Addendum to "On Meager Additive and Null Additive Sets in the Cantor space 2^{ω} and in \mathbb{R} "
 (Bull. Polish Acad. Sci. Math. 57 (2009), 91-99)

by
Tomasz WEISS
Presented by Stanistaw KWAPIEN

Summary. We prove in ZFC that there is a set $A \subseteq 2^{\omega}$ and a surjective function H : $A \rightarrow\langle 0,1\rangle$ such that for every null additive set $X \subseteq\langle 0,1), H^{-1}(X)$ is null additive in 2^{ω}. This settles in the affirmative a question of T . Bartoszyński.

1. Introduction. Recall that by $\left(2^{\omega}, \oplus\right)$ we denote the Cantor space with modulo 2 coordinatewise addition, and $\left(\langle 0,1),+_{1}\right)$ is the unit interval with modulo 1 addition. For brevity, 2^{ω} (respectively, $\langle 0,1)$) stands for $\left(2^{\omega}, \oplus\right)$ (respectively, $\left.(\langle 0,1),+1)\right)$.

We shall say that $X \subseteq 2^{\omega}$ is null additive if for every null set $A, X \oplus A=$ $\{x \oplus a: x \in X, a \in A\}$ is null in 2^{ω}. By analogy, we define a null additive set in $\langle 0,1)$. In [4], it has been proven that if X is a null additive set in 2^{ω}, then $T(X)$ is null additive in $\langle 0,1\rangle$, where T is the Cantor-Lebesgue function that maps 2^{ω} into $\langle 0,1\rangle$. Thus the existence of an uncountable null additive set in 2^{ω} implies that there is an uncountable null additive set in \mathbb{R}. In this paper, we prove the converse implication which provides a complete answer to the measure version of T. Bartoszyński's question (see [4, p. 91]). To do this we show that there exists a set $A \subseteq 2^{\omega}$ and a surjective function $H: A \rightarrow\langle 0,1\rangle$ such that for every null additive set $X \subseteq\langle 0,1), H^{-1}(X)$ is null additive in 2^{ω}.
2. Main theorems. In this paper, for $n \in \omega, p_{n}$ denotes the nth prime number, and $Z_{p_{n}}=\left\{0, \ldots, p_{n}-1\right\}$ with modulo p_{n} addition. We define

$$
C=Z_{p_{0}} \times Z_{p_{1}} \times \cdots
$$

2010 Mathematics Subject Classification: 03E05, 03E15, 03E35.
Key words and phrases: null additive sets, translations in 2^{ω} and in \mathbb{R}.
and we assume that \boxplus is coordinatewise addition in C or in any set of the form $Z_{p_{r}} \times \cdots \times Z_{p_{s}}$, where $r, s \in \omega$, and $r<s$. Let $f: C \rightarrow\langle 0,1\rangle$ be the Cantor-Lebesgue function given by the formula

$$
f(x)=\sum_{i=0}^{\infty} \frac{x(i)}{\prod_{j=0}^{i} p_{j}} \quad \text { for } x \in C,
$$

where $x(i) \in\left\{0, \ldots, p_{i}-1\right\}$ for $i \in \omega$. It is not difficult to check that f is one-to-one except on a countable subset of C. Throughout the paper, x is often identified with $f(x)$.

Suppose that $X \subseteq\langle 0,1)$ is a null additive set.
Theorem 1. Given a sufficiently fast increasing sequence $\left\{a_{n}\right\}_{n \in \omega}$ of positive integers, there is $\left\{\widetilde{K}_{n}\right\}_{n \in \omega}$, with $\widetilde{K}_{n} \subseteq Z_{p_{a_{2 n}+1}} \times \cdots \times Z_{p_{a_{2 n+1}}}$ and $\left|\widetilde{K}_{n}\right| \leq 2^{n}$ for all $n \in \omega$, such that for every $\bar{x} \in X$,

$$
f^{-1}(\bar{x}) \upharpoonright Z_{p_{a_{2 n}+1}} \times \cdots \times Z_{p_{a_{2 n+1}}} \in \widetilde{K}_{n}
$$

for almost every $n \in \omega$.
Proof. We will follow the notation, and we refine the proofs, of Theorem 2.7.18 in [1], and Lemma 0 and Claim $\boldsymbol{\phi}$ in [2].

Lemma 2. For any non-negative integers k, l, m, with $k<l$, there is $n \in \omega$ and $T \subseteq Z_{p_{k}} \times \cdots \times Z_{p_{l}} \times \cdots \times Z_{p_{n}}$ such that $\mu(T) \sim 2^{-m}$, and for any $\left\langle\sigma_{i}, \tau_{i}\right\rangle \in Z_{p_{k}} \times \cdots \times Z_{p_{n}}(i \in I)$, where $\sigma_{i}(i \in I)$ belong to $Z_{p_{k}} \times \cdots \times Z_{p_{l}}$ and are distinct, the sets $T \boxplus\left\langle\sigma_{i}, \tau_{i}\right\rangle(i \in I)$ are stochastically independent.

Proof. Assume that $\bar{m}=p_{k} \cdot \ldots \cdot p_{l}$. In $\left\{p_{l+1}, \ldots, p_{n}\right\}$, where n is sufficiently large, find a family $\left\{A_{j}\right\}_{j<\bar{m}}$ of \bar{m} disjoint sets, each of cardinality m. Fix $j<\bar{m}$, and for each $p_{r} \in A_{j}$, let $B_{r} \subseteq Z_{p_{r}}$ be such that $\left|B_{r}\right| / p_{r} \sim 1 / 2$. Put

$$
T_{j}=\left\{x \in Z_{p_{l+1}} \times \cdots \times Z_{p_{n}}: x \upharpoonright A_{j} \in \prod_{p_{r} \in A_{j}} B_{r}\right\}
$$

Define $T=\bigcup_{j<\bar{m}}\left\{\sigma_{i}\right\} \times T_{j}$, where $\left\{\sigma_{j}\right\}_{j<\bar{m}}$ is a bijective enumeration of $Z_{p_{k}} \times \cdots \times Z_{p_{l}}$, and then follow the proof of Lemma 0 in [2] to show that T is as required.

Remark 3. Notice that for every $m \in \omega, m \geq 4$,

$$
\left(\frac{1}{2}\right)^{m} \leq \mu(T) \leq\left(\frac{1}{2}+\frac{1}{m}\right)^{m} \leq\left(\frac{3}{4}\right)^{m}
$$

Lemma 4. For any $r, s \in \omega$ with $r<s, Z_{p_{r}} \times \cdots \times Z_{p_{s}}$ is isomorphic to $Z_{p_{r} \cdot \ldots \cdot p_{s}}$.

Proof. Put $q_{i}=\frac{p_{r} \ldots \ldots \cdot p_{s}}{p_{i}}$ for $r \leq i \leq s$, and define, for $\left(a_{r}, \ldots, a_{s}\right) \in$ $Z_{r} \times \cdots \times Z_{s}$,

$$
i_{r, s}\left(a_{r}, \ldots, a_{s}\right)=q_{r} \cdot a_{r}+q_{r+1} \cdot a_{r+1}+\cdots+q_{s} \cdot a_{s}\left(\bmod p_{r} \cdot \ldots \cdot p_{s}\right)
$$

It is well-known that $i_{r, s}$ is an isomorphism.
Clearly.

$$
i_{r, s}(a, b)=i_{r, r^{\prime}}(a)+i_{r^{\prime}+1, s}(b)\left(\bmod p_{r} \cdot \ldots \cdot p_{s}\right)
$$

whenever $r<r^{\prime}<r^{\prime}+1<s$ and $a \in Z_{p_{r}} \times \cdots \times Z_{p_{r^{\prime}}}, b \in Z_{p_{r^{\prime}+1}} \times \cdots \times Z_{p_{s}}$. Here $i_{r, r^{\prime}}(a)$ is an element of the subgroup of $Z_{p_{r} \ldots \ldots p_{s}}$ that has order $p_{r} \ldots . p_{r^{\prime}}$, and $i_{r^{\prime}+1, s}(b)$ belongs to the subgroup of $Z_{p_{r} \cdot \ldots \cdot p_{s}}$ of order $p_{r^{\prime}+1} \cdot \ldots \cdot p_{s}$. Suppose that $\bar{x} \in Z_{p_{0} \ldots \cdot p_{n}}$. From now on, depending on the context, we identify \bar{x} with $\bar{x} /\left(p_{0} \cdot \ldots \cdot p_{n}\right)$. Thus for every l with $0<l<n, \bar{x}$ has the following (unique) form:

$$
\bar{x}=\sum_{i=0}^{l} \frac{x(i)}{\prod_{j=0}^{i} p_{j}}+\sum_{i=l+1}^{n} \frac{x(i)}{\prod_{j=0}^{i} p_{j}} .
$$

Let $\bar{x} \upharpoonright[0, l]$ denote the first sum, and $\bar{x} \upharpoonright[l+1, n]$ the second.
Lemma 5. Let $x, y \in Z_{p_{0}} \times \cdots \times Z_{p_{k}} \times \cdots \times Z_{p_{l}} \times \cdots \times Z_{p_{n}}$, and suppose that

$$
x \upharpoonright Z_{p_{k}} \times \cdots \times Z_{p_{l}}=y \upharpoonright Z_{p_{k}} \times \cdots \times Z_{p_{l}} .
$$

If $i_{0, n}(x) \upharpoonright[l+1, n]$ and $i_{0, n}(y) \upharpoonright[l+1, n]$ belong to $Z_{p_{l+1} \cdot \ldots \cdot p_{n}}$, or more precisely, to the subgroup of $Z_{p_{0}} \times \cdots \times Z_{p_{n}}$ that has order $p_{l+1} \cdot \ldots \cdot p_{n}$, then

$$
i_{0, n}(x) \upharpoonright[k, l]=i_{0, n}(y) \upharpoonright[k, l] .
$$

Proof. Assume that $i_{0, n}(x) \upharpoonright[l+1, n] \in Z_{p_{l+1} \ldots p_{n}}$. Since $i_{0, n}$ is one-toone, we have $i_{0, n}(x) \upharpoonright[0, l]=i_{0, l}\left(x \upharpoonright Z_{p_{0}} \times \cdots \times Z_{p_{l}}\right)$. By the same argument, $i_{0, n}(y) \upharpoonright[0, l]=i_{0, l}\left(y \upharpoonright Z_{p_{0}} \times \cdots \times Z_{p_{l}}\right)$. By the equality $x \upharpoonright Z_{p_{k}} \times \cdots \times Z_{p_{l}}=$ $y\left\lceil Z_{p_{k}} \times \cdots \times Z_{p_{l}}\right.$, we have

$$
i_{0, l}\left(x \upharpoonright Z_{p_{0}} \times \cdots \times Z_{p_{l}}\right) \upharpoonright[k, l]=i_{0, l}\left(y \upharpoonright Z_{p_{0}} \times \cdots \times Z_{p_{l}}\right) \upharpoonright[k, l] .
$$

Thus $i_{0, n}(x) \upharpoonright[k, l]=i_{0, n}(y) \upharpoonright[k, l]$.
Corollary 6. Let $x, y \in Z_{p_{0}} \times \cdots \times Z_{p_{k}} \times \cdots \times Z_{p_{l}} \times \cdots \times Z_{p_{n}}$. If $i_{0, n}(x) \upharpoonright[l+1, n], i_{0, n}(y) \upharpoonright[l+1, n]$ belong to $Z_{p_{l+1} \cdot \ldots \cdot p_{n}}$, and $i_{0, n}(x) \upharpoonright[k, l] \neq$ $i_{0, n}(y) \upharpoonright[k, l]$, then $x \upharpoonright Z_{p_{k}} \times \cdots \times Z_{p_{l}}$ and $y \upharpoonright Z_{p_{k}} \times \cdots \times Z_{p_{l}}$ are different as well.

Proof. Follows from Lemma 5 above.
Lemma 7. Assume that $\bar{x} \in Z_{p_{0} \cdot \ldots \cdot p_{l} \cdot \ldots \cdot p_{n}}$. Then there is $\bar{x}^{\prime} \in Z_{p_{0} \cdot \ldots \cdot p_{l} \cdot \ldots \cdot p_{n}}$, $\bar{x}^{\prime} \leq \bar{x}$, such that $\bar{x} \upharpoonright[0, l]=\bar{x}^{\prime} \upharpoonright[0, l], \bar{x}^{\prime} \upharpoonright[l+1, n] \in Z_{p_{l+1} \ldots \cdot p_{n}}$, and

$$
\left|\bar{x} \upharpoonright[l+1, n]-\bar{x}^{\prime} \upharpoonright[l+1, n]\right| \leq \frac{1}{p_{l+1} \cdot \ldots \cdot p_{n}}
$$

Proof. It is clear that

$$
\bar{x} \upharpoonright[l+1, n]<\frac{1}{p_{0} \cdot \ldots \cdot p_{l}} .
$$

Also, the distance between consecutive elements of $Z_{p_{l+1} \cdots \cdots p_{n}}$ is equal to $\frac{1}{p_{l+1} \cdots p_{n}}$ Thus there exists $y<\frac{1}{p_{0} \cdots p_{l}}, y \in Z_{p_{l+1} \cdots p_{n}}$, with

$$
\left\lvert\, \bar{x}\left\lceil[l+1, n]-y \left\lvert\, \leq \frac{1}{p_{l+1} \cdot \cdots \cdot p_{n}}\right.\right.\right.
$$

Then $\bar{x}^{\prime}=\bar{x} \upharpoonright[0, l]+y$ is as required.
Let us notice that in many cases the fact that $\bar{x}, \bar{y} \in Z_{p_{0} \cdots \cdot p_{k} \cdot \ldots \cdot p_{l} \cdots p_{n}}$ have different sums $\bar{x} \upharpoonright[k, l]$ and $\bar{y} \upharpoonright[k, l]$ does not imply that $i_{0, n}^{-1}(\bar{x}), i_{0, n}^{-1}(\bar{y})$ have different restrictions to $Z_{p_{k}} \times \cdots \times Z_{p_{l}}$. However, this holds true when we choose $\bar{x}^{\prime}, \bar{y}^{\prime}$ as in Lemma 7 , and moreover sufficiently "close" to \bar{x} and \bar{y}.

Suppose now that $\left\{a_{n}\right\}_{n \in \omega}$ is a given increasing sequence of positive integers. By taking a subsequence, we may assume that the triples $a_{0}<$ $a_{1}<a_{2}, a_{2}<a_{3}<a_{4}$, etc. correspond to $k<l<n$ as in Lemma 2 above. For $n \in \omega$, let \bar{T}_{n} be equal to $i_{0, a_{2 n+2}}\left(Z_{p_{0}} \times \cdots \times Z_{p_{a_{2 n}}} \times T_{n}\right)$, where T_{n} included in $Z_{p_{a_{2 n}+1}} \times \cdots \times Z_{p_{a_{2 n+2}}}$ has the same property as T in Lemma 2 above. Also, by the preceding remarks, \bar{T}_{n} can be viewed as a family of intervals of equal length $1 /\left(p_{0} \cdot \ldots \cdot p_{a_{2 n+2}}\right)$ contained in $\langle 0,1)$ with the group operation being modulo 1 addition.

Lemma 8. For every $n \in \omega$, and each set $T \subseteq Z_{p_{0}} \times \cdots \times Z_{p_{a_{2 n+2}}}$, the sets $T \boxplus x_{j}(j \in J)$ are stochastically independent iff $i_{0, a_{2 n+2}}(T)+$ $i_{0, a_{2 n+2}}\left(x_{j}\right)(j \in J)$ are stochastically independent in $Z_{p_{0} \ldots \ldots p_{a_{2 n+2}}}$ (respectively, in $\langle 0,1)$).

Proof. Follows immediately from the fact that $i_{0, a_{2 n+2}}$ (respectively, $\left.i_{0, a_{2 n+2}} /\left(p_{0} \cdot \ldots \cdot p_{a_{2 n+2}}\right)\right)$ is an isomorphism.

Assume that for $n \in \omega, \widetilde{T}_{n}$ is obtained from \bar{T}_{n} by adding to each interval $t \in \bar{T}_{n}$ its translations of the form

$$
t-1 \frac{i}{p_{0} \cdot \ldots \cdot p_{a_{2 n+2}}}, t+{ }_{1} \frac{1}{p_{0} \cdot \ldots \cdot p_{a_{2 n+2}}} \quad \text { where } \quad i \leq p_{0} \cdot \ldots \cdot p_{a_{2 n+1}} .
$$

Notice that for fixed $n \in \omega$,

$$
\mu\left(\widetilde{T}_{n}\right)=\left(p_{0} \cdot \ldots \cdot p_{a_{2 n+1}}+1\right) \cdot \mu\left(\bar{T}_{n}\right) .
$$

Thus, by making $p_{a_{2 n+2}}$ sufficiently large, we can have

$$
\left(\frac{1}{2}\right)^{n} \leq \mu\left(\widetilde{T}_{n}\right) \leq\left(\frac{3}{4}\right)^{n} \quad \text { for almost every } n \in \omega
$$

(see Lemma 2 and Remark 3 above). The advantage of using a larger set \widetilde{T}_{n} instead of \bar{T}_{n} is that if $\left(\widetilde{T}_{n}+{ }_{1} \bar{x}\right) \cap F=\emptyset$ for some $\bar{x} \in Z_{p_{0} \ldots \cdot p_{a_{2 n+2}}}$ and a closed set $F \subseteq\langle 0,1)$ then $\left(\bar{T}_{n}+{ }_{1} \bar{x}^{\prime}\right) \cap F=\emptyset$, where \bar{x}^{\prime} is an in Lemma 7 .

Assume that X is a null additive set in $\langle 0,1)$. Let G be an open set with $\mu(G)<1$ such that for every basic closed set $\tau \nsubseteq G$, we have $\mu(\tau \backslash G)>0$ and

$$
\bigcap_{m \in \omega} \bigcup_{n \geq m} \widetilde{T}_{n}+_{1} X \subseteq G
$$

As in the proof of Claim $\boldsymbol{\uparrow}$ in [2], we define, for each basic set τ and $n \in \omega$,

$$
\begin{aligned}
K_{\tau, n}=\left\{x \upharpoonright Z_{p_{a_{2 n}+1}} \times \cdots \times Z_{p_{a_{2 n+1}}}\right. & : x \in Z_{p_{0}} \times \cdots \times Z_{p_{a_{2 n+2}}} \\
& \left.\left(\bar{T}_{n}+{ }_{1} i_{0, a_{2 n+2}}(x)\right) \cap(\tau \backslash G)=\emptyset\right\} .
\end{aligned}
$$

Suppose that $\bar{x} \in X$. Clearly, for some $m_{0} \in \omega$ and some basic interval τ,

$$
\left(\bigcup_{n \geq m_{0}} \widetilde{T}_{n}+_{1} \bar{x}\right) \cap(\tau \backslash G)=\emptyset
$$

Since

$$
\sum_{i>a_{2 n+2}} \frac{\bar{x}(i)}{\prod_{j=0}^{i} p_{j}} \leq \frac{1}{p_{0} \cdot \ldots \cdot p_{a_{2 n+2}}}=\operatorname{diam}(t)
$$

for every $n \in \omega$ and each interval $t \in \bar{T}_{n}$, we have

$$
\left(\bar{T}_{n}+{ }_{1} \sum_{i \leq a_{2 n+2}} \frac{\bar{x}(i)}{\prod_{j=0}^{i} p_{j}}\right) \cap(\tau \backslash G)=\emptyset
$$

for $n \geq m_{0}$. By Lemma 7 above, for $n \geq m_{0}$, there is $x^{\prime} \in Z_{p_{0}} \times \cdots \times Z_{p_{a_{2 n+2}}}$ such that

$$
\bar{x} \upharpoonright\left[0, a_{2 n+1}\right]=i_{0, a_{2 n+2}}\left(x^{\prime}\right) \upharpoonright\left[0, a_{2 n+1}\right]
$$

and $i_{0, a_{2 n+2}}\left(x^{\prime}\right) \upharpoonright\left[a_{2 n+1}+1, a_{2 n+2}\right]$ is sufficiently "close" to $\bar{x} \upharpoonright\left[a_{2 n+1}+1\right.$, $\left.a_{2 n+2}\right]$. Hence, by the construction of \widetilde{T}_{n},

$$
\left(\bar{T}_{n}+{ }_{1} i_{0, a_{2 n+2}}\left(x^{\prime}\right)\right) \cap(\tau \backslash G)=\emptyset
$$

This implies (see Corollary 6 above) that the cardinality of the set

$$
\left\{\bar{x} \upharpoonright\left[a_{2 n}+1, a_{2 n+1}\right]: \bar{x} \in X \text { and }\left(\bar{T}_{n}+{ }_{1} \bar{x} \upharpoonright\left[0, a_{2 n+2}\right]\right) \cap(\tau \backslash G)=\emptyset\right\}
$$

is at most $\left|K_{\tau, n}\right|$, for $n \geq m_{0}$. Using Lemma 8 above, we now proceed exactly as in the proof of Claim $\boldsymbol{\uparrow}$ in [2] to show that $\left|K_{\tau, n}\right| \leq 2^{n}$ for almost every $n \in \omega$.

Lemma 9. For almost every $n \in \omega,\left|K_{\tau, n}\right| \leq 2^{n}$.

Proof. As in the proof of Claim $\boldsymbol{\uparrow}$ in [2], let $k_{n}=\left|K_{\tau, n}\right|$ for $n \in \omega$, and suppose that $x_{1}^{n}, \ldots, x_{k_{n}}^{n}$ are elements of $Z_{p_{0}} \times \cdots \times Z_{p_{a_{2 n+2}}}$ whose restrictions to $Z_{p_{a_{2 n}+1}} \times \cdots \times Z_{p_{a_{2 n+1}}}$ are different, and exhaust the whole $K_{\tau, n}$. We have

$$
\begin{aligned}
\mu\left(\bigcap _ { j \leq k _ { n } } i _ { 0 , a _ { 2 n + 2 } } \left(Z_{p_{0}} \times \cdots \times Z_{p_{a_{2 n+2}}} \backslash\right.\right. & \left.\left.\left(\left(Z_{p_{0}} \times \cdots \times Z_{p_{a_{2 n}}} \times T_{n}\right) \boxplus x_{j}^{n}\right)\right)\right) \\
& =\mu\left(\bigcap_{j \leq k_{n}}\left(\langle 0,1) \backslash\left(\bar{T}_{n}+{ }_{1} i_{0, a_{2 n+2}}\left(x_{j}^{n}\right)\right)\right) .\right.
\end{aligned}
$$

By independence (see Lemma 8), the latter number is not greater than $\left(1-1 / 2^{n}\right)^{k_{n}}$. Now, let

$$
B_{n}=\bigcap_{j \leq k_{n}}\left(\langle 0,1) \backslash\left(\bar{T}_{n}+i_{0, a_{2 n+2}}\left(x_{j}^{n}\right)\right)\right) \quad \text { for } n \in \omega .
$$

Claim 10. For every $m \in \omega, \mu\left(B_{0} \cap \cdots \cap B_{m}\right)=\mu\left(B_{0}\right) \cdot \ldots \cdot \mu\left(B_{m}\right)$.
Proof. It suffices to prove Claim 10 for $m=1$. Consider the sets B_{0}, B_{1}. We may assume without loss of generality that both are included in $Z_{p_{0} \ldots \ldots p_{a_{4}}}$. Then, by symmetry of B_{0} and B_{1} (recall the definition of \bar{T}_{n}), we have $\mu\left(B_{0} \cap B_{1}\right)=\mu\left(B_{0}\right) \cdot \mu\left(B_{1}\right)$.

To finish the proof of Lemma 9 , notice that for every $m \in \omega, B_{0} \cap \cdots \cap B_{m}$ contains $\tau \backslash G$. Hence for each $m \in \omega$,

$$
\prod_{n=0}^{m}\left(1-\frac{1}{2^{n}}\right)^{k_{n}} \geq \lambda>0
$$

where $\lambda=\mu(\tau \backslash G)$. This implies that

$$
\sum_{n \in \omega} k_{n} \cdot 2^{-n}
$$

is convergent.
Since there are countably many basic sets τ in $\langle 0,1$), we easily find a sequence $\left\{\widetilde{K}_{n}\right\}_{n \in \omega}$, with $\widetilde{K}_{n} \subseteq Z_{p_{a_{2 n}+1}} \times \cdots \times Z_{p_{a_{2 n+1}}}$ and $\left|\widetilde{K}_{n}\right| \leq 2^{n}$ for $n \in \omega$, such that

$$
f^{-1}(\bar{x}) \upharpoonright Z_{p_{a_{2 n}+1}} \times \cdots \times Z_{p_{a_{2 n+1}}} \in \widetilde{K}_{n}
$$

for almost every $n \in \omega$ whenever $\bar{x} \in X$. This finishes the proof of Theorem 1 .

Let X be a null additive set in $\langle 0,1)$.

Corollary 11. Given a sufficiently fast increasing sequence $\left\{a_{n}\right\}_{n \in \omega}$ of positive integers, there is $\left\{\widetilde{K}_{n}\right\}_{n \in \omega}$ with $\widetilde{K}_{n} \subseteq Z_{p_{a_{n}}} \times \cdots \times Z_{p_{a_{n+1}-1}}$ and $\left|\widetilde{K}_{n}\right| \leq 2^{n}$ for all $n \in \omega$ so that for every $\bar{x} \in X$,

$$
f^{-1}(\bar{x}) \upharpoonright Z_{p_{a_{n}}} \times \cdots \times Z_{p_{a_{n+1}-1}} \in \widetilde{K}_{n}
$$

for almost every $n \in \omega$.
Proof. We follow the proof of Theorem 1 to calculate the cardinalities of the sets $\left\{f^{-1}(\bar{x}) \mid Z_{p_{a_{2 n}}} \times \cdots \times Z_{p_{a_{2 n+1}-1}}: \bar{x} \in X\right\}$ and $\left\{f^{-1}(\bar{x}) \upharpoonright Z_{p_{a_{2 n+1}}} \times\right.$ $\left.\cdots \times Z_{p_{a_{2 n+2}-1}}: \bar{x} \in X\right\}$ for $n \in \omega$.

Next we define a one-to-one correspondence between C and a subset of the Cantor space 2^{ω}, denoted by A. Let $n_{-1}=0, n_{0}=1$, and for $k \in \omega$, $k \geq 1$, put $n_{k}=\min \left\{l: 2^{l-n_{k-1}} \geq p_{k}\right\}$. Fix p_{k} leftmost nodes in $2^{\left[n_{k-1}, n_{k}\right)}$ for $k \in \omega$, and denote them by $\left\{s_{i}^{k}\right\}_{i<p_{k}}$. Define a one-to-one function $g: C \rightarrow 2^{\omega}$ as follows: if $x \in C$, then $g(x) \upharpoonright\left[n_{k-1}, n_{k}\right)=s_{i}^{k}$ iff $x(k)=i$, for $k \in \omega$ and $i<p_{k}$.

Put $A=\operatorname{range}(g)$, and let $H: A \rightarrow\langle 0,1\rangle$ be the composition $f \circ g^{-1}$.
Theorem 12. Assume that $X \subseteq\langle 0,1)$ is a null additive set. Then $Y=$ $H^{-1}(X)$ is null additive in 2^{ω}.

Proof. Let G be a measure zero subset of 2^{ω}. We can assume without loss of generality that $G \subseteq \bigcap_{m \in \omega} \bigcup_{n \geq m} G_{n}$, where for $n \in \omega$,

$$
G_{n}=\left\{x: x \upharpoonright\left[a_{n}, a_{n+1}\right) \in G_{n}^{\prime}\right\} \quad \text { with } \quad \frac{\left|G_{n}^{\prime}\right|}{2^{a_{n+1}-a_{n}}} \leq \frac{1}{2^{2 n}},
$$

and $\left\{a_{n}\right\}_{n \in \omega}$ is a sufficiently fast increasing sequence of positive integers. Also we may require that $\left\{a_{n}\right\}_{n \in \omega}$ is a subsequence of the sequence $\left\{n_{k}\right\}_{k \in \omega}$ defined above. By Corollary 11, there is a sequence $\left\{\widetilde{K}_{n}\right\}_{n \in \omega}$, with $\widetilde{K}_{n} \subseteq$ $2^{\left[a_{n}, a_{n+1}\right)}$ and $\left|\widetilde{K}_{n}\right| \leq 2^{n}$ for $n \in \omega$, such that $\forall y \in Y, \forall_{n}^{\infty} y\left\lceil\left[a_{n}, a_{n+1}\right) \in \widetilde{K}_{n}\right.$. Clearly, this suffices to prove that $Y \oplus G$ is null (cf. [4, Theorem 13]).

Now we can provide a complete solution of Problem 2.4 from [3].
Theorem 13. Suppose that X and Y are null additive sets in $\langle 0,1$) (respectively, \mathbb{R}). Then $X \times Y$ is null additive in $\langle 0,1) \times(0,1)$ (respectively, $\mathbb{R} \times \mathbb{R})$.

Proof. According to the introductory remarks we identify an infinite series $x \in\langle 0,1)$ with $f^{-1}(x) \in C$. Proceeding as in the proof of Theorem 2.5.7 in [1], we show that every null set $G \subseteq\langle 0,1) \times\langle 0,1)$ is included in the union of two sets of the form

$$
\left\{(x, y) \in\langle 0,1) \times\langle 0,1): \exists_{n}^{\infty}(x, y) \upharpoonright\left(Z_{p_{a_{n}}} \times \cdots \times Z_{p_{a_{n+1}-1}}\right)^{2} \in K_{n}\right\}
$$

where $\left\{a_{n}\right\}_{n \in \omega}$ is a certain increasing sequence of positive integers, $K_{n} \subseteq$ $\left(Z_{p_{a_{n}}} \times \cdots \times Z_{p_{a_{n+1}-1}}\right)^{2}$ for $n \in \omega$, and

$$
\sum_{n \in \omega} \frac{\left|K_{n}\right|}{\left(p_{a_{n}} \cdot \ldots \cdot p_{a_{n+1}-1}\right)^{2}}<\infty .
$$

Assume that X and Y are null additive in $\langle 0,1$). Using Corollary 11 and the above characterization of null sets in $\langle 0,1) \times\langle 0,1)$, we can follow the proof of Theorem 13 in [4] to show that both sets $X \times\{0\},\{0\} \times Y$ are null additive in $\langle 0,1) \times\langle 0,1)$ with modulo 1 coordinatewise addition. Applying the same argument as in [4, Corollary 3] (see also [4, Remark 11]) completes the proof.

Finally, we prove for sets included in $\langle 0,1$) a version of the influential theorem of Shelah (see [1, Theorem 2.7.20]) which can be stated as "every null additive subset of 2^{ω} is meager additive".

We define a meager additive set in 2^{ω} (or in $\langle 0,1$) analogously to null additive by replacing "null" with "meager". Suppose that $X \subseteq 2^{\omega}$ is meager additive in 2^{ω}. Then (see [1, Theorem 2.7.17]) X can be characterized by the following property due to Bartoszyński, Judah and Shelah. For every $\tilde{f} \in \omega^{\omega \uparrow}$, there are $\tilde{g} \in \omega^{\omega \uparrow}$ and $y \in 2^{\omega}$ such that

$$
\forall x \in X, \forall_{n}^{\infty} \exists k \tilde{g}(n) \leq \tilde{f}(k)<\tilde{f}(k+1)<\tilde{g}(n+1)
$$

and

$$
x \upharpoonright[\tilde{f}(k), \tilde{f}(k+1))=y \upharpoonright[\tilde{f}(k), \tilde{f}(k+1)) .
$$

Theorem 14. Every null additive set $X \subseteq\langle 0,1)$ is meager additive.
Proof. Suppose $\tilde{f} \in \omega^{\omega \uparrow}$ is a function with range $(\tilde{f}) \subseteq \operatorname{range}\left(\left\{n_{k}\right\}\right)_{k \in \omega}$, where $\left\{n_{k}\right\}_{k \in \omega}$ is as in the definition of the set A. Since X is null additive, $H^{-1}(X)$ is null additive in 2^{ω} (by Theorem 12), and it is meager additive by an argument of Shelah. From this we derive that $H^{-1}(X)$ satisfies the Bartoszyński-Judah-Shelah characterization for the function \tilde{f}. Hence $X=H\left(H^{-1}(X)\right)$ satisfies a condition which is similar to the above characterization, and this suffices to show that X is meager additive in $\langle 0,1$) (see [4, proof of Theorem 1]).

Acknowledgements. The author thanks Professor J. Browkin for valuable suggestions related to the number-theoretic part of this paper.

References

[1] T. Bartoszyński and H. Judah, Set Theory. On the Structure of the Real Line, A K Peters, Wellesley, MA, 1995.
[2] J. Pawlikowski, A characterization of strong measure zero sets, Israel J. Math. 93 (1996), 171-183.
[3] B. Tsaban and T. Weiss, Products of special sets of real numbers, Real Anal. Exchange 30 (2004/2005), 819-835.
[4] T. Weiss, On meager additive and null additive sets in the Cantor space 2^{ω} and in \mathbb{R}, Bull. Polish Acad. Sci. Math. 57 (2009), 91-99.

Tomasz Weiss
Institute of Mathematics
University of Natural Sciences and Humanities
08-110 Siedlce, Poland
E-mail: tomaszweiss@o2.pl
Current address:
Department of Mathematics
Cardinal Stefan Wyszyński University in Warsaw
Dewajtis 5
01-815 Warszawa, Poland

Received February 20, 2013;
received in final form October 10, 2013

