : slimM → K as the semi-limit of g and denote it by slimg. The map hwill be denoted α ◦ g. Many other fats about semi-sequenes follow readilyfrom the previous de�nitions and we shall point them out when needed. Hereis a fat of suh type.Lemma 2.4. Let M = (Mi) be an expanding open semi-sequene of X.For eah i ∈ N, let Ui = p−1

i (Mi), and put U =
⋃
{Ui | i ∈ N}. Then U =

slimM, and U is open in X. If K is a spae and g = (gi) a map of M to K,then g = slimg : U → K is a map having the property that g|Ui = gi ◦ pi|Uifor eah i ∈ N.
In [17℄ we introdued the notion of �response.� Let us review it here.Definition 2.5. Let f : X → Y be a map and W be an open sub-set of X. Then resp(W, f) is the maximal open subset U of Y suh that

f−1(U) ⊂ W .
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Note that if W ⊂ W ′ are open subsets of a spae X, f : X → Y ,

g : Y → Z are maps, and h = g ◦ f : X → Z, then
g−1(resp(W, h)) ⊂ resp(W, f) ⊂ resp(W ′, f).Lemma 2.6. Let X = (Xi, p

i+1
i ) be an inverse sequene of spaes, X =

limX, W = {Wv | v ∈ Γ} an open olletion in X, and W =
⋃
{Wv | v ∈ Γ}.For i ∈ N, set Wi,v = resp(Wv, pi), v ∈ Γ ;Wi = {Wi,v | v ∈ Γ}; and

Wi =
⋃
Wi. Then W = (Wi) is an expanding open semi-sequene of X with

W = slimW.Proof. Clearly W is open and expanding. Let x ∈ W . Then for some
v ∈ Γ , x ∈ Wv. There exists i ∈ N and a neighborhood V of xi in Xisuh that pi

−1(V ) ⊂ Wv. Thus V ⊂ Wi,v and we see that xj ∈ Wj,v for all
j ≥ i. Therefore W ⊂ slimW. On the other hand, suppose that x ∈ slimW.Let i = ΦW(x), the birth index of x. Then xi ∈ Wi, so x ∈ p−1

i (Wi) =⋃
{p−1

i (Wi,v) | v ∈ Γ} ⊂ W , due to the de�nition of response.In suh ases we shall refer to W as the expanding open semi-sequeneof X indued by W .Let Y = (Yi, q
i+1
i ) be an inverse sequene of spaes suh that for eah

i ∈ N, Xi ⊂ Yi and pi+1
i = qi+1

i |Xi. Then we shall say that X is an inversesubsequene of Y. In ase M is a semi-sequene of X, we may also treat itas a semi-sequene of Y. In this ase, we shall distinguish the semi-limits bywriting slimX M and slimY M, even though one might treat them as beingequal.Lemma 2.7. Let X = (Xi, p
i+1
i ) be an inverse subsequene of an inversesequene Y = (Yi, q

i+1
i ), X = limX, and Y = limY. Suppose that E is asemi-sequene of Y. Then:(1) slimY(E ∩X) ⊂ X and slimY(E ∩X) = slimX(E ∩ X),(2) (slimY E) ∩ X = slimX(E ∩ X),(3) if E is expanding in Y, then E ∩X is expanding in X,(4) if E is open (resp. losed) in Y, then E ∩ X is open (resp. losed)in X.In the proof of Proposition 1.7 of [16℄ the author performed a onstrutionfrom whih the following fat follows.Lemma 2.8. Let X = (Xi, p

i+1
i ) be an inverse sequene of spaes and

X = limX. Then there exists an inverse sequene X̃ = (X̃i, p̃
i+1
i ) of spaesand surjetive bonding maps with X̃ = lim X̃ suh that for eah i ∈ N, X̃i =

Xi + Di where Di is a disrete subspae of X̃i, D1 = ∅, p̃i+1
i |Xi+1 = pi+1

i ,and for eah x ∈ Di+1, (p̃i+1
i )−1{p̃i+1

i (x)} = {x}. In this ase:(1) X = (Xi) is an open semi-sequene of X̃,



248 I. Ivan²i¢ and L. R. Rubin
(2) D = (Di) is an expanding open semi-sequene of X̃,(3) slimD = X̃ \ X,(4) for eah i ∈ N and x ∈ p̃i+1

i (Di+1), there is a unique xi+1 ∈ Di+1with p̃i+1
i (xi+1) = x,(5) X̃ \ X is a disrete open subspae of X̃,(6) X = slimX X and X is a losed subspae of X̃.Let us refer to X̃ as a surjetive extension of X. If Xi is strati�able foreah i ∈ N, then X̃ is strati�able. Furthermore, X̃τK if and only if XτK.We shall denote by X × I the inverse sequene (Xi × I, pi+1

i × id). Weof ourse identify lim(X × I) with X × I. If M = (Mi) is a semi-sequeneof X, then we shall use M × I to denote the semi-sequene (Mi × I) of
X × I. If we put M = slimM, then again slim(M × I) may be thought ofas M × I ⊂ X × I.Definition 2.9. Let F = (Fi) : M × I → Y be a map. For eah i ∈ N,let gi : Mi → Y be given by gi(x) = Fi(x, 0) and hi : Mi → Y be given by
hi(x) = Fi(x, 1). Then g = (gi) and h = (hi) are maps of M to Y . We shallsay that F is a homotopy from g to h. Under suh onditions, we will write
g ≃ h and say that g is homotopi to h.It is lear that ≃ is an equivalene relation on the set of maps g :
M → Y . Furthermore, under some additional onditions homotopi mapsindue homotopi maps of the semi-limit.Lemma 2.10. If M is expanding open and F is a homotopy from g to h,then F = slimF : M×I → Y , g = slimg : M → Y , and h = slimh : M → Yare maps, and F is a homotopy from g to h.Let us reall the notions of K-modi�ation and ontiguity. Let K be asimpliial omplex and g, h : C → |K|CW be maps. Then we say that g is a
K-modi�ation of h if for eah x ∈ C, whenever σ ∈ K and h(x) ∈ σ, then
g(x) ∈ σ. On the other hand, one says that g is ontiguous to h if for eah
x ∈ C, there exists σ ∈ K suh that g(x), h(x) ∈ σ (2).Note that g is a K-modi�ation of h if and only if for eah x ∈ C and
σ ∈ K suh that h(x) ∈ intσ, we have g(x) ∈ σ. Reall that if g is a
K-modi�ation of h, then g is ontiguous to h, and that ontiguous mapsare homotopi.Next are our de�nitions of K-modi�ation and ontiguity for maps ofsemi-sequenes.

(2) When g is ontiguous to h, it need not be true that either one of them is a
K-modi�ation of the other. Also ontiguity is not an equivalene relation although it isre�exive and symmetri.
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Definition 2.11. Let g = (gi) and h = (hi) be maps of M to a polyhe-dron |K|T . De�ne g to be a K-modi�ation of h if gi is a K-modi�ation of

hi for eah i ∈ N. We shall say that g is ontiguous to h if gi is ontiguousto hi for eah i ∈ N.From our de�nitions it easily follows that if g is a K-modi�ation of h,then g is ontiguous to h.Let us now quote Lemma 2.3 of [12℄, noting that this is a generalizationof Theorem 10, page 302 of [11℄.Lemma 2.12. Let K be a simpliial omplex and T a paraompat topol-ogy for |K| suh that :(1) T ⊂ CW,(2) for eah σ ∈ K, σT = σCW,(3) for eah v ∈ K(0), st(v, K) is open in |K|T .Let i1 : |K| → |K| be the identity funtion and i2 : |K|CW → |K|T bethe identity map. Then there is a map j : |K|T → |K|CW whih is a K-modi�ation of i1 and suh that j is a homotopy equivalene with homotopyinverse i2. In fat , there is a funtion H : |K| × I → |K| suh that for eah
t ∈ I, Ht : |K| → |K| is simplex preserving and :(a) H : |K|CW×I → |K|CW is a homotopy between j◦i2 and the identityon |K|CW,(b) H : |K|T × I → |K|T is a homotopy between i2 ◦ j and the identityon |K|T .Lemma 2.13. Let g = (gi) and h = (hi) be maps of M to a polyhedron
|K|CW. If g is ontiguous to (or is a K-modi�ation of ) h, then g ≃ h.Proof. Let T designate the metri topology on |K| indued by the trian-gulation K (as in Appendix I of [11℄). Sine open vertex stars belong to T ,one sees that T meets the requirements of Lemma 2.12, so let i1, i2, j, and
H be as in that lemma.Fix i ∈ N. The map i2 ◦ gi is ontiguous to i2 ◦ hi from Mi to |K|T .The so-alled �straight line� homotopy Gi of these maps is given as follows.If x ∈ Mi, v ∈ K(0), a is the v-baryentri oordinate of i2 ◦ gi(x), b is the
v-baryentri oordinate of i2 ◦ hi(x), and t ∈ I, then (1 − t)a + tb is the
v-baryentri oordinate of Gi(x, t). This funtion Gi : Mi × I → |K|T isontinuous sine all its baryentri oordinates are ontinuous (Appendix Iof [11℄). One then sees that j ◦ Gi : Mi × I → |K|CW is a homotopy from
j ◦ i2 ◦ gi to j ◦ i2 ◦ hi.Now onsider the homotopy H from (a) in Lemma 2.12, and let F beits reverse, i.e., F (x, t) = H(x, 1 − t). Using F we get a homotopy from
idCW ◦ gi = gi to j ◦ i2 ◦ gi. Next apply the homotopy Gi to go from j ◦ i2 ◦ gi



250 I. Ivan²i¢ and L. R. Rubin
to j ◦ i2 ◦hi. Finally, apply again the homotopy H in (a) to go from j ◦ i2 ◦hito idCW ◦hi = hi.Sine the homotopy Gi is based on the �straight line� homotopy and F , Hare �xed throughout, it is not di�ult to see that the onsisteny relationshold. This ompletes our proof.3. Charaterization theorems. We now present our haraterizationtheorems, the main results of this paper. There is a CW-version when thetarget is a CW-omplex and an SC-version when the target is a polyhedron.Theorem 3.1 (CW-version). Let X = (Xi, p

i+1
i ) be an inverse sequeneof strati�able spaes, X = limX, and K be a CW-omplex. Then X isan absolute o-extensor for K if and only if for any expanding open semi-sequenes M and H of X and map g : M → K, there exist expanding opensubsemi-sequenes, M∗ of M and H∗ of H, and a map g∗ : M∗ ∪ H∗ → Ksuh that :(1) slimM∗ ∪ slimH∗ = slimM ∪ slimH,(2) g∗|M∗ ≃ g|M∗.Theorem 3.2 (SC-version). Let X = (Xi, p
i+1
i ) be an inverse sequeneof strati�able spaes, X = limX, and K be a simpliial omplex. Then X isan absolute o-extensor for |K|CW if and only if for any expanding open semi-sequenes M and H of X and map g : M → |K|CW, there exist expandingopen subsemi-sequenes, M∗ of M and H∗ of H, and a map g∗ : M∗∪H∗ →

|K|CW suh that :(1) slimM∗ ∪ slimH∗ = slimM ∪ slimH,(2) g∗|M∗ is a K-modi�ation of g|M∗.These theorems lead to haraterizations of the absolute o-extensorproperty on the level of strati�able spaes in terms of pairs of open sets and amap on one of them. We state both versions and prove only the CW-version.Theorem 3.3. Let X be a strati�able spae and K a CW-omplex. Then
X is an absolute o-extensor for K if and only if for eah pair M , H of opensubsets of X and map g : M → K, there exist open subsets M∗, H∗ of X,
M∗ ⊂ M , H∗ ⊂ H, and a map g∗ : M∗ ∪ H∗ → K suh that :(1) M∗ ∪ H∗ = M ∪ H,(2) g∗|M∗ is homotopi to g|M∗.Proof. (⇒). Note that M ∪H is a normal spae. By the shrinking theo-rem, hoose an open subset M∗ of M ∪ H suh that M∗ ⊂ clM∪H M∗ ⊂ Mand M∗ ∪ H = M ∪ H. Put H∗ = H. Then (1) is true. Also M ∪ H is anabsolute o-extensor for K [6℄; hene g|clM∪H M∗ : clM∪H M∗ → K extends
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to a map g∗ : M ∪H → K. Sine M∗ ⊂ clM∪H M∗, we have g∗|M∗ = g|M∗,showing that (2) is true.

(⇐). Let A be a losed subset of X and g : A → K a map. Sine
K ∈ ANE(X) ([2℄), there exists a neighborhood M of A and a map of Mto K extending g. We shall use g : M → K to denote suh a map. Put
H = X \ A. Then H is open and X = M ∪ H.For eah i ∈ N, let Xi = X, pi+1

i = id, Mi = M , Hi = H, and gi = g :
Mi → K. Thus X = (Xi, p

i+1
i ) is an inverse sequene of strati�able spaeswhose limit is X. Put M = (Mi), H = (Hi), and g = (gi). Then M, Hare expanding open semi-sequenes of X and g : M → K is a map. Wemay apply Theorem 3.1 to (M,H,g) to obtain M∗, H∗, and g∗ meetingthe onditions stated there. Let M∗ = slimM∗ and H∗ = slimH∗. Then

M∗ ⊂ M , H∗ ⊂ H, and Lemma 2.4 shows that M∗, H∗ are open in X, andthat slimg∗ = g∗ : M∗ ∪ H∗ = M ∪ H → K is a map. From H ∩ A = ∅ and
M∗ ∪ H = X, it follows that A ⊂ M∗. Sine g∗|M∗ ≃ g|M∗, Lemma 2.10gives g∗|M∗ ≃ g|M∗.Theorem 3.4. Let X be a strati�able spae and K a simpliial omplex.Then X is an absolute o-extensor for |K|CW if and only if for eah pair
M , H of open subsets of X and map g : M → K, there exist open subsets
M∗, H∗ of X, M∗⊂M , H∗⊂H, and a map g∗ : M∗∪H∗→|K|CW suh that :(1) M∗ ∪ H∗ = M ∪ H,(2) g∗|M∗ is a K-modi�ation of g|M∗.4. Lemmas. In order to prove Theorem 3.2 we need some lemmas. Let
U = {Uv | v ∈ Γ} be an open over of a spae X, N(U) its nerve, and
f : X → |N(U)|CW be a map. Then we say that f is a loally �nite U -anonialmap if f is U -anonial and {f−1(st(Uv, N(U))) | v ∈ Γ} is a loally�nite open over of X. Notie that if X is a paraompat spae, then thereis a loally �nite U -anonial map f : X → |N(U)|CW. In the proof of theMain Lemma (Lemma 4.3) we shall need an enhaned version of Lemma 3.8of [7℄:Lemma 4.1. Let X be a spae, Z a losed subset of X, and Z ⊂ U ⊂ X.Suppose we are given a strati�able spae C, a map p : C → X, Z0 ⊂
{t ∈ Z | p

−1

(t) 6= ∅}, Γ ∗ ⊂ Γ , and the following data:(1) a over U = {Uv | v ∈ Γ ∗} of U by sets open in U ,(2) an open over V = {Vv | v ∈ Γ} of C suh that p−1(Uv) ⊂ Vv foreah v ∈ Γ ∗,(3) a loally �nite U-anonial map g : U → |N(U)|CW.Let N0 be the minimal subomplex of N(U) suh that g(Z0) ⊂ |N0|. Thenthere exist a loally �nite U-anonial map h : U → |N(U)|CW suh that
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h−1(|N0|) is a losed neighborhood of g−1(|N0|) in U and h|g−1(|N0|) =
g|g−1(|N0|), a loally �nite V-anonial map g0 : C → |N(V)|, and a sim-pliial injetion α : N0 → N(V), α(Uv) = Vv for all Uv ∈ N

(0)
0 , so that

α ◦ h ◦ p(z) = g0(z) for eah z ∈ P = p−1(h−1(|N0|)).Suppose in addition that Z∗ ⊂ C, p(Z∗) = Z0, Γ0 ⊂ Γ ∗ and {Uv | v ∈ Γ0}is the set of verties of a simplex of N0. Then ⋂
{Vv | v ∈ Γ0} ∩ Z∗ 6= ∅.Proof. There is no loss of generality in assuming that U is a loally �niteover of U . Using a losed, regular neighborhood R of |N0| in |N(U)|CW,hoose a map r : |N(U)|CW → |N(U)|CW suh that r retrats R to |N0|, andwhenever x lies in a simplex σ of N(U), then r(x) ∈ σ, i.e., r is an N(U)-modi�ation of the identity on |N(U)|CW. We ask the reader to hek that

h = r◦g : U → |N(U)|CW is a loally �nite U -anonial map. Clearly g−1(R)is a losed neighborhood of g−1(|N0|) in U , and g−1(R) ⊂ h−1(|N0|) =
g−1(r−1(|N0|)). Also, h(t) = g(t) for all t ∈ g−1(|N0|).Let E = {Ev = Vv ∩ P | v ∈ Γ} and θ : N(E) → N(V) be the simpliialinjetion determined by the vertex map Ev 7→ Vv. Suppose that Γ0 ⊂ Γ ∗ is�nite and {Uv | v ∈ Γ0} is the vertex set of a simplex of N0. Applying Lemma3.7 of [7℄, let t ∈

⋂
{Uv | v ∈ Γ0} ∩ Z0 ⊂ Z0 ⊂ h−1(|N0|). Now p−1(t) 6= ∅,

p−1(t) ⊂ P , and p−1(Uv) ⊂ Vv for eah v ∈ Γ0. Hene ∅ 6= p−1(t) ⊂
⋂
{Ev =

Vv ∩ P | v ∈ Γ0}, showing that {Ev | v ∈ Γ0} is the vertex set of a simplex of
N(E). Therefore the vertex map β(Uv) = Ev indues a simpliial injetion
β : N0 → N(E).Let f : P → |N(E)| be given by the rule f(x) = β ◦ h ◦ p(x). We wantto show that f is a loally �nite E-anonial map. If a vertex Ev of N(E)does not lie in the image of β, then β−1(st(Ev, N(E))) = ∅, so we needonly onern ourselves with a vertex Ev of N(E) suh that β(Uv) = Ev.Surely β−1(st(Ev, N(E))) ⊂ st(Uv, N(U)). Sine h is U -anonial, we have
h−1(st(Uv, N(U))) ⊂ Uv. Now (2) shows that p−1(Uv) ⊂ Vv, so p−1(Uv)∩P ⊂
Vv ∩ P = Ev as needed to show that f is E-anonial.For the loally �nite part, let y ∈ P and x = p(y). Beause of (3), thereexists a �nite subset Γ0 of Γ ∗ and a neighborhood Q of x in X suh that
Q ∩ h−1(st(Uv, N(U))) 6= ∅ only if v ∈ Γ0. So p−1(Q) ∩ P is a neighborhoodof y in P that intersets (h ◦ p)−1(st(Uv, N(U))) ∩ P only if v ∈ Γ0. Fromthe argument preeding this, one sees that (β ◦ h ◦ p)−1(st(Ev, N(E))) ⊂
(h ◦ p)−1(st(Uv, N(U))) for eah v ∈ Γ . So the neighborhood p−1(Q) ∩ P of
y in P intersets f−1(st(Ev, N(E))) only if v ∈ Γ0. This ompletes the laststep in showing that f is a loally �nite E-anonial map.Observe that P is a losed subspae of the strati�able spae C. ApplyLemma 3.6 of [7℄ to get a loally �nite V-anonial map g0 : C → |N(V)| sothat for z ∈ P , θ(f(z)) = g0(z). Now θ ◦f(z) = θ ◦β ◦h◦p(z), and α = θ ◦βis a simpliial injetion.
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To obtain the �nal statement of our lemma, one should reall that weearlier showed that there exists t ∈

⋂
{Uv | v ∈ Γ0}∩Z0. Choose c ∈ Z∗ with

p(c) = t. Then c ∈ p−1(Uv) ⊂ Vv for all v ∈ Γ0. This ompletes our proof.Before getting to our Main Lemma, let us restate in terms of semi-sequenes a fat whih appears as Lemma 3 of [10℄. We reall here thatstrati�able spaes are perfetly normal, i.e., every open subset is an Fσ-set.Lemma 4.2. Let X = (Xi, p
i+1
i ) be an inverse sequene of strati�ablespaes and W = (Wi) an expanding open semi-sequene of X. Then thereexists an expanding open subsemi-sequene S = (Si) of W suh that :(1) clXi

(Si) ⊂ Wi and (pi+1
i )−1(clXi

(Si)) ⊂ Si+1 for eah i ∈ N,(2) slimS = slimW.Next we present our Main Lemma. It is worth mentioning that the proofof this lemma requires a target spae that is a polyhedron. We shall needLemma 4.3 in the proof of Theorem 3.2.Lemma 4.3. Let X = (Xi, p
i+1
i ) be an inverse sequene of strati�ablespaes, K a simpliial omplex , W an open subset of X = limX, and f :

W → |K|CW a map. Then there exist :(1) an expanding open semi-sequene M = (Mi) of X with slimM = W ,(2) a map g of M to |K|CW suh that the map g = slimg : W → |K|CWis a K-modi�ation of f .Proof. Let Γ = K(0), for eah v ∈ Γ , Wv = f−1(st(v, K)), W =
{Wv | v ∈ Γ}, and W = (Wi) be the expanding open semi-sequene of Xindued by W (see after Lemma 2.6). Then W = slimW.(F1) The vertex map Wv 7→ v, v ∈ Γ , determines a simpliial injetion

κ : N(W) → K.Apply Lemma 4.2 to obtain S = (Si), an expanding open subsemi-sequeneof W suh that slimS = slimW = W , and for eah i ∈ N, both clXi
(Si) ⊂

Wi and (pi+1
i )−1(clXi

(Si)) ⊂ Si+1. For eah i ∈ N, put:(F2) Zi = pi(W ) ∩ clXi
(Si).We want to establish the following fat:(F3) Let i ∈ N, s : Wi → |N(Wi)| be a Wi-anonial map, and N0 theminimal subomplex of N(Wi) suh that s(Zi) ⊂ |N0|. Suppose that

Γ0 ⊂ Γ is �nite and {Wi,v | v ∈ Γ0} is the set of verties of a simplexof N0. Then {Wv | v ∈ Γ0} is the set of verties of a simplex of N(W).Indeed, by Lemma 3.7 of [7℄, there exists t ∈
⋂
{Ui,v | v ∈ Γ0} ∩ Zi. Sothere is w ∈ W with pi(w) = t. Sine Wi,v = resp(pi, Wv), it follows that

w ∈ p−1
i (Wi,v) ⊂ Wv for all v ∈ Γ0.Let us note that
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(F4) for eah i < j in N, Zi ⊂ p

j
i (Zj).To see this, let z ∈ Zi. Then for some w ∈ W , z = pi(w) ∈ clXi

(Si).Now z = p
j
i ◦ pj(w), so pj(w) ∈ (pj

i )
−1(z) ⊂ (pj

i )
−1(clXi

(Si)) ⊂ Sj . Hene
pj(w) ∈ Zj = pj(W ) ∩ clXj

(Sj).Selet a loally �nite W1-anonial map s1 : W1 → |N(W1)|CW. De�ne
N1 to be the minimum subomplex of N(W1) suh that s1(Z1) ⊂ |N1|.Suppose that i ∈ N and for eah 1 ≤ k ≤ i we have determined:(I1) a loally �niteWk-anonial map sk : Wk→|N(Wk)|CW and have des-ignated by Nk the minimal subomplex of N(Wk) with sk(Zk)⊂|Nk|,(I2) if k < i, a loally �nite Wk-anonial map hk : Wk → |N(Wk)|CWsuh that h−1

k (|Nk|) is a losed neighborhood of s−1
k (|Nk|) and

hk|s
−1
k (|Nk|) = sk|s

−1
k (|Nk|),(I3) if k < i, a simpliial injetion αk : Nk → Nk+1, αk(Wk,v) = Wk+1,vfor eah Wk,v ∈ (Nk)

(0), suh that αk ◦ hk ◦ pk+1
k (z) = sk+1(z) foreah z ∈ (pk+1

k )−1(h−1
k (|Nk|)).Now we apply Lemma 4.1 with (X, Z, U, C, p, Z0, Γ

∗, Γ,U ,V, g, N0) re-plaed by
(Xi, clXi

(Si), Wi, Si+1, p
i+1
i |Si+1, Zi, Γ, Γ,Wi,Wi+1, si, Ni).We ask the reader to make the routine hek that all the hypotheses ofLemma 4.1 are satis�ed with this input.This yields a loally �nite Wi-anonial map hi : Wi → |N(Wi)|CW, aloally �nite Wi+1-anonial map si+1 : Wi+1 → |N(Wi+1)|CW along withthe minimal subomplex Ni+1 of N(Wi+1) suh that si+1(Zi+1) ⊂ |Ni+1|,and a simpliial injetion αi : Ni → N(Wi+1), αi(Wi,v) = Wi+1,v, subjet toertain properties. Indeed, it is lear that all of (I1)�(I3) are satis�ed exeptperhaps that we need to hek αi(Ni) ⊂ Ni+1. But we have established from(F4) that Zi ⊂ pi+1

i (Zi+1). This, the ultimate statement of Lemma 4.1, andan appliation of Lemma 3.7 of [7℄ show that if {Wi,v | v ∈ Γ0} is the set ofverties of a simplex of Ni, then {αi(Wi,v) | v ∈ Γ0} = {Wi+1,v | v ∈ Γ0} is theset of verties of a simplex of Ni+1. Our indutive onstrution is omplete.For eah i ∈ N, de�ne Mi = intXi
h−1

i (|Ni|) and set M = (Mi). Then M isan open semi-sequene ofX; to see that M is expanding, let i ∈ N and t ∈ Mi.By (I3), if z ∈ (pi+1
i )−1(t), then si+1(z) ∈ |Ni+1|. Thus z ∈ s−1

i+1(|Ni+1|);from (I2) it follows that z ∈ intXi+1
h−1

i+1(|Ni+1|) = Mi+1.Clearly Mi ⊂ Wi for eah i ∈ N, so slimM ⊂ slimW = W . To showthe opposite inlusion, suppose that x ∈ W = slimS. Put k = ΦS(x), the
S-birth index of x. Hene pi(x) ∈ pi(W ) ∩ Si ⊂ Zi for all i ≥ k. Using(I1) and (I2), one sees that pi(x) ∈ Mi for all i ≥ k, whih implies that
x ∈ slimM.



Inverse Sequenes and Absolute Co-Extensors 255
We now see that (1) of our lemma has been veri�ed, so we proeedwith (2). By dint of (F3), for eah i ∈ N, there is a simpliial injetion

βi : Ni → N(W) obtained from the vertex map Wi,v 7→ Wv. Hene we get amap gi : Mi → |K|CW de�ned by gi(x) = κ ◦ βi ◦ hi(x) for all x ∈ Mi.If x ∈ Mi+1 and pi+1
i (x) ∈ Mi, then hi ◦ pi+1

i (x) ∈ hi(Mi) ⊂ |Ni|. From(I3), si+1(x) = αi ◦ hi ◦ pi+1
i (x) ∈ |Ni+1|. Using (I2), we �nd that hi+1(x) =

αi ◦ hi ◦ pi+1
i (x), whih implies that βi+1 ◦ hi+1(x) = βi+1 ◦ αi ◦ hi ◦ pi+1

i (x).But βi+1 ◦ αi = βi as one an easily hek. Therefore κ ◦ βi+1 ◦ hi+1(x) =
κ ◦ βi ◦ hi ◦ pi+1

i (x), i.e., gi+1(x) = gi ◦ pi+1
i (x). This proves that g is a mapof M to |K|CW. Let g = slimg : W → |K|CW.To obtain the K-modi�ation part, let x ∈ W , i = ΦM(x), and z = pi(x).Then g(x) = gi ◦ pi(x) = gi(z) = κ ◦ βi ◦ hi(z), and hi(z) ∈ |Ni|; supposethat Wi,v is a vertex of the simplex of Ni that ontains hi(z) in its interior.Now x ∈ p−1

i (Wi,v) ⊂ Wv = f−1(st(v, K)). This shows that v is in σ where
σ is the simplex of K suh that f(x) ∈ intσ. We know that κ◦βi(Wi,v) = v,so g(x) ∈ σ. Our proof is omplete.Lemma 4.4. Let X = (Xi, p

i+1
i ) be an inverse sequene of strati�ablespaes, K a CW-omplex , W an open subset of X = limX, and f : W → Ka map. Then there exist :(1) an expanding open semi-sequene M = (Mi) of X with slimM = W ,(2) a map g of M to K suh that the map g = slimg : W → K ishomotopi to f .Proof. Selet a simpliial omplex L having the property that |L|CW ishomotopy equivalent to K, and let α : K → |L|CW and β : |L|CW → K be ahomotopy equivalene and a homotopy inverse, respetively. Let f0 = α ◦ f :

W → |L|CW.Apply Lemma 4.3 to f0 and obtain M and a map g0 of M to |L|CW asin (1) and (2) of that lemma. Of ourse M meets the requirements of (1) ofthe urrent lemma, so we have to get (2).Put g = β ◦ g0; then g is a map of M to K. We know that g0 = slimg0is an L-modi�ation of f0. Consequently, g0 ≃ f0, so β ◦ g0 ≃ β ◦ f0 =
β ◦ α ◦ f ≃f , and g = slimg = β ◦ slimg0 = β ◦ g0 ≃ f , as required by (2).5. Proofs of haraterization theorems(i) Proof of (⇐) of Theorems 3.1 and 3.2. Let A be losed in X and
f : A → |K|CW (or K) be a map. We may assume that f is de�ned on anopen neighborhood W of A. Apply Lemma 4.3 to the map f : W → |K|CWto obtain an expanding open semi-sequene M of X, W = slimM, a map
g : M → |K|CW, and g = slimg : W → |K|CW. The map g is a K-modi�ation of f ; onsequently, g is ontiguous to f and g|A ≃ f |A. (In the
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CW ase, apply Lemma 4.4 instead of Lemma 4.3; the above homotopy isstill true.)Put H = X \ A and let H be the semi-sequene of X indued by {H}.Then H = slimH and H is open and expanding in X. Let us also note that
X = W ∪ H.All the onditions of the su�ieny of Theorem 3.2 (or 3.1) have beensatis�ed by the preeding data. Therefore we may now assume the existeneof expanding open subsemi-sequenes M∗ of M, H∗ of H, and a map g∗ :
M∗∪H∗ → |K|CW (or K) suh that slimM∗∪ slimH∗ = slimM∪ slimH =
W ∪ H = X and g∗

0 = g∗|M∗ is a K-modi�ation of (homotopi to) g0 =
g|M∗, and in either version g∗

0 ≃ g0.Note that M∗, H∗ are expanding open; therefore slim(M∗ ∪ H∗) =
slimM∗ ∪ slimH∗ = X.By Lemma 2.4, g∗ = slimg∗ : X → |K|CW (or K) is a map.Let D = slimM∗, g∗0 = slimg∗

0 : D → |K|CW (or to K) and g0 = slimg0 :
D → |K|CW (or to K). The homotopy g∗

0 ≃ g0 and Lemma 2.10 show that
g∗0 and g0 are maps, and g∗0 ≃ g0. Note that g∗0 = g∗|D and g0|D = g|D.Hene, g∗|D ≃ g|D.Sine A∩H = ∅, we have A ⊂ D = slimM∗. From this and the preeding,it follows that g∗|A ≃ g|A. We have already established that g|A ≃ f |A.Sine g∗ : X → |K|CW (or K), our proof of (⇐) is ompleted by applyingthe homotopy extension theorem.Let us point out that (⇒) of Theorem 3.2 is used in the proof of (⇒) ofTheorem 3.1, so we separate the two proofs.(ii) Proof of (⇒) of Theorem 3.2. Suppose that M = (Mi), H = (Hi)are expanding open semi-sequenes of X, and g = (gi) is a map of M to
|K|CW. Let M = slimM and H = slimH. Lemma 2.4 shows that M and Hare open in X and that g = slimg : M → |K|CW is a map.Consider a surjetive extension X̃ of X as in Lemma 2.8. We shall deter-mine a partiular expanding open semi-sequene M̃ = (M̃i) of X̃ whih is anextension of M. Let M̃1 = M1. Suppose that k ∈ N and we have determined
M̃i for 1 ≤ i ≤ k in suh a manner that always:(M1) M̃i ∩ Xi = Mi.We require, moreover, that if 1 ≤ i < k then:(M2) (p̃i+1

i )−1(M̃i) ⊂ M̃i+1,(M3) if x ∈ M̃i, then for some y ∈ M̃i+1, p̃i+1
i (y) = x,(M4) if x ∈ M̃i+1 \ Mi+1, then p̃i+1

i (x) ∈ M̃i.One selets M̃k+1 by adjoining to Mk+1 the minimum set of points in
Dk+1 neessary to make (M3) true in ase i is replaed by k. This way the
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expanding open semi-sequene M ⊂ X �extends� to an expanding opensemi-sequene M̃ ⊂ X̃, and by Lemma 2.7, slim

X̃
M̃ ∩ X = slimX(M̃ ∩ X)

= M . Let H̃ be an analogous �extension� of H. De�ne M̃ = slim
X̃

M̃ and
H̃ = slim

X̃
H̃. Then M̃ ∩ X = M, H̃ ∩ X = H.Extend g to g̃ : M̃ → |K|CW indutively, by de�ning g̃1 = g1, g̃i+1|Mi+1

= gi+1, and, using (M4), g̃i+1(x) = g̃i ◦ p̃i+1
i (x) whenever x ∈ M̃i+1 \ Mi+1.Note that M̃ ∪ H̃ is a normal spae. An appliation of the shrinkingtheorem shows that there is an open subset Q̃ of M̃ ∪ H̃ whose losure Q0with respet to M̃ ∪ H̃ is a subset of M̃ and suh that Q̃ ∪ H̃ = M̃ ∪ H̃.Observe that (Q̃∪ H̃)∩X = M ∪H. Sine M̃ ∪ H̃ is an absolute o-extensorfor |K|CW (Theorem 3.6 of [6℄), hoose a map f̃ : M̃ ∪ H̃ → |K|CW havingthe property that f̃ |Q0 = g̃|Q0 : Q0 → |K|CW.Let us apply Lemma 4.3 to the map f̃ and the open subset M̃ ∪ H̃ of X̃.We obtain an expanding open semi-sequene Ñ = (Ñi) of X̃ and a map

h̃ = (h̃i) of Ñ to |K|CW. One sees that slim Ñ = M̃ ∪ H̃; hene the map
h̃ = slim h̃ : M̃ ∪ H̃ → |K|CW is a K-modi�ation of f̃ .Find an expanding open semi-sequene Q̃ = (Q̃i) of X̃ suh that slim Q̃

= Q̃. De�ne M̃∗ = M̃ ∩ Ñ ∩ Q̃. Then M̃∗ is a subsemi-sequene of M̃;similarly H̃∗ = H̃ ∩ Ñ is a subsemi-sequene of H̃. Note that M̃∗, H̃∗ areexpanding open semi-sequenes of X̃.Observe that Q̃ = slim Q̃ ⊂ M̃ = slimM̃ ⊂ M̃∪H̃ = slim Ñ. Sine M̃, Ñare expanding, M̃ ∩ Ñ is expanding and slim(M̃ ∩ Ñ) = slimM̃ ∩ slim Ñ =

M̃ ∩ (M̃ ∪ H̃) = M̃ = slimM̃. Sine Q̃ is expanding, we may apply thepreeding reasoning again to see that slimM̃∗ = slim(M̃∩ Ñ∩ Q̃) = slim Q̃

= Q̃. In a similar manner, one sees that slim H̃∗ = slim H̃ ∩ slim Ñ = H̃ ∩
(M̃∪H̃) = H̃. Hene slimM̃∗∪slim H̃∗ = Q̃∪H̃ = M̃∪H̃ = slimM̃∪slim H̃.Now, take M∗ = M̃∗ ∩ X and H∗ = H̃∗ ∩ X whih are expanding opensemi-sequenes of X. Also M∗ ⊂ M, H∗ ⊂ H and slimM∗ ∪ slimH∗=
slim(M̃∗ ∩X) ∪ slim(H̃∗ ∩ X) = M ∪ H. This gives us (1) of Theorem 3.2.As M̃∗∪H̃∗ is a subsemi-sequene of Ñ, we may de�ne g̃∗ = h̃|M̃∗∪H̃∗ :

M̃∗ ∪ H̃∗ → |K|CW. Write g̃∗ = (g̃∗i ). Let us prove that g̃∗|M̃∗ is a K-modi�ation of g̃|M̃∗.Fix i ∈ N and suppose that z ∈ M̃i ∩ Ñi ∩ Q̃i ⊂ Q̃i. The fat that Q̃is expanding implies that p̃−1
i (Q̃i) ⊂ Q̃. Sine the bonding maps in X̃ aresurjetive and Q̃ is expanding, there exists x ∈ p̃−1

i (Q̃i) ⊂ Q̃ ⊂ Q0 ⊂ M̃ =

slimM̃ with p̃i(x) = z. Aording to Lemma 2.4, g̃(x) = g̃i ◦ p̃i(x) = g̃i(z).Let σ be the simplex of K suh that f̃(x) = g̃(x) = g̃i(z) ∈ intσ. We knowthat h̃ is a K-modi�ation of f̃ , so h̃(x) ∈ σ. Notie that h̃(x) = h̃i ◦ p̃i(x) =
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g̃∗i ◦ p̃i(x) = g̃∗i (z). Hene g̃∗i (z) ∈ σ. Therefore g̃∗i is a K-modi�ation of g̃i.This shows that g̃∗|M̃∗ is a K-modi�ation of g̃|M̃∗.Finally, put g∗ = g̃∗|(M∗∪H∗). Sine the restrition of a K-modi�ationis a K-modi�ation we onlude that g∗|M∗ is a K-modi�ation of g̃|M∗ =
g|M∗.(iii) Proof of (⇒) of Theorem 3.1. Suppose that M, H are expandingopen semi-sequenes of X and g is a map of M to K. Find a simpliial om-plex L along with a homotopy equivalene α : K → |L|CW and a homotopyinverse β : |L|CW → K of α.Now X is an absolute o-extensor for |L|CW, so we apply (ii) to the map
α ◦g from M to |L|CW. In this ase, the map g∗|M∗ is an L-modi�ation of
(α ◦ g)|M∗; by Lemma 2.13 these maps are homotopi. Then β ◦ g∗|M∗ ≃
β ◦ (α ◦ g|M∗) and the fat that α and β are homotopy inverses imply that
β ◦ g∗|M∗ ≃ g|M∗.
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