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PROBABILITY THEORY AND STOCHASTIC PROCESSES

On Measure Con
entration of Ve
tor-Valued MapsbyMi
hel LEDOUX and Krzysztof OLESZKIEWICZPresented by Aleksander PE�CZY�SKISummary. We study 
on
entration properties for ve
tor-valued maps. In parti
ular, wedes
ribe inequalities whi
h 
apture the exa
t dimensional behavior of Lips
hitz maps withvalues in R
k. To this end, we study in parti
ular a domination prin
iple for proje
tionswhi
h might be of independent interest. We further 
ompare our 
on
lusions with earlierresults by Pinelis in the Gaussian 
ase, and dis
uss extensions to the in�nite-dimensionalsetting.

Notation. In what follows, whenever we deal with R
k, we endow itwith the standard Eu
lidean stru
ture with s
alar produ
t · and norm ‖ · ‖.By γn, we denote the standard N (0, Idn) Gaussian measure on R

n withdensity dγn/dx = (2π)−n/2e−‖x‖2/2. Let g, g1, g2, . . . be independent real
N (0, 1) random variables, so that Gn = (g1, . . . , gn) is an R

n-valued normalrandom ve
tor with distribution γn. For t ∈ R, let T (t) = γ1([t,∞)) =
P(g ≥ t). Obviously, T (t) = 1 − Φ(t), where Φ is the standard normaldistribution fun
tion but using the fun
tion T will be more 
onvenient inour 
omputations. Let θ be a random ve
tor uniformly distributed on theunit sphere Sk−1 ⊆ R

k, independent of g, g1, g2, . . . . For the sake of brevity,we denote throughout this work by C, C1, C2, . . . di�erent positive universal
onstants (i.e. numeri
al 
onstants whi
h do not depend on n, k or any otherparameter). With little e�ort some more expli
it numeri
al bounds 
an bededu
ed from the proofs.1. Introdu
tion. In the re
ent work [5℄, Gromov 
onsiders and analysesthe question of isoperimetry of waists and measure 
on
entration of maps.2000 Mathemati
s Subje
t Classi�
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on
entration of measure, ve
tor-valued map, moment 
om-parison, Gaussian measure.Resear
h partially supported by the Polish KBN Grant 1 PO3A 012 29.[261℄ 
© Instytut Matematy
zny PAN, 2007



262 M. Ledoux and K. Oleszkiewi
z
As a typi
al result, he shows that whenever f : R

n → R
k is a 
ontinuousmap, there exists z ∈ R

k su
h that for every h > 0,(1) γn((f−1(z))h) ≥ γk(B(0, h))where B(x, h) is the ball with 
enter x and radius h > 0 in R
k. When k = 1,this result follows from the Gaussian isoperimetri
 inequality with z = mfthe median of f for γn. Similar 
on
lusions hold for more general stri
tlylog-
on
ave measures and on the sphere [5℄.Although this result is perhaps more of topologi
al nature, it also has
onsequen
es for measure 
on
entration. Namely, whenever f : R

n → R
k is1-Lips
hitz,

(f−1(z))h ⊂ f−1(B(z, h)).In parti
ular, inequality (1) provides an upper bound on the measure of theset {‖f − z‖ ≥ h}, namely(2) γn(‖f − z‖ ≥ h) ≤ γk(x : ‖x‖ ≥ h).When k = 1, this amounts to the 
lassi
al Gaussian 
ontrol of the measureof the set {|f −mf | ≥ h}. In parti
ular, (2) may be seen as part of the 
on-
entration of measure phenomenon. The aim of this note is a
tually to applythe general theory of measure 
on
entration (for fun
tions) to 
on
entrationof ve
tor-valued maps in the spirit of (2). We will deal with quantitativeestimates up to numeri
al 
onstants, as is usual for measure 
on
entration.As in the s
alar 
ase, z will always be identi�ed to the median or mean valueof the Lips
hitz fun
tion.As a result, we �rst observe that whenever (X, d, µ) is a metri
 measurespa
e with a Gaussian de
ay of the 
on
entration fun
tion, then for any1-Lips
hitz fun
tion f : X → R
k with mean zero,

µ(‖f‖ ≥ r) ≤ C1γk(x : ‖x‖ ≥ r/C2)for any r ≥ 0 where C1, C2 > 0 are independent of k. The spirit of these
on
entration results is that they 
apture the exa
t dimensional behavior ofLips
hitz maps with values in R
k (the various bounds are 
learly sharp onlinear maps). The approa
h relies on simple moment 
omparisons. We nexttry to rea
h sharper inequalities, in parti
ular with C2 = 1, and develop tothis end a general domination prin
iple to transfer 
on
entration inequalitiesfor (one-dimensional) proje
tions to ve
tor-valued maps. We then 
ompareour 
on
lusions with earlier work by Pinelis [10℄ in the Gaussian 
ase. Wealso dis
uss, following [10℄, 
omparison inequalities for maps with valuesin �nite- and in�nite-dimensional normed spa
es based on an inequality putforward by Pisier [11℄, and des
ribe general 
on
entration results for maps ona Gaussian spa
e. We 
on
lude with several open questions and 
onje
tures.
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2. A general statement. We �rst re
all some basi
 notions of measure
on
entration (
f. [8℄). Let (X, d, µ) be a metri
 measure spa
e in the senseof [4℄. That is, (X, d) is a metri
 spa
e and µ a probability measure on theBorel sets of X. The 
on
entration fun
tion of (X, d, µ) is de�ned as
α(r) = α(X,d,µ)(r) = sup{1 − µ(Ar) : A ⊂ X, µ(A) ≥ 1/2}, r > 0,where Ar = {x ∈ X : d(x,A) < r}. The 
on
entration fun
tion appearsin the following property of Lips
hitz fun
tions: whenever f : X → R is1-Lips
hitz, and mf is the median of f for µ, then, for every r > 0,

µ(|f −mf | ≥ r) ≤ 2α(r).Re
all also that (X, d, µ) has Gaussian 
on
entration whenever there are
onstants κ ≥ 1 and σ > 0 su
h that(3) α(r) ≤ κe−r2/(2σ2), r > 0.Typi
al examples that exhibit Gaussian 
on
entration are the standardGaussian measures γn on R
n (with κ = σ = 1, independent of the dimen-sion). While σ2 may be interpreted as the observable diameter of (X, d, µ)(
f. [4℄, [8℄), the 
onstant κ is assumed for simpli
ity to be larger than orequal to 1.A �rst general 
on
entration result for ve
tor-valued maps is the followingsimple statement that relies on moment 
omparison.Theorem 1. Let (X, d, µ) be a metri
 measure spa
e with Gaussian 
on-
entration (3). Then, for every 1-Lips
hitz fun
tion f : X → R

k with meanzero with respe
t to µ, and every r ≥ 0,
µ(‖f‖ ≥ r) ≤ Cκγk(x : ‖x‖ ≥ r/(Cσ))where C > 0 is numeri
al.Proof. Under the Gaussian 
on
entration hypothesis, whenever ϕ :X→Ris 1-Lips
hitz with Tϕdµ = 0, then
µ(|ϕ| ≥ r) ≤ C1κe

−r2/(2σ2C1), r ≥ 0,for some universal C1 > 0 (
f. [8, Proposition 1.8℄). Hen
e, for every p ≥ 1,\
|ϕ|p dµ =

∞\
0

µ(|ϕ| ≥ r) d(rp) ≤ C1κ

∞\
0

e−r2/(2σ2C1) d(rp)so that \
|ϕ|p dµ ≤ 2κpC

p/2+1
1 σpMp−1where Mq =

T
R
|x|q dγ1(x) = 2q/2π−1/2Γ ((q + 1)/2), q ≥ 0.
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Now, let f : X → R

k be 1-Lips
hitz with mean zero. Then, for every
y ∈ R

k, y · f : X → R is ‖y‖-Lips
hitz with mean zero. Hen
e, by thepre
eding, \
|y · f |p dµ ≤ 2κpC

p/2+1
1 σpMp−1‖y‖p.Therefore, for any p ≥ 1,\

‖f‖p dµ = M−1
p

\\
|y · f(x)|p dµ(x) dγk(y)

≤ 2κpC
p/2+1
1 σpMp−1M

−1
p

\
‖y‖p dγk(y).Easy 
al
ulation yields\∥

∥

∥

∥

f

2σ
√
C1

∥

∥

∥

∥

p

dµ ≤ C2κ
\
‖y‖p dγk(y)where C2 > 1 is some numeri
al 
onstant. We are now left with the fol-lowing lemma that we learned from Pinelis and whi
h we formulate withprobabilisti
 notation.Lemma 1. Let U ≥ 0 be a random variable su
h that for any p ≥ 1,

E(Up) ≤ BE(‖Gk‖p)where B ≥ 1. Then, for any r ≥ 0,
P(U ≥ r) ≤ CBP(‖Gk‖ ≥ r/C)for some numeri
al C > 0.Proof. We may and do assume that k ≥ 2. Let a ∈ (0, 1/2) denote auniversal 
onstant, to be spe
i�ed later. If r ≤ a−1

√

k/2, then
P(‖Gk‖ ≥ ar) ≥ P(‖Gk‖2 ≥ k/2) → 1as k → ∞ by the law of large numbers. Hen
e the lemma holds in this 
aseprovided C > 0 is large enough.Let now r ≥ a−1
√

k/2. From the hypothesis, for any p ≥ 1,
P(U ≥ r) ≤ Br−2p

E(‖Gk‖2p) = B

(

2

r2

)p Γ (p+ k/2)

Γ (k/2)
.Choose then p ≥ 1 su
h that p + k/2 = r2/2. It follows that, for somenumeri
al 
onstant C3 > 0,

P(U ≥ r) ≤ BΓ

(

k

2

)−1

(C3r)
k−1e−r2/2 ≤ C3BΓ

(

k

2

)−1

(C3r)
k−2e−r2/4,where we have used Stirling's formula. Now, integrating by parts (see the
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proof of Theorem 2 below), for every k ≥ 2 and r ≥ 0,

P(‖Gk‖ ≥ ar) ≥ Γ

(

k

2

)−1(ar

2

)k−2

e−a2r2/2 ≥ Γ

(

k

2

)−1(ar

2

)k−2

e−r2/8.Choose a ∈ (0, 1/2) small enough to have exp(1/(16a2)) ≥ 2C3/a ≥ 1. Then
er2/4e−r2/8 = er2/8 ≥ exp

(

k

16a2

)

≥
(

2C3

a

)k

≥
(

2C3

a

)k−2

and therefore P(U ≥ r) ≤ C3BP(‖Gk‖ ≥ ar). It is then easily seen that the
on
lusion of the lemma holds for some well 
hosen C.
3. A domination prin
iple. In this se
tion, we develop a dominationprin
iple that will prove more pre
ise than the general statement of thepre
eding se
tion. Starting from a sharp Gaussian 
on
entration inequalityalong linear fun
tionals, the tail of ve
tor-valued maps in R

k will be 
on-trolled by the norm of the Gaussian ve
tor in R
k, with only a dimensionalfa
tor in front of the probability. We will need several lemmas. All of themare quite standard but we present their proofs for the sake of 
omplete-ness.Lemma 2. For every s > 0, T (s) ≤ (2π)−1/2s−1e−s2/2. Moreover ,(4) lim

s→∞
sT (s)es2/2 = (2π)−1/2.Proof. Indeed,

(2π)1/2sT (s) =

∞\
s

se−x2/2 dx ≤
∞\
s

xe−x2/2 dx = e−s2/2.The de l'Hospital rule easily shows that
lim

s→∞
T (s)

s−1e−s2/2
= (2π)−1/2.Lemma 3. There exists a 
onstant C1 > 0 su
h that for every k ≥ 2 andall α ∈ (0, 1),

P(θ1 ≥ α) ≥ C1k
−1/2(1 − α2)(k−1)/2and , for all α ∈ (k−1/2, 1),

P(θ1 ≥ α) ≥ C1k
−1/2α−1(1 − α2)(k−1)/2where θ1 denotes the �rst 
oordinate of an R

k-valued random ve
tor θ whi
his uniformly distributed on Sk−1.
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Proof. Re
all that the surfa
e measure of the unit sphere Sk−1 ⊂ R

k isgiven by the formula ωk−1 = 2πk/2/Γ (k/2). Therefore
P(θ1 ≥ α) = ω−1

k−1

√
1−α2\
0

ωk−2t
k−2(1 − t2)−1/2 dt

=
Γ (k/2)

Γ ((k − 1)/2)
√
π

√
1−α2\
0

tk−2(1 − t2)−1/2 dt.

Obviously, for all α ∈ (0, 1),
√

1−α2\
0

tk−2(1 − t2)−1/2 dt ≥
√

1−α2\
0

tk−2 dt =
1

k − 1
(1 − α2)(k−1)/2.

We also have, for every α ∈ (k−1/2, 2−1/2),
√

1−α2\
0

tk−2(1 − t2)−1/2 dt ≥ 1√
2α

√
1−α2\

√
1−2α2

tk−2 dt

=
1√

2α(k − 1)
((1 − α2)(k−1)/2 − (1 − 2α2)(k−1)/2)

≥ (1 − e−1/4)(1 − α2)(k−1)/2

√
2α(k − 1)sin
e

(1 − 2α2)(k−1)/2(1 − α2)−(k−1)/2 ≤ (1 − α2)(k−1)/2 ≤ (1 − 1/k)(k−1)/2

≤ e−(k−1)/(2k) ≤ e−1/4.To �nish the proof observe that
inf
k≥2

Γ (k/2)

Γ ((k − 1)/2)
√
k
> 0by Stirling's formula.Lemma 4. Let ξ be an R

k-valued random ve
tor. Then for any r > s> 0,
P(‖ξ‖ ≥ r) ≤ sup

v∈Sk−1

P(|ξ · v| ≥ s)

P(|θ1| ≥ s/r)
.

Proof. Without loss of generality we 
an assume that a random ve
tor
θ uniformly distributed on Sk−1 is independent of ξ. By the rotation in-varian
e of θ, for any x ∈ R

k and s ≥ 0, P(|x · θ| ≥ s) = P(‖x‖ |θ1| ≥ s).
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Hen
e

sup
v∈Sk−1

P(|ξ · v| ≥ s) ≥ P(|ξ · θ| ≥ s) = EξPθ(|ξ · θ| ≥ s)

= EξPθ(‖ξ‖ |θ1| ≥ s) ≥ P(|θ1| ≥ s/r, ‖ξ‖ ≥ r)

= P(|θ1| ≥ s/r)P(‖ξ‖ ≥ r).whi
h is the 
on
lusion.The next theorem des
ribes the domination prin
iple that allows us todedu
e sharp 
on
entration inequalities for ve
tor-valued maps from the 
or-responding bounds on one-dimensional proje
tions with a good 
are of the
onstants depending upon dimension.Theorem 2. Let κ ≥ 1/
√
k. Assume that ξ is an R

k-valued randomve
tor su
h that for every v ∈ Sk−1 and s ≥ 0, P(|ξ · v| ≥ s) ≤ κT (s). Then,for every r ≥ 0,
P(‖ξ‖ ≥ r) ≤ C

√
k κP(‖Gk‖ ≥ r)where C > 0 is some numeri
al 
onstant.The result readily applies to probability measures µ on a metri
 spa
e

(X, d) and 1-Lips
hitz mean zero maps f : X → R
k su
h that, for any

v ∈ Sk−1 and all s ≥ 0,
µ(|v · f | ≥ s) ≤ κT (s)(if ζ has distribution µ, take ξ = f(ζ)). We then have, for all r ≥ 0,

µ(‖f‖ ≥ r) ≤ C
√
k κγk(x : ‖x‖ ≥ r).The result applies in parti
ular to the standard Gaussian measure γn on

X = R
n, although in this 
ase the fa
tor √k is not ne
essary as we will seein the next se
tion. As dis
ussed in the remark below, it is however ne
essaryin general.Proof. For k= 1 the assertion is trivial, so assume k≥ 2. For 0 ≤ r ≤

√
k,

P(‖Gk‖ ≥ r) ≥ inf
j≥2

P(‖Gj‖ ≥
√

j) = inf
j≥2

P

(

g2
1 + g2

2 + · · · + g2
j − j

√
j

≥ 0

)

and the last expression is a positive universal 
onstant by the Central LimitTheorem (for another argument, giving a more expli
it estimate, see forexample [7, Lemma 2℄). Hen
e it su�
es to prove that for every r > √
k,

P(‖ξ‖ ≥ r) ≤ C
√
k κP(‖Gk‖ ≥ r)where C > 0 is some universal 
onstant.
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Assume r > √

k and put s = (r2 − (k − 1))1/2 so that r2 − s2 = k − 1.Observe that α = s/r ∈ (k−1/2, 1). Therefore Lemmas 4, 3 and 2 yield
P(‖ξ‖ ≥ r) ≤ κT (s)

P(|θ1| ≥ s/r)
≤ (2π)−1/2κs−1e−s2/2

2C1k−1/2α−1(1 − α2)(k−1)/2

=

√
k κrk−2e−r2/2e(r

2−s2)/2

C1

√
8π(r2 − s2)(k−1)/2

= C2

√
k

(

e

k − 1

)(k−1)/2

κrk−2e−r2/2

for some universal C2 > 0. On the other hand,
P(‖Gk‖ ≥ r) = (2π)−k/2

∞\
r

ωk−1t
k−1e−t2/2 dt

≥ (2π)−k/2ωk−1r
k−2

∞\
r

te−t2/2 dt

= (2π)−k/22πk/2Γ (k/2)−1rk−2e−r2/2

= 2−(k−2)/2Γ (k/2)−1rk−2e−r2/2

≥ C3

(

e

k − 1

)(k−1)/2

rk−2e−r2/2

for some universal C3 > 0, by Stirling's formula. This ends the proof of thetheorem.Remark 1. In general the fa
tor √
k in Theorem 2 is ne
essary.Proof. Fix k ≥ 2. Choose r > √

k su
h that pk(r) = k(e/k)k/2rk−2e−r2/2satis�es pk(r) < 1 and pk(r) ≤ T (r/2). Some large enough r will do be
auseof (4). We will prove that for any s ∈ (0, r),(5) pk(r)P(θ1 ≥ s/r) ≤ C4T (s),where C4 > 0 is numeri
al. Indeed, for s ∈ (0, r/2] the inequality triv-ially follows from the fa
t that T (s) ≥ T (r/2) and from the 
hoi
e of r. If
s ∈ (r/2, r), then α = s/r ∈ (1/2, 1) so that

P(θ1 ≥ s/r) =
Γ (k/2)

Γ ((k − 1)/2)
√
π

√
1−α2\
0

tk−2(1 − t2)−1/2 dt

≤ C5

√
k α−1

√
1−α2\
0

tk−2 dt ≤ C6k
−1/2(1 − α2)(k−1)/2
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and therefore, by Lemma 2,

T (s)

P(θ1 ≥ s/r)
≥ C7

s−1e−s2/2

k−1/2(1 − α2)(k−1)/2

≥ C7

√
k rk−2e−r2/2 · e(r

2−s2)/2

(r2 − s2)(k−1)/2

≥ C7

√
k rk−2e−r2/2 · inf

u>0
u−(k−1)/2eu/2

= C7

√
k rk−2e−r2/2

(

e

k − 1

)(k−1)/2

≥ C8pk(r),where C5, C6, C7, C8 are some universal positive 
onstants.Let θ be, as before, uniformly distributed on Sk−1 and let η be a randomvariable independent of θ with P(η = r) = pk(r), P(η = 0) = 1 − pk(r). Let
ξ = ηθ. We have proved (5), whi
h means that for s > 0 and all v ∈ Sk−1,

P(|ξ · v| ≥ s) ≤ 2C4T (s).On the other hand, P(‖ξ‖≥ r)≥ pk(r), whereas P(‖Gk‖≥ r)≤C9k
−1/2pk(r)where C9 > 0 is numeri
al (to see this, modify the end of the proof of The-orem 2). Hen
e the fa
tor √k in Theorem 2 
annot be avoided in general.4. Gaussian 
on
entration results of Pinelis. In this se
tion, we
ompare and dis
uss earlier results by Pinelis [10℄ based on moment 
om-parison whi
h provide improved 
onstants in a Gaussian setting. Pinelis' in-vestigation 
overs the 
ase of Lips
hitz maps with values in both Eu
lideanspa
e R

k and arbitrary (�nite- or in�nite-dimensional) normed spa
es.A �rst optimal result in Eu
lidean spa
e is the following statementfrom [10℄. With regard to Theorem 2, it shows that the dimensional fa
tor√
k is not ne
essary for Gaussian measures. Re
all that γn is the standardGaussian measure on R

n.Theorem 3. Let f : R
n → R

k be a 1-Lips
hitz fun
tion su
h thatT
f dγn = 0. Then, for any 
onvex fun
tion Ψ : R → R,\

Ψ(‖f‖) dγn ≤
\
Ψ(‖x‖) dγk(x).In parti
ular , for any r ≥ 0,

γn(‖f‖ ≥ r) ≤ eγk(x : ‖x‖ ≥ r).For the reader's 
onvenien
e we extra
t from Pinelis' paper a dire
t ar-gument showing that the 
onvex domination implies the tail inequality withfa
tor e (Pinelis tra
es this argument ba
k to Kemperman and 
ites thebook by Shora
k and Wellner [12, pp. 797�799℄). It is well known and quite
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easy to prove that the random variable ‖Gk‖ has logarithmi
ally 
on
avetails, i.e. γk(x : ‖x‖ ≥ t) = e−w(t) for some 
onvex, in
reasing fun
tion
w : [0,∞) → [0,∞). Given r > 0 one 
an �nd an a�ne fun
tion t 7→ a+ bt,with a ∈ R and b > 0, supporting the fun
tion w at the point t = r, so that
P(‖Gk‖ ≥ r) = e−a−br and P(‖Gk‖ ≥ t) ≤ e−a−bt for t ≥ 0. In parti
ular,by setting t = 0 we dedu
e that a ≤ 0. Let c = r− 1/b. If c ≤ 0 then br ≤ 1,so that also a+ br ≤ 1 and therefore

eγk(x : ‖x‖ ≥ r) = eP(‖Gk‖ ≥ r) = e1−a−br ≥ 1 ≥ γn(‖f‖ ≥ r).If c > 0 then 
onsider a nonde
reasing, 
onvex fun
tion Ψ(t) = (t− c)+ andobserve that
γn(‖f‖ ≥ r) = b(r − c)+γn(‖f‖ ≥ r) = bΨ(r)γn(‖f‖ ≥ r).Therefore,

γn(‖f‖ ≥ r) ≤ b
\
Ψ(‖f‖) dγn ≤ b

\
Ψ(‖x‖) dγk(x) = bE(‖Gk‖ − c)+.Now,

bE(‖Gk‖ − c)+ = b

∞\
0

P((‖Gk‖ − c)+ ≥ t) dt = b

∞\
c

P(‖Gk‖ ≥ t) dt

≤ b

∞\
c

e−a−bt dt = e−a−bc

and the 
on
lusion follows sin
e e1−a−br = eγk(x : ‖x‖ ≥ r).Let dµ = e−V dx on R
n with V ′′ ≥ c Id, c > 0. By a theorem of Caf-farelli [3℄, the Brenier map [2℄ S : R

n → R
n that transports γn to µ isLips
hitz with norm c−1/2. Theorem 3 thus readily extends to this familyof log-
on
ave measures. In parti
ular, if f : R

n → R is 1-Lips
hitz andT
f dµ = 0, then for any p ≥ 1,\

‖f‖2p dµ ≤ c−p
\
‖x‖2p dγk(x).It is worth mentioning that a slight improvement of this moment 
omparisonmay be obtained by an alternative semigroup proof whi
h we brie�y dis
ussnow, for p an integer. For a probability measure µ on R

n, denote by λ1 itsPoin
aré 
onstant de�ned as the largest λ su
h that for all smooth enoughfun
tions f : R
n → R with Tf dµ = 0,

λ
\
f2 dµ ≤

\
‖∇f‖2 dµ.Proposition 1. Let dµ = e−V dx on R

n with V ′′ ≥ c Id, c > 0. Then,for any 1-Lips
hitz fun
tion f : R
n → R

k su
h that Tf dµ = 0 and any
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integer p ≥ 1, \

‖f‖2p dµ ≤ p!

p−1
∏

i=0

1

ci+ λ1

\
‖x‖2p dγk(x).It is 
lassi
al (
f. [8℄) that under the assumptions of the proposition,

λ1 ≥ c (with equality in the Gaussian 
ase). In parti
ular,\
‖f‖2p dµ ≤ c−p

\
‖x‖2p dγk(x).Proposition 1 provides a somewhat sharper result than the 
onjun
tion ofCa�arelli's theorem with the Gaussian 
ase of Theorem 3 sin
e the inequality

λ1 ≥ c may be stri
t.Proof. Let (Pt)t≥0 be the semigroup generated by the se
ond order dif-ferential operator ∆−∇ ·∇V . Sin
e V ′′ ≥ c Id, it is known (
f. e.g. [8℄) thatfor all smooth enough fun
tions ϕ : R
n → R and all t ≥ 0,

‖∇Ptϕ‖2 ≤ e−2ctPt(‖∇ϕ‖2).In parti
ular, if ϕ is 1-Lips
hitz, ‖∇Ptϕ‖2 ≤ e−2ct.Given now ϕ : R
n → R 1-Lips
hitz smooth and su
h that Tϕdµ = 0,write, for every t ≥ 0,\

(Ptϕ)2p dµ = −
∞\
t

d

ds

(\\
(Psϕ)2p dµ

)

ds

≤ 2p(2p− 1)

∞\
t

e−2cs
(\\

(Psϕ)2p−2 dµ
)

ds.Iterating, we obtain\
ϕ2p dµ ≤ 2p(2p− 1)(2p− 2) · · · 3

×
∞\
0

e−2ct1 · · ·
∞\

tp−2

e−2ctp−1

\
(Ptp−1

ϕ)2 dµ dt1 · · · dtp−1.

Now, the Poin
aré inequality provides an exponential de
ay in L2(µ) alongthe semigroup Pt in the form (
f. e.g. [8℄)\
(Ptp−1

ϕ)2 dµ ≤ e−2λ1tp−1

\
ϕ2 dµ ≤ 1

λ1
e−2λ1tp−1 .Therefore, \

ϕ2p dµ ≤ (2p)!

2p

p−1
∏

i=0

1

ci+ λ1
.This is the result in the one-dimensional 
ase.
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Let now f = (ϕ1, . . . , ϕk) : R

n → R
k. Write\

‖f‖2p dµ = M−1
2p

\\∣
∣

∣

k
∑

i=1

yiϕi(x)
∣

∣

∣

2p
dµ(x) dγk(y),where we re
all that M2p =

T
R
x2p dγ1. For every �xed y= (y1, . . . , yk)∈R

k,the map x 7→ ∑k
i=1 yiϕi(x) is Lips
hitz with Lips
hitz 
oe�
ient less thanor equal to ‖y‖. The 
on
lusion then follows from the pre
eding sin
e M2p =

(2p)!/(2pp!).We next turn to Lips
hitz fun
tions on Gaussian spa
es with values inarbitrary ve
tor spa
es, and point out several extensions and generalizations.As developed in [10℄, 
omparison results are obtained here from a Poin
arétype inequality put forward by Pisier [11℄. In the following, F denotes anormed ve
tor spa
e.Theorem 4. For every 
onvex measurable fun
tion Ψ : F → R andevery (smooth, su�
iently integrable) fun
tion f : R
n → F with Tf dγn = 0,\

Ψ(f) dγn ≤
\\
Ψ

(

π

2
y · ∇f(x)

)

dγn(x) dγn(y).The example of F = ℓ1 shows that the fa
tor π/2 in this inequality 
annotbe improved (
f. [11℄). We brie�y re
all the simple proof of Theorem 4. Let
G be a random ve
tor with distribution γn and G′ an independent 
opy of
G. For any θ ∈ R, set Gθ = G sin θ + G′ cos θ and G′

θ = G cos θ − G′ sin θ.Then, for a smooth enough fun
tion f : R
n → F su
h that Tf dγn = 0,

f(G) − f(G′) =

π/2\
0

d

dθ
f(Gθ) dθ =

π/2\
0

G′
θ · ∇f(Gθ) dθ.Apply then Ψ and take expe
tation. On the one hand, by Jensen's inequality(in G′), E(Ψ(f(G)− f(G′))) ≥ EΨ(f(G)) sin
e f has mean zero, and on theother, by Jensen's inequality again but in dθ,

EΨ(f(G)) ≤
π/2\
0

E

(

Ψ

(

π

2
G′

θ · ∇f(Gθ)

))

dθ

π/2
.The 
on
lusion follows sin
e for ea
h θ, the 
ouple (Gθ, G
′
θ) has the samedistribution as (G,G′).Although the extension below is not stri
tly ne
essary for the purposesof measure 
on
entration, it might be worth mentioning that Ca�arelli's
ontra
tion theorem extends Theorem 4 to all stri
tly log-
on
ave measureson R

n. We leave the details to the reader.Corollary 1. Let dµ = e−V dx on R
n with V ′′ ≥ c Id, c > 0. Then, forevery 
onvex measurable fun
tion Ψ : F → R and every (smooth, su�
iently



Measure Con
entration of Ve
tor-Valued Maps 273
integrable) ve
tor-valued fun
tion f : R

n → F with Tf dµ = 0,\
Ψ(f) dµ ≤

\\
Ψ

(

π

2
√
c
y · ∇f(x)

)

dµ(x) dγn(y).Theorem 4 allows us to derive 
on
entration inequalities for fun
tions onGaussian spa
es with values in arbitrary ve
tor spa
es that are Lips
hitz inan appropriate sense.The �rst result 
on
erns maps f : R
n → F that are Lips
hitz in theusual sense. If Ψ(x) = ψ(‖x‖), x ∈ F , where ψ : R+ → R is 
onvex andnon-de
reasing, for any 1-Lips
hitz map f : R

n → F (with respe
t to thenorm on F ) with Tf dγn = 0,\
ψ(‖f‖) dγn ≤

\
ψ

(

π

2
‖y‖

)

dγn(y).By the 
omparison theorems of [10℄ (see the 
omment following Theorem 3),it follows that
γn(‖f‖ ≥ r) ≤ eγn(x : ‖x‖ ≥ 2r/π)for every r ≥ 0.Let now ν be a 
entered Gaussian measure on a real separable Bana
hspa
e F . A map f : R

n → F is then said to be 1-Lips
hitz with respe
tto ν if for every ξ ∈ F ′, 〈ξ, f〉 : R
n → R is Lips
hitz with 
oe�
ient

(
T
〈ξ, x〉2 dν(x))1/2. Of 
ourse, the 
hoi
e of ν = γk on F = R

k leads tothe usual de�nition of 1-Lips
hitz fun
tion f : R
n → R

k. With the helpof Theorem 4, we may thus extend the 
on
entration of maps to Lips
hitzfun
tions with respe
t to a given Gaussian measure ν.Corollary 2. Let dµ = e−V dx on R
n with V ′′ ≥ c Id, c > 0. Letfurthermore ν be a 
entered Gaussian measure on a Bana
h spa
e F . Then,for any fun
tion f : R

n → F 1-Lips
hitz with respe
t to ν and su
h thatT
f dµ = 0,

µ(‖f‖ ≥ r) ≤ Kν(x : ‖x‖ ≥ √
c r/K)for every r ≥ 0, where K is some positive universal 
onstant.Proof. By standard smoothing arguments (
onvoluting f with a C∞

0 ap-proximation of δ0) we 
an assume that f is smooth. By Ca�arelli's result, itis enough to deal with the Gaussian 
ase µ = γn (alternatively, use Corol-lary 1). By de�nition of 1-Lips
hitz with respe
t to ν, for any �xed x, andany ξ ∈ F ′, \
〈ξ, y · ∇f(x)〉2 dγn(y) ≤

\
〈ξ, y〉2 dν(y).This 
ovarian
e domination implies that ν is a 
onvolution of (∇f(x))∗γn(the image of γn under linear transportation by ∇f(x)) with some other 
en-tered Gaussian measure. Therefore, by Jensen's inequality, for every 
onvex
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fun
tion Ψ : F → R and any x ∈ R

n,\
Ψ(y · ∇f(x)) dγn(y) ≤

\
Ψ(y) dν(y).Now, by Theorem 4,\

Ψ(2f/π) dγn ≤
\\
Ψ(y · ∇f(x)) dγn(y) dγn(x) ≤

\
Ψ(y) dν(y).The 
omment following Theorem 3 does not apply here sin
e the norm on Fmay di�er from the Eu
lidean norm indu
ed by ν. We need another argu-ment. Let G be an F -valued Gaussian random ve
tor with distribution ν.Denote by M the median of ‖G‖ and let σ = supξ∈F ′ : ‖ξ‖=1(E〈ξ,G〉2)1/2.The Gaussian isoperimetry implies that for g ∼ N (0, 1),

E exp((‖G‖ −M)2/(4σ2)) ≤ Eeg2/4 =
√

2(
f. [9℄). Let Ψ(y) = exp(‖y‖2/(8σ2)). Sin
e ‖G‖2 ≤ 2M2 +2(‖G‖−M)2 wehave \
Ψ(2f/π) dγn ≤ EΨ(G) ≤ eM2/(4σ2)

E exp((‖G‖ −M)2/(4σ2))

≤
√

2 eM2/(4σ2).If r < πM then obviously γn(‖f‖ ≥ r) ≤ 2P(‖G‖ ≥ r/π). If r ≥ πM then,by Chebyshev's inequality,
γn(‖f‖ ≥ r) ≤

√
2 eM2/(4σ2)e−r2/(2π2σ2) ≤

√
2 e−r2/(4π2σ2)

≤
√

2A−1 · T
(

r

2πσ

)

,where A = infs≥0 T (s)es2 is a positive universal 
onstant (see Lemma 2).Choose ξ ∈ F ′ su
h that ‖ξ‖ = 1 and (E〈ξ,G〉2)1/2 ≥ σ/2. Then
ν

(

x : ‖x‖ ≥ r

4π

)

= P

(

‖G‖ ≥ r

4π

)

≥ P

(

〈ξ,G〉 ≥ r

4π

)

≥ P

(

σ

2
g ≥ r

4π

)

= T

(

r

2πσ

)

≥ A√
2
· γn(‖f‖ ≥ r)and the proof is �nished by setting K = max(

√
2/A, 4π).The 
ouple (Rn, γn) may be repla
ed in the above statements by anabstra
t Wiener spa
e. Lips
hitz has then to be understood in the dire
tionsof the reprodu
ing kernel Hilbert spa
e.The pre
eding results have 
ounterparts on the dis
rete 
ube {0, 1}n. Ithas been shown by Pisier [11℄ that for every f : {0, 1}n → F with mean zerowith respe
t to the uniform measure µ on the 
ube, and every p ≥ 1,(6) \

‖f‖p dµ ≤ Cp
\\∥

∥

∥

n
∑

i=1

yiDif(x)
∥

∥

∥

p
dµ(x) dµ(y)
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where Dif(x) = 1

2 [f(x) − f(si(x))] and si(x) is obtained from x ∈ {0, 1}nby 
hanging the ith 
oordinate. In general, the 
onstant C is 2e logn and
annot be improved for arbitrary spa
es F . It is however independent of nin the 
ase of F = R
k with its 
lassi
al Eu
lidean stru
ture (see [13℄).By the 
omparison between Radema
her and Gaussian averages, we mayin
rease the right-hand side of (6) repla
ing dµ(y) by dγn(y) (at the expenseof a multipli
ative fa
tor). Now, the same reasoning as for Theorem 1 maybe applied. If f : {0, 1}n → R

k is su
h that Tf dµ = 0 and, for every ξ ∈ R
k,

n
∑

i=1

(ξ ·Dif(x))2 ≤ ‖ξ‖2

uniformly in x, then \
‖f‖p dµ ≤ Cp

\
‖y‖p dγk(y).Together with Lemma 1, we 
on
lude that

µ(‖f‖ ≥ r) ≤ Cγk(x : ‖x‖ ≥ r/C)for every r ≥ 0.5. Con
luding 
omments and questions. In what follows, supfdenotes the supremum over all 1-Lips
hitz fun
tions f : R
n → R

k. In viewof Gromov's result [5℄ des
ribed in the Introdu
tion it is natural toask what is the optimal rate of 
on
entration of f around some value of
f�namely, what is the asymptoti
s of supn supf infx∈Rn ‖f(x) − Ef(Gn)‖as k → ∞ and, for �xed k, what is the asymptoti
s (as t → ∞) of
supn supf infx∈Rn P(‖f(x) − f(Gn)‖ ≥ t).Dealing with 
on
entration properties of (X × X,µ ⊗ µ) rather than
(X,µ) (see e.g. Barthe's isoperimetri
 inequality for Sn−1 ×Sn−1 [1, Propo-sition 11℄) 
an lead to 
on
entration results of a slightly di�erent form: in-stead of estimating from above P(‖f(Gn) − Ef(Gn)‖ ≥ t) one 
an bound
P(‖f(Gn) − f(G′

n)‖ ≥ t) where G′
n is an independent 
opy of Gn. Anotherpossible dire
tion of resear
h is related to the following de�nition.Definition 1. Let F be a separable real Bana
h spa
e and let X and

Y be F -valued random ve
tors. We will say that X is weakly dominated by
Y if for every bounded linear fun
tional ϕ ∈ F ′ and all t > 0,

P(|〈ϕ,X〉| ≥ t) ≤ P(|〈ϕ, Y 〉| ≥ t).It is of interest under what additional assumptions about distributionsof X and Y weak domination implies E‖X‖ ≤ CE‖Y ‖, or even
P(‖X‖ ≥ t) ≤ CP(‖Y ‖ ≥ t/C) for all t > 0.Note that the latter inequality easily implies E‖X‖ ≤ C2

E‖Y ‖.
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It is not very di�
ult to see that this is always so if both X and Y are
entered Gaussian ve
tors (see [9℄ or [6, Chapter 5.5℄�we have used a similarapproa
h in the proof of Corollary 2). Some results of the present paper, es-pe
ially Theorem 2, refer to the 
ase when F is equal to R

k equipped with thestandard Eu
lidean stru
ture. Re
ently Kwapie« and Lataªa (private 
om-muni
ation) obtained several interesting results 
on
erning the 
ase whenwe make some additional assumptions about Y only. Also, Lataªa provedthat the following natural 
onje
ture would be a 
orollary to the so-
alledBernoulli 
onje
ture of Talagrand (whi
h is still open, see [14, p. 130℄):Conje
ture 1. Let r1, r2, . . . be an i.i.d. sequen
e of symmetri
 ±1random variables. There exists a universal 
onstant C > 0 su
h that for anyseparable real Bana
h spa
e F and every 
hoi
e of ve
tors v1, w1, . . . , vn, wnin F su
h that X =
∑n

j=1 rjvj is weakly dominated by Y =
∑n

j=1 rjwj , wealso have
P(‖X‖ ≥ t) ≤ CP(‖Y ‖ ≥ t/C) for all t > 0.Below we will show an example of R

k-valued random ve
tors X and Y,both rotation invariant with respe
t to the standard Eu
lidean stru
ture,indi
ating that even under su
h additional assumptions, weak domination
annot in general imply that P(‖X‖ ≥ t) ≤ CP(‖Y ‖ ≥ t/C) for all t > 0.Re
all that T is a 
ontinuous and stri
tly de
reasing fun
tion. Fix C > 1.Choose xC > 0 so great that 2CT (xC) ≤ 1/4. Then 
hoose β ∈ (0, 1/(2C))so small that
2Cβ

1 − β
≤ inf

x∈[0,xC ]

T (2Cx)

T (x)
.The 
hoi
e of xC implies that, for all x ≥ xC ,(7) 2CβT (x) − (1 − β)T (2Cx) ≤ β/4.Now we will 
hoose b ∈ (0, 1) so little that for all x > 0,(8) 2CβT (x) ≤ (1 − β)T (2Cx) + βT (bx).From the 
hoi
e of β we dedu
e that (8) is satis�ed whenever x ∈ [0, xC ]and b > 0. Hen
e it su�
es to 
hoose a proper b for x ≥ xC . One 
an easily
he
k that (4) implies T−1(s)/

√

2 ln(1/s) → 1 as s→ 0+ and therefore
lim

x→∞
T−1(2CT (x) − (1 − β)T (2Cx)/β)/x = 1,so that there exists y > xC su
h that for every x ≥ y,

2CβT (x) ≤ (1 − β)T (2Cx) + βT (x/2).On the other hand, by (7), we have for every x ∈ [xC , y],
2CβT (x) ≤ (1 − β)T (2Cx) + β/4 ≤ (1 − β)T (2Cx) + βT (T−1(1/4)x/y).Therefore b = min(1/2, T−1(1/4)/y) satis�es our requirements. Re
all that

L(Gk) = N (0, Idk) and let ‖ · ‖ denote the standard Eu
lidean norm on R
k,
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as usual. Consider random ve
tors (Gaussian mixtures) X and Y with dis-tributions given by L(X) = (1 − 2Cβ)δ0 + 2CβL(Gk) and L(Y ) =
(1−β)L((2C)−1Gk)+βL(Gk/b). The inequality (8) means that X is weaklydominated by Y. By the law of large numbers, limk→∞ P(‖Gk‖ ≥ w

√
k) isequal to 0 if w > 1 and it is equal to 1 if w ∈ (0, 1), so that

P(‖X‖ ≥ 0.9
√
k) = 2CβP(‖Gk‖ ≥ 0.9

√
k)

k→∞−→ 2Cβ,whereas
CP(‖Y ‖ ≥ 0.9

√
k/C) ≤ C(1 − β)P(‖Gk‖ ≥ 1.8

√
k) + Cβ

k→∞−→ Cβ.Hen
e, in general, the weak domination 
annot yield the inequality
P(‖X‖ ≥ t) ≤ CP(‖Y ‖ ≥ t/C) for all t > 0,for any universal C. However, one 
an quite easily prove su
h an inequalitywith C depending on k.On the other hand, note that for this example (and for any pair of rotationinvariant R

k-valued X and Y su
h that X is weakly dominated by Y ), forevery p > 0,
E‖X‖p ≤ E‖Y ‖pfor any norm ‖ · ‖ on R

k (not ne
essarily Eu
lidean).Indeed, be
ause of the rotation invarian
e we have E‖X‖p = E‖X‖p
◦ and

E‖Y ‖p = E‖Y ‖p
◦, where ‖v‖◦ = (

T
O(k) ‖U(v)‖p dσH(U))1/p (the integral istaken with respe
t to the normalized Haar measure σH) for v ∈ R

k. Thenorm ‖ · ‖◦ is rotation invariant and our assertion follows from the fa
t that
‖ · ‖◦ must be proportional to another rotation invariant norm ‖v‖◦◦ :=
(E|θ · v|p)1/p. Obviously, E|θ ·X|p ≤ E|θ ·Y |p for θ independent of X and Y .A
knowledgements. We thank I. Pinelis for his interest in this workand his help in the proof of Lemma 1. We also thank the anonymous refereefor useful 
omments. Part of the work was done when the se
ond namedauthor visited Institut de Mathématiques at Université Paul Sabatier inToulouse. It is a pleasure to a
knowledge their kind hospitality.

Referen
es[1℄ F. Barthe, Extremal properties of 
entral half-spa
es for produ
t measures, J. Fun
t.Anal. 182 (2001), 81�107.[2℄ Y. Brenier, Polar fa
torization and monotone rearrangement of ve
tor-valued fun
-tions, Comm. Pure Appl. Math. 44 (1991), 375�417.[3℄ L. Ca�arelli, Monotoni
ity properties of optimal transportation and the FKG andrelated inequalities, Comm. Math. Phys. 214 (2000), 547�563.[4℄ M. Gromov, Metri
 Stru
tures for Riemannian and Non-Riemannian Spa
es,Birkhäuser, 1998.



278 M. Ledoux and K. Oleszkiewi
z
[5℄ M. Gromov, Isoperimetry of waists and 
on
entration of maps, Geom. Fun
t. Anal.13 (2003), 178�215.[6℄ S. Kwapie« and W. A. Woy
zy«ski, Random Series and Sto
hasti
 Integrals: Singleand Multiple, Probab. Appl., Birkhäuser, 1992.[7℄ R. Lataªa and K. Oleszkiewi
z, Small ball probability estimates in terms of width,Studia Math. 169 (2005), 305�314.[8℄ M. Ledoux, The Con
entration of Measure Phenomenon, Math. Surveys Monogr.89, Amer. Math. So
., 2001.[9℄ M. Ledoux and M. Talagrand, Probability in Bana
h Spa
es. Isoperimetry and Pro-
esses, Ergeb. Math. Grenzgeb. (3) 23, Springer, 1991.[10℄ I. Pinelis, Optimal tail 
omparison based on 
omparison of moments, in: High Di-mensional Probability (Oberwolfa
h, 1996), Progr. Probab. 43, Birkhäuser, 1998,297�314.[11℄ G. Pisier, Probabilisti
 methods in the geometry of Bana
h spa
es, in: Probabil-ity and Analysis (Varenna, 1985), Le
ture Notes in Math. 1206, Springer, 1986,167�241.[12℄ G. R. Shora
k and J. A. Wellner, Empiri
al Pro
esses with Appli
ations to Statisti
s,Wiley, New York, 1986.[13℄ M. Talagrand, Isoperimetry, logarithmi
 Sobolev inequalities on the dis
rete 
ube,and Margulis' graph 
onne
tivity theorem, Geom. Fun
t. Anal. 3 (1993), 295�314.[14℄ �, The Generi
 Chaining. Upper and Lower Bounds of Sto
hasti
 Pro
esses,Springer Monogr. Math., Springer, Berlin, 2005.Mi
hel LedouxInstitut de MathématiquesUniversité Paul-Sabatier31062 Toulouse, Fran
eE-mail: ledoux�math.ups-tlse.fr

Krzysztof Oleszkiewi
zInstitute of Mathemati
sWarsaw UniversityBana
ha 202-097 Warszawa, PolandE-mail: koles�mimuw.edu.plRe
eived January 22, 2007;re
eived in �nal form June 16, 2007 (7508)


