MATHEMATICAL LOGIC AND FOUNDATIONS

Addendum to "On Meager Additive and Null Additive Sets in the Cantor space 2^{ω} and in \mathbb{R} "

(Bull. Polish Acad. Sci. Math. 57 (2009), 91–99)

by

Tomasz WEISS

Presented by Stanisław KWAPIEŃ

Summary. We prove in ZFC that there is a set $A \subseteq 2^{\omega}$ and a surjective function $H : A \to \langle 0, 1 \rangle$ such that for every null additive set $X \subseteq \langle 0, 1 \rangle$, $H^{-1}(X)$ is null additive in 2^{ω} . This settles in the affirmative a question of T. Bartoszyński.

1. Introduction. Recall that by $(2^{\omega}, \oplus)$ we denote the Cantor space with modulo 2 coordinatewise addition, and $(\langle 0, 1 \rangle, +_1)$ is the unit interval with modulo 1 addition. For brevity, 2^{ω} (respectively, $\langle 0, 1 \rangle$) stands for $(2^{\omega}, \oplus)$ (respectively, $(\langle 0, 1 \rangle, +_1)$).

We shall say that $X \subseteq 2^{\omega}$ is null additive if for every null set $A, X \oplus A = \{x \oplus a : x \in X, a \in A\}$ is null in 2^{ω} . By analogy, we define a null additive set in $\langle 0, 1 \rangle$. In [4], it has been proven that if X is a null additive set in 2^{ω} , then T(X) is null additive in $\langle 0, 1 \rangle$, where T is the Cantor-Lebesgue function that maps 2^{ω} into $\langle 0, 1 \rangle$. Thus the existence of an uncountable null additive set in \mathbb{R} . In this paper, we prove the converse implication which provides a complete answer to the measure version of T. Bartoszyński's question (see [4, p. 91]). To do this we show that there exists a set $A \subseteq 2^{\omega}$ and a surjective function $H : A \to \langle 0, 1 \rangle$ such that for every null additive set $X \subseteq \langle 0, 1 \rangle, H^{-1}(X)$ is null additive in 2^{ω} .

2. Main theorems. In this paper, for $n \in \omega$, p_n denotes the *n*th prime number, and $Z_{p_n} = \{0, \ldots, p_n - 1\}$ with modulo p_n addition. We define

$$C = Z_{p_0} \times Z_{p_1} \times \cdots$$

DOI: 10.4064/ba62-1-1

²⁰¹⁰ Mathematics Subject Classification: 03E05, 03E15, 03E35.

Key words and phrases: null additive sets, translations in 2^{ω} and in \mathbb{R} .

and we assume that \boxplus is coordinatewise addition in C or in any set of the form $Z_{p_r} \times \cdots \times Z_{p_s}$, where $r, s \in \omega$, and r < s. Let $f : C \to \langle 0, 1 \rangle$ be the Cantor–Lebesgue function given by the formula

$$f(x) = \sum_{i=0}^{\infty} \frac{x(i)}{\prod_{j=0}^{i} p_j} \quad \text{for } x \in C,$$

where $x(i) \in \{0, \ldots, p_i - 1\}$ for $i \in \omega$. It is not difficult to check that f is one-to-one except on a countable subset of C. Throughout the paper, x is often identified with f(x).

Suppose that $X \subseteq (0, 1)$ is a null additive set.

THEOREM 1. Given a sufficiently fast increasing sequence $\{a_n\}_{n\in\omega}$ of positive integers, there is $\{\widetilde{K}_n\}_{n\in\omega}$, with $\widetilde{K}_n \subseteq Z_{p_{a_{2n+1}}} \times \cdots \times Z_{p_{a_{2n+1}}}$ and $|\widetilde{K}_n| \leq 2^n$ for all $n \in \omega$, such that for every $\overline{x} \in X$,

$$f^{-1}(\overline{x}) \upharpoonright Z_{p_{a_{2n}+1}} \times \dots \times Z_{p_{a_{2n+1}}} \in \widetilde{K}_n$$

for almost every $n \in \omega$.

Proof. We will follow the notation, and we refine the proofs, of Theorem 2.7.18 in [1], and Lemma 0 and Claim \blacklozenge in [2].

LEMMA 2. For any non-negative integers k, l, m, with k < l, there is $n \in \omega$ and $T \subseteq Z_{p_k} \times \cdots \times Z_{p_l} \times \cdots \times Z_{p_n}$ such that $\mu(T) \sim 2^{-m}$, and for any $\langle \sigma_i, \tau_i \rangle \in Z_{p_k} \times \cdots \times Z_{p_n}$ $(i \in I)$, where σ_i $(i \in I)$ belong to $Z_{p_k} \times \cdots \times Z_{p_l}$ and are distinct, the sets $T \boxplus \langle \sigma_i, \tau_i \rangle$ $(i \in I)$ are stochastically independent.

Proof. Assume that $\overline{m} = p_k \cdots p_l$. In $\{p_{l+1}, \ldots, p_n\}$, where *n* is sufficiently large, find a family $\{A_j\}_{j < \overline{m}}$ of \overline{m} disjoint sets, each of cardinality *m*. Fix $j < \overline{m}$, and for each $p_r \in A_j$, let $B_r \subseteq Z_{p_r}$ be such that $|B_r|/p_r \sim 1/2$. Put

$$T_j = \left\{ x \in Z_{p_{l+1}} \times \dots \times Z_{p_n} : x \restriction A_j \in \prod_{p_r \in A_j} B_r \right\}.$$

Define $T = \bigcup_{j < \overline{m}} \{\sigma_i\} \times T_j$, where $\{\sigma_j\}_{j < \overline{m}}$ is a bijective enumeration of $Z_{p_k} \times \cdots \times Z_{p_l}$, and then follow the proof of Lemma 0 in [2] to show that T is as required.

REMARK 3. Notice that for every $m \in \omega, m \ge 4$,

$$\left(\frac{1}{2}\right)^m \le \mu(T) \le \left(\frac{1}{2} + \frac{1}{m}\right)^m \le \left(\frac{3}{4}\right)^m$$

LEMMA 4. For any $r, s \in \omega$ with r < s, $Z_{p_r} \times \cdots \times Z_{p_s}$ is isomorphic to $Z_{p_r \cdot \cdots \cdot p_s}$.

Proof. Put $q_i = \frac{p_r \cdots p_s}{p_i}$ for $r \leq i \leq s$, and define, for $(a_r, \ldots, a_s) \in Z_r \times \cdots \times Z_s$,

 $i_{r,s}(a_r,\ldots,a_s) = q_r \cdot a_r + q_{r+1} \cdot a_{r+1} + \cdots + q_s \cdot a_s \pmod{p_r \cdot \ldots \cdot p_s}.$ It is well-known that $i_{r,s}$ is an isomorphism.

Clearly.

$$i_{r,s}(a,b) = i_{r,r'}(a) + i_{r'+1,s}(b) \pmod{p_r \cdot \ldots \cdot p_s}$$

whenever r < r' < r' + 1 < s and $a \in Z_{p_r} \times \cdots \times Z_{p_{r'}}$, $b \in Z_{p_{r'+1}} \times \cdots \times Z_{p_s}$. Here $i_{r,r'}(a)$ is an element of the subgroup of $Z_{p_r \cdots p_s}$ that has order $p_r \cdots p_{r'}$, and $i_{r'+1,s}(b)$ belongs to the subgroup of $Z_{p_r \cdots p_s}$ of order $p_{r'+1} \cdot \cdots \cdot p_s$. Suppose that $\overline{x} \in Z_{p_0 \cdots p_n}$. From now on, depending on the context, we identify \overline{x} with $\overline{x}/(p_0 \cdots p_n)$. Thus for every l with 0 < l < n, \overline{x} has the following (unique) form:

$$\overline{x} = \sum_{i=0}^{l} \frac{x(i)}{\prod_{j=0}^{i} p_j} + \sum_{i=l+1}^{n} \frac{x(i)}{\prod_{j=0}^{i} p_j}.$$

Let $\overline{x} \upharpoonright [0, l]$ denote the first sum, and $\overline{x} \upharpoonright [l+1, n]$ the second.

LEMMA 5. Let $x, y \in Z_{p_0} \times \cdots \times Z_{p_k} \times \cdots \times Z_{p_l} \times \cdots \times Z_{p_n}$, and suppose that

$$x \upharpoonright Z_{p_k} \times \cdots \times Z_{p_l} = y \upharpoonright Z_{p_k} \times \cdots \times Z_{p_l}.$$

If $i_{0,n}(x) \upharpoonright [l+1,n]$ and $i_{0,n}(y) \upharpoonright [l+1,n]$ belong to $Z_{p_{l+1} \cdots p_n}$, or more precisely, to the subgroup of $Z_{p_0} \times \cdots \times Z_{p_n}$ that has order $p_{l+1} \cdots p_n$, then

$$i_{0,n}(x)\!\upharpoonright\![k,l] = i_{0,n}(y)\!\upharpoonright\![k,l].$$

Proof. Assume that $i_{0,n}(x) \upharpoonright [l+1,n] \in Z_{p_{l+1}\cdots p_n}$. Since $i_{0,n}$ is one-toone, we have $i_{0,n}(x) \upharpoonright [0,l] = i_{0,l}(x \upharpoonright Z_{p_0} \times \cdots \times Z_{p_l})$. By the same argument, $i_{0,n}(y) \upharpoonright [0,l] = i_{0,l}(y \upharpoonright Z_{p_0} \times \cdots \times Z_{p_l})$. By the equality $x \upharpoonright Z_{p_k} \times \cdots \times Z_{p_l} = y \upharpoonright Z_{p_k} \times \cdots \times Z_{p_l}$, we have

$$i_{0,l}(x \upharpoonright Z_{p_0} \times \cdots \times Z_{p_l}) \upharpoonright [k,l] = i_{0,l}(y \upharpoonright Z_{p_0} \times \cdots \times Z_{p_l}) \upharpoonright [k,l]$$

Thus $i_{0,n}(x) \upharpoonright [k,l] = i_{0,n}(y) \upharpoonright [k,l]$.

COROLLARY 6. Let $x, y \in Z_{p_0} \times \cdots \times Z_{p_k} \times \cdots \times Z_{p_l} \times \cdots \times Z_{p_n}$. If $i_{0,n}(x) \upharpoonright [l+1,n], i_{0,n}(y) \upharpoonright [l+1,n]$ belong to $Z_{p_{l+1} \cdots p_n}$, and $i_{0,n}(x) \upharpoonright [k,l] \neq i_{0,n}(y) \upharpoonright [k,l]$, then $x \upharpoonright Z_{p_k} \times \cdots \times Z_{p_l}$ and $y \upharpoonright Z_{p_k} \times \cdots \times Z_{p_l}$ are different as well.

Proof. Follows from Lemma 5 above.

LEMMA 7. Assume that $\overline{x} \in Z_{p_0 \cdots p_l \cdots p_n}$. Then there is $\overline{x}' \in Z_{p_0 \cdots p_l \cdots p_n}$, $\overline{x}' \leq \overline{x}$, such that $\overline{x} \upharpoonright [0, l] = \overline{x}' \upharpoonright [0, l]$, $\overline{x}' \upharpoonright [l+1, n] \in Z_{p_{l+1} \cdots p_n}$, and

$$|\overline{x}|[l+1,n] - \overline{x}'|[l+1,n]| \le \frac{1}{p_{l+1} \cdot \ldots \cdot p_n}.$$

Proof. It is clear that

$$\overline{x}\upharpoonright[l+1,n] < \frac{1}{p_0 \cdot \ldots \cdot p_l}.$$

Also, the distance between consecutive elements of $Z_{p_{l+1}\cdot\ldots\cdot p_n}$ is equal to $\frac{1}{p_{l+1}\cdot\ldots\cdot p_n}$ Thus there exists $y < \frac{1}{p_0\cdot\ldots\cdot p_l}$, $y \in Z_{p_{l+1}\cdot\ldots\cdot p_n}$, with

$$|\overline{x}|[l+1,n] - y| \le \frac{1}{p_{l+1} \cdot \ldots \cdot p_n}$$

Then $\overline{x}' = \overline{x} \upharpoonright [0, l] + y$ is as required.

Let us notice that in many cases the fact that $\overline{x}, \overline{y} \in Z_{p_0 \dots p_k \dots p_l \dots p_l}$ have different sums $\overline{x} \upharpoonright [k, l]$ and $\overline{y} \upharpoonright [k, l]$ does not imply that $i_{0,n}^{-1}(\overline{x}), i_{0,n}^{-1}(\overline{y})$ have different restrictions to $Z_{p_k} \times \dots \times Z_{p_l}$. However, this holds true when we choose $\overline{x}', \overline{y}'$ as in Lemma 7, and moreover sufficiently "close" to \overline{x} and \overline{y} .

Suppose now that $\{a_n\}_{n\in\omega}$ is a given increasing sequence of positive integers. By taking a subsequence, we may assume that the triples $a_0 < a_1 < a_2, a_2 < a_3 < a_4$, etc. correspond to k < l < n as in Lemma 2 above. For $n \in \omega$, let \overline{T}_n be equal to $i_{0,a_{2n+2}}$ $(Z_{p_0} \times \cdots \times Z_{p_{a_{2n}}} \times T_n)$, where T_n included in $Z_{p_{a_{2n+1}}} \times \cdots \times Z_{p_{a_{2n+2}}}$ has the same property as Tin Lemma 2 above. Also, by the preceding remarks, \overline{T}_n can be viewed as a family of intervals of equal length $1/(p_0 \cdot \ldots \cdot p_{a_{2n+2}})$ contained in $\langle 0, 1 \rangle$ with the group operation being modulo 1 addition.

LEMMA 8. For every $n \in \omega$, and each set $T \subseteq Z_{p_0} \times \cdots \times Z_{p_{a_{2n+2}}}$, the sets $T \boxplus x_j$ $(j \in J)$ are stochastically independent iff $i_{0,a_{2n+2}}(T) + i_{0,a_{2n+2}}(x_j)$ $(j \in J)$ are stochastically independent in $Z_{p_0 \cdots p_{a_{2n+2}}}$ (respectively, in (0, 1)).

Proof. Follows immediately from the fact that $i_{0,a_{2n+2}}$ (respectively, $i_{0,a_{2n+2}}/(p_0\cdot\ldots\cdot p_{a_{2n+2}})$) is an isomorphism.

Assume that for $n \in \omega$, \widetilde{T}_n is obtained from \overline{T}_n by adding to each interval $t \in \overline{T}_n$ its translations of the form

$$t - \frac{i}{p_0 \cdot \ldots \cdot p_{a_{2n+2}}}, \ t + \frac{1}{p_0 \cdot \ldots \cdot p_{a_{2n+2}}} \quad \text{where} \quad i \le p_0 \cdot \ldots \cdot p_{a_{2n+1}}.$$

Notice that for fixed $n \in \omega$,

$$\mu(\widetilde{T}_n) = (p_0 \cdot \ldots \cdot p_{a_{2n+1}} + 1) \cdot \mu(\overline{T}_n).$$

Thus, by making $p_{a_{2n+2}}$ sufficiently large, we can have

$$\left(\frac{1}{2}\right)^n \le \mu(\widetilde{T}_n) \le \left(\frac{3}{4}\right)^n$$
 for almost every $n \in \omega$

(see Lemma 2 and Remark 3 above). The advantage of using a larger set \widetilde{T}_n instead of \overline{T}_n is that if $(\widetilde{T}_n +_1 \overline{x}) \cap F = \emptyset$ for some $\overline{x} \in Z_{p_0 \cdots p_{a_{2n+2}}}$ and a closed set $F \subseteq \langle 0, 1 \rangle$ then $(\overline{T}_n +_1 \overline{x}') \cap F = \emptyset$, where \overline{x}' is an in Lemma 7.

Assume that X is a null additive set in (0, 1). Let G be an open set with $\mu(G) < 1$ such that for every basic closed set $\tau \not\subseteq G$, we have $\mu(\tau \setminus G) > 0$ and

$$\bigcap_{m \in \omega} \bigcup_{n \ge m} \widetilde{T}_n +_1 X \subseteq G.$$

As in the proof of Claim \blacklozenge in [2], we define, for each basic set τ and $n \in \omega$,

$$K_{\tau,n} = \{x \upharpoonright Z_{p_{a_{2n+1}}} \times \dots \times Z_{p_{a_{2n+1}}} : x \in Z_{p_0} \times \dots \times Z_{p_{a_{2n+2}}}, \\ (\overline{T}_n + i_{0,a_{2n+2}}(x)) \cap (\tau \setminus G) = \emptyset\}.$$

Suppose that $\overline{x} \in X$. Clearly, for some $m_0 \in \omega$ and some basic interval τ ,

$$\left(\bigcup_{n\geq m_0}\widetilde{T}_n+_1\overline{x}\right)\cap(\tau\setminus G)=\emptyset.$$

Since

$$\sum_{i>a_{2n+2}} \frac{\overline{x}(i)}{\prod_{j=0}^i p_j} \le \frac{1}{p_0 \cdot \ldots \cdot p_{a_{2n+2}}} = \operatorname{diam}(t),$$

for every $n \in \omega$ and each interval $t \in \overline{T}_n$, we have

$$\left(\overline{T}_n + \sum_{i \le a_{2n+2}} \frac{\overline{x}(i)}{\prod_{j=0}^i p_j}\right) \cap (\tau \setminus G) = \emptyset$$

for $n \ge m_0$. By Lemma 7 above, for $n \ge m_0$, there is $x' \in Z_{p_0} \times \cdots \times Z_{p_{a_{2n+2}}}$ such that

$$\overline{x}[0, a_{2n+1}] = i_{0, a_{2n+2}}(x')[0, a_{2n+1}],$$

and $i_{0,a_{2n+2}}(x') \upharpoonright [a_{2n+1} + 1, a_{2n+2}]$ is sufficiently "close" to $\overline{x} \upharpoonright [a_{2n+1} + 1, a_{2n+2}]$. Hence, by the construction of \widetilde{T}_n ,

$$(\overline{T}_n +_1 i_{0,a_{2n+2}}(x')) \cap (\tau \setminus G) = \emptyset.$$

This implies (see Corollary 6 above) that the cardinality of the set

$$\{\overline{x} \upharpoonright [a_{2n}+1, a_{2n+1}] : \overline{x} \in X \text{ and } (\overline{T}_n + 1 \overline{x} \upharpoonright [0, a_{2n+2}]) \cap (\tau \setminus G) = \emptyset\}$$

is at most $|K_{\tau,n}|$, for $n \ge m_0$. Using Lemma 8 above, we now proceed exactly as in the proof of Claim \blacklozenge in [2] to show that $|K_{\tau,n}| \le 2^n$ for almost every $n \in \omega$.

LEMMA 9. For almost every $n \in \omega$, $|K_{\tau,n}| \leq 2^n$.

Proof. As in the proof of Claim \blacklozenge in [2], let $k_n = |K_{\tau,n}|$ for $n \in \omega$, and suppose that $x_1^n, \ldots, x_{k_n}^n$ are elements of $Z_{p_0} \times \cdots \times Z_{p_{a_{2n+2}}}$ whose restrictions to $Z_{p_{a_{2n+1}}} \times \cdots \times Z_{p_{a_{2n+1}}}$ are different, and exhaust the whole $K_{\tau,n}$. We have

$$\mu\Big(\bigcap_{j\leq k_n} i_{0,a_{2n+2}} \big(Z_{p_0} \times \dots \times Z_{p_{a_{2n+2}}} \setminus \left((Z_{p_0} \times \dots \times Z_{p_{a_{2n}}} \times T_n) \boxplus x_j^n \right) \Big) \Big)$$
$$= \mu\Big(\bigcap_{j\leq k_n} (\langle 0,1) \setminus (\overline{T}_n + i_{0,a_{2n+2}}(x_j^n)) \Big).$$

By independence (see Lemma 8), the latter number is not greater than $(1-1/2^n)^{k_n}$. Now, let

$$B_n = \bigcap_{j \le k_n} (\langle 0, 1) \setminus (\overline{T}_n + i_{0, a_{2n+2}}(x_j^n))) \quad \text{for } n \in \omega.$$

CLAIM 10. For every $m \in \omega$, $\mu(B_0 \cap \cdots \cap B_m) = \mu(B_0) \cdot \ldots \cdot \mu(B_m)$.

Proof. It suffices to prove Claim 10 for m = 1. Consider the sets B_0, B_1 . We may assume without loss of generality that both are included in $Z_{p_0 \dots p_{a_4}}$. Then, by symmetry of B_0 and B_1 (recall the definition of \overline{T}_n), we have $\mu(B_0 \cap B_1) = \mu(B_0) \cdot \mu(B_1)$.

To finish the proof of Lemma 9, notice that for every $m \in \omega, B_0 \cap \cdots \cap B_m$ contains $\tau \setminus G$. Hence for each $m \in \omega$,

$$\prod_{n=0}^{m} \left(1 - \frac{1}{2^n}\right)^{k_n} \ge \lambda > 0,$$

where $\lambda = \mu(\tau \setminus G)$. This implies that

$$\sum_{n \in \omega} k_n \cdot 2^{-n}$$

is convergent.

Since there are countably many basic sets τ in (0,1), we easily find a sequence $\{\widetilde{K}_n\}_{n\in\omega}$, with $\widetilde{K}_n \subseteq Z_{p_{a_{2n+1}}} \times \cdots \times Z_{p_{a_{2n+1}}}$ and $|\widetilde{K}_n| \leq 2^n$ for $n \in \omega$, such that

$$f^{-1}(\overline{x}) \upharpoonright Z_{p_{a_{2n+1}}} \times \dots \times Z_{p_{a_{2n+1}}} \in \widetilde{K}_n$$

for almost every $n \in \omega$ whenever $\overline{x} \in X$. This finishes the proof of Theorem 1. \blacksquare

Let X be a null additive set in (0, 1).

COROLLARY 11. Given a sufficiently fast increasing sequence $\{a_n\}_{n \in \omega}$ of positive integers, there is $\{\widetilde{K}_n\}_{n \in \omega}$ with $\widetilde{K}_n \subseteq Z_{p_{a_n}} \times \cdots \times Z_{p_{a_{n+1}-1}}$ and $|\widetilde{K}_n| \leq 2^n$ for all $n \in \omega$ so that for every $\overline{x} \in X$,

$$f^{-1}(\overline{x}) \upharpoonright Z_{p_{a_n}} \times \dots \times Z_{p_{a_{n+1}-1}} \in K_n$$

for almost every $n \in \omega$.

Proof. We follow the proof of Theorem 1 to calculate the cardinalities of the sets $\{f^{-1}(\overline{x}) \upharpoonright Z_{p_{a_{2n}}} \times \cdots \times Z_{p_{a_{2n+1}-1}} : \overline{x} \in X\}$ and $\{f^{-1}(\overline{x}) \upharpoonright Z_{p_{a_{2n+1}}} \times \cdots \times Z_{p_{a_{2n+2}-1}} : \overline{x} \in X\}$ for $n \in \omega$.

Next we define a one-to-one correspondence between C and a subset of the Cantor space 2^{ω} , denoted by A. Let $n_{-1} = 0$, $n_0 = 1$, and for $k \in \omega$, $k \ge 1$, put $n_k = \min\{l : 2^{l-n_{k-1}} \ge p_k\}$. Fix p_k leftmost nodes in $2^{[n_{k-1},n_k)}$ for $k \in \omega$, and denote them by $\{s_i^k\}_{i < p_k}$. Define a one-to-one function $g : C \to 2^{\omega}$ as follows: if $x \in C$, then $g(x) \upharpoonright [n_{k-1}, n_k) = s_i^k$ iff x(k) = i, for $k \in \omega$ and $i < p_k$.

Put $A = \operatorname{range}(g)$, and let $H : A \to \langle 0, 1 \rangle$ be the composition $f \circ g^{-1}$.

THEOREM 12. Assume that $X \subseteq (0,1)$ is a null additive set. Then $Y = H^{-1}(X)$ is null additive in 2^{ω} .

Proof. Let G be a measure zero subset of 2^{ω} . We can assume without loss of generality that $G \subseteq \bigcap_{m \in \omega} \bigcup_{n \ge m} G_n$, where for $n \in \omega$,

$$G_n = \{x : x \upharpoonright [a_n, a_{n+1}) \in G'_n\}$$
 with $\frac{|G'_n|}{2^{a_{n+1}-a_n}} \le \frac{1}{2^{2n}},$

and $\{a_n\}_{n\in\omega}$ is a sufficiently fast increasing sequence of positive integers. Also we may require that $\{a_n\}_{n\in\omega}$ is a subsequence of the sequence $\{n_k\}_{k\in\omega}$ defined above. By Corollary 11, there is a sequence $\{\widetilde{K}_n\}_{n\in\omega}$, with $\widetilde{K}_n \subseteq 2^{[a_n,a_{n+1})}$ and $|\widetilde{K}_n| \leq 2^n$ for $n \in \omega$, such that $\forall y \in Y, \forall_n^\infty y \upharpoonright [a_n, a_{n+1}) \in \widetilde{K}_n$. Clearly, this suffices to prove that $Y \oplus G$ is null (cf. [4, Theorem 13]).

Now we can provide a complete solution of Problem 2.4 from [3].

THEOREM 13. Suppose that X and Y are null additive sets in (0,1) (respectively, \mathbb{R}). Then $X \times Y$ is null additive in $(0,1) \times (0,1)$ (respectively, $\mathbb{R} \times \mathbb{R}$).

Proof. According to the introductory remarks we identify an infinite series $x \in (0, 1)$ with $f^{-1}(x) \in C$. Proceeding as in the proof of Theorem 2.5.7 in [1], we show that every null set $G \subseteq (0, 1) \times (0, 1)$ is included in the union of two sets of the form

$$\{(x,y)\in\langle 0,1)\times\langle 0,1\rangle:\exists_n^\infty(x,y)\upharpoonright (Z_{p_{a_n}}\times\cdots\times Z_{p_{a_{n+1}-1}})^2\in K_n\},\$$

where $\{a_n\}_{n\in\omega}$ is a certain increasing sequence of positive integers, $K_n \subseteq (Z_{p_{a_n}} \times \cdots \times Z_{p_{a_{n+1}-1}})^2$ for $n \in \omega$, and

$$\sum_{n\in\omega}\frac{|K_n|}{(p_{a_n}\cdot\ldots\cdot p_{a_{n+1}-1})^2}<\infty.$$

Assume that X and Y are null additive in (0, 1). Using Corollary 11 and the above characterization of null sets in $(0, 1) \times (0, 1)$, we can follow the proof of Theorem 13 in [4] to show that both sets $X \times \{0\}, \{0\} \times Y$ are null additive in $(0, 1) \times (0, 1)$ with modulo 1 coordinatewise addition. Applying the same argument as in [4, Corollary 3] (see also [4, Remark 11]) completes the proof. \blacksquare

Finally, we prove for sets included in (0, 1) a version of the influential theorem of Shelah (see [1, Theorem 2.7.20]) which can be stated as "every null additive subset of 2^{ω} is meager additive".

We define a *meager additive* set in 2^{ω} (or in (0, 1)) analogously to null additive by replacing "null" with "meager". Suppose that $X \subseteq 2^{\omega}$ is meager additive in 2^{ω} . Then (see [1, Theorem 2.7.17]) X can be characterized by the following property due to Bartoszyński, Judah and Shelah. For every $\tilde{f} \in \omega^{\omega\uparrow}$, there are $\tilde{g} \in \omega^{\omega\uparrow}$ and $y \in 2^{\omega}$ such that

$$\forall x \in X, \, \forall_n^\infty \; \exists k \; \tilde{g}(n) \le f(k) < f(k+1) < \tilde{g}(n+1),$$

and

$$x{\upharpoonright}[\tilde{f}(k),\tilde{f}(k+1))=y{\upharpoonright}[\tilde{f}(k),\tilde{f}(k+1)).$$

THEOREM 14. Every null additive set $X \subseteq (0,1)$ is meager additive.

Proof. Suppose $\tilde{f} \in \omega^{\omega^{\uparrow}}$ is a function with range $(\tilde{f}) \subseteq \operatorname{range}(\{n_k\})_{k \in \omega}$, where $\{n_k\}_{k \in \omega}$ is as in the definition of the set A. Since X is null additive, $H^{-1}(X)$ is null additive in 2^{ω} (by Theorem 12), and it is meager additive by an argument of Shelah. From this we derive that $H^{-1}(X)$ satisfies the Bartoszyński–Judah–Shelah characterization for the function \tilde{f} . Hence $X = H(H^{-1}(X))$ satisfies a condition which is similar to the above characterization, and this suffices to show that X is meager additive in (0, 1) (see [4, proof of Theorem 1]).

Acknowledgements. The author thanks Professor J. Browkin for valuable suggestions related to the number-theoretic part of this paper.

References

- T. Bartoszyński and H. Judah, Set Theory. On the Structure of the Real Line, A K Peters, Wellesley, MA, 1995.
- J. Pawlikowski, A characterization of strong measure zero sets, Israel J. Math. 93 (1996), 171–183.

- B. Tsaban and T. Weiss, Products of special sets of real numbers, Real Anal. Exchange 30 (2004/2005), 819–835.
- T. Weiss, On meager additive and null additive sets in the Cantor space 2^ω and in ℝ, Bull. Polish Acad. Sci. Math. 57 (2009), 91–99.

Tomasz Weiss Institute of Mathematics University of Natural Sciences and Humanities 08-110 Siedlce, Poland E-mail: tomaszweiss@o2.pl

Current address: Department of Mathematics Cardinal Stefan Wyszyński University in Warsaw Dewajtis 5 01-815 Warszawa, Poland

Received February 20, 2013; received in final form October 10, 2013 (7911)