On *n*-derivations and Relations between Elements $r^n - r$ for Some n

Maciej MACIEJEWSKI and Andrzej PRÓSZYŃSKI

Presented by Andrzej SCHINZEL

Summary. We find complete sets of generating relations between the elements $[r] = r^n - r$ for $n = 2^l$ and for n = 3. One of these relations is the *n*-derivation property $[rs] = r^n[s] + s[r], r, s \in R$.

1. Introduction. Let R be a commutative ring with 1. In [2], the second author introduced the ideals $I_n(R)$ generated by all elements $r^n - r$ where $r \in R$. It follows from [2, Proposition 5.5] that $I_n(R)$ is precisely the intersection of all maximal ideals M of R such that |R/M| - 1 divides n - 1 (in particular, for n = 3 this means that |R/M| = 2 or 3). These ideals are used to find relations satisfied by mappings of higher degrees (see [2]–[5]). The main result of [6] determines generating relations for the elements $r^2 - r$. The purpose of this paper is to find generating relations for the generators $r^n - r$ of $I_n(R)$, where n is a power of 2 or n = 3 (Theorem 1). This will be used in [1] to find generating relations for mappings of degree 5; however, the present paper is independent of the theory of higher degree mappings.

If f is a mapping between R-modules and f(0) = 0 then we define by induction the functions $\Delta^m f$ in m variables as follows: $\Delta^1 f = f$ and

$$(\Delta^{m+1}f)(x_0, \dots, x_m) = (\Delta^m f)(x_0 + x_1, x_2, \dots, x_m) - (\Delta^m f)(x_0, x_2, \dots, x_m) - (\Delta^m f)(x_1, x_2, \dots, x_m).$$

Then we have the following formula:

DOI: 10.4064/ba62-1-4

(1)
$$f(x_1 + \dots + x_m) = \sum_{k=1}^m \sum_{1 < i_1 < \dots < i_k < m} (\Delta^k f)(x_{i_1}, \dots, x_{i_k}).$$

²⁰¹⁰ Mathematics Subject Classification: 13C13, 13C05, 11E76.

Key words and phrases: ideals of commutative rings, generators and relations, higher degree mappings.

2. Definition and properties of n-derivations and the functor D.

Let n be a fixed natural number. By an n-derivation over R we will mean a function $f: R \to M$, where M is an R-module, satisfying the following condition:

$$(D_n) f(rs) = r^n f(s) + s f(r), r, s \in R.$$

For example, the function $f: R \to R$, $f(r) = r^n - r$, is an *n*-derivation. On the other hand, any (ordinary) derivation is a 1-derivation (observe that we do not assume additivity in our definition).

LEMMA 1. If f is an n-derivation then for any $r, s \in R$ we have

- (i) $(r^n r)f(s) = (s^n s)f(r)$,
- (ii) f(0) = f(1) = 0,
- (iii) if s is invertible then $f(s^{-1}) = -s^{-n-1}f(s)$,
- (iv) $f(r^2) = (r^n + r)f(r)$,
- (v) $f(r^2s) = r^{2n}f(s) + (r^ns + rs)f(r)$,
- (vi) $f(r^3) = (r^{2n} + r^{n+1} + r^2)f(r)$,
- (vii) $f(r^{2^k}) = ((r^{2k-1})^n + r^{2k-1})((r^{2k-2})^n + r^{2k-2})\dots(r^n + r)f(r),$
- (viii) $(\Delta^k f)(tr_1,\ldots,tr_k) = t^n(\Delta^k f)(r_1,\ldots,r_k)$ for $k \geq 2, t, r_1,\ldots,r_k \in \mathbb{R}$.

If we denote $\tilde{f}(r,s) = sf(r) - rf(s) = s^n f(r) - r^n f(s)$ for $r,s \in R$ then

(ix)
$$\tilde{f}(tr,ts) = t^{n+1}\tilde{f}(r,s)$$
 for any $r,s,t \in R$.

Proof. Relation (i) follows from the two symmetric versions of (D_n) . The equalities f(0) = f(1) = 0 follow from (D_n) for r = s = 0 or 1. Using (D_n) and (ii) we obtain $0 = f(1) = f(s \cdot s^{-1}) = s^n f(s^{-1}) + s^{-1} f(s)$, and this gives (iii). Equality (iv) follows from (D_n) , (v) from (iv) and (D_n) , (vi) from (v), and (vii) by induction from (iv). Moreover, (viii) holds for k = 2 since

$$(\Delta^{2} f)(tr, ts) = f(tr + ts) - f(tr) - f(ts)$$

$$= t^{n} f(r+s) + (r+s)f(t) - t^{n} f(r) - rf(t) - t^{n} f(s) - sf(t)$$

$$= t^{n} (f(r+s) - f(r) - f(s)) = t^{n} (\Delta^{2} f)(r, s),$$

and for k > 2 by induction. Finally, we prove (ix):

$$\tilde{f}(tr,ts) = ts(t^n f(r) + rf(t)) - tr(t^n f(s) + sf(t)) = t^{n+1} \tilde{f}(r,s).$$

Let $D(R) = D^{(n)}(R)$ denote the R-module generated by all elements $\langle r \rangle$, $r \in R$, with the relations

$$\langle rs \rangle = r^n \langle s \rangle + s \langle r \rangle, \quad r, s \in R.$$

Any unitary ring homomorphism $i: R \to R'$ induces a module homomorphism $D(i): D(R) \to D(R')$ over i such that $D(i)(\langle r \rangle) = \langle i(r) \rangle$. This shows that D is a functor. Observe that D(R) is a universal object with respect

to n-derivations over R, in the sense that any n-derivation can be uniquely expressed as the composition of the canonical n-derivation $d: R \to D(R)$, $d(r) = \langle r \rangle$, and an R-homomorphism defined on D(R).

In particular, the *n*-derivation $f: R \to R$, $f(r) = r^n - r$, gives

COROLLARY 1. There exists an R-homomorphism $P: D(R) \to I_n(R)$ such that $P(\langle r \rangle) = r^n - r$ for $r \in R$.

We now prove that D commutes with localizations. Let S be a multiplicatively closed set in R and let $i: R \to R_S$ and $i: M \to M_S$ be the canonical homomorphisms, $i(r) = \frac{r}{1}$, $i(m) = \frac{m}{1}$.

PROPOSITION 1. For any n-derivation $f: R \to M$ there exists a unique n-derivation $f_S: R_S \to M_S$ satisfying the condition $f_S(i(r)) = i(f(r))$ for $r \in R$. It is given by the formula

(2)
$$f_S\left(\frac{r}{s}\right) = \frac{f(r)}{s} - \left(\frac{r}{s}\right)^n \frac{f(s)}{s}$$

or equivalently

(3)
$$f_S\left(\frac{r}{s}\right) = \frac{\tilde{f}(r,s)}{s^{n+1}} = \frac{sf(r) - rf(s)}{s^{n+1}}.$$

Moreover, for any $k \geq 2$,

(4)
$$(\Delta^k f_S) \left(\frac{r_1}{t}, \dots, \frac{r_k}{t} \right) = \frac{(\Delta^k f)(r_1, \dots, r_k)}{t^n}.$$

Proof. First observe that the right hand sides of (2) and (3) are equal for any n-derivation f. Indeed, the definition of \tilde{f} gives

$$\frac{f(r)}{s} - \left(\frac{r}{s}\right)^n \frac{f(s)}{s} = \frac{s^n f(r) - r^n f(s)}{s^{n+1}} = \frac{\tilde{f}(r,s)}{s^{n+1}}.$$

The required condition means that $f_S(\frac{r}{1}) = \frac{f(r)}{1}$ for $r \in R$. Let $s \in S$. If f_S is an *n*-derivation then

$$\frac{f(r)}{1} = f_S\left(\frac{r}{1}\right) = f_S\left(\frac{r}{s}\frac{s}{1}\right) = \left(\frac{r}{s}\right)^n f_S\left(\frac{s}{1}\right) + \frac{s}{1}f_S\left(\frac{r}{s}\right)$$
$$= \left(\frac{r}{s}\right)^n \frac{f(s)}{1} + \frac{s}{1}f_S\left(\frac{r}{s}\right),$$

which gives (2). This proves the uniqueness of f_S .

Now we define f_S by (3). To prove that f_S is properly defined, it suffices to check that the formula remains the same if we replace r by tr and s by ts for any $t \in S$. But this follows from Lemma 1(ix).

It follows by induction that (4) holds for t = 1. Then the general case follows from Lemma 1(viii).

It remains to prove (D_n) for f_S . Let $\frac{a}{s}$ and $\frac{b}{s}$ be arbitrary elements of R_S . Using formula (3) we obtain

$$f_{S}\left(\frac{a}{s}\frac{b}{s}\right) - \left(\frac{a}{s}\right)^{n} f_{S}\left(\frac{b}{s}\right) - \frac{b}{s} f_{S}\left(\frac{a}{s}\right)$$

$$= \frac{s^{2}f(ab) - abf(s^{2})}{s^{2n+2}} - \frac{a^{n}}{s^{n}} \frac{sf(b) - bf(s)}{s^{n+1}} - \frac{b}{s} \frac{sf(a) - af(s)}{s^{n+1}}$$

$$= \frac{s^{2}f(ab) - abf(s^{2})}{s^{2n+2}} - \frac{a^{n}s^{2}f(b) - a^{n}bsf(s)}{s^{2n+2}} - \frac{bs^{n+1}f(a) - abs^{n}f(s)}{s^{2n+2}}$$

$$= \frac{s^{2}(f(ab) - a^{n}f(b) - s^{n-1}bf(a)) - ab(f(s^{2}) - a^{n-1}sf(s) - s^{n}f(s))}{s^{2n+2}}$$

$$= \frac{s^{2}(b - bs^{n-1})f(a) - ab(s - sa^{n-1})f(s)}{s^{2n+2}}$$

$$= \frac{bs((s - s^{n})f(a) - (a - a^{n})f(s))}{s^{2n+2}} = 0$$

by (D_n) and Lemma 1(i) for f. This completes the proof. \blacksquare

PROPOSITION 2. There exists an R_S -isomorphism $D(R)_S \approx D(R_S)$ such that $\frac{\langle r \rangle}{s} \leftrightarrow \frac{1}{s} \langle \frac{r}{1} \rangle$.

Proof. Proposition 1 applied to the canonical n-derivation $d: R \to D(R)$, $d(r) = \langle r \rangle$, gives an n-derivation $d_S: R_S \to D(R)_S$ over R_S ,

$$d_S\left(\frac{r}{s}\right) = \frac{\langle r \rangle}{s} - \left(\frac{r}{s}\right)^n \frac{\langle s \rangle}{s}.$$

The universal property yields an R_S -homomorphism $g: D(R_S) \to D(R)_S$ such that

$$g\left(\left\langle \frac{r}{s}\right\rangle\right) = d_S\left(\frac{r}{s}\right) = \frac{\langle r\rangle}{s} - \left(\frac{r}{s}\right)^n \frac{\langle s\rangle}{s}.$$

On the other hand, the homomorphism $D(i): D(R) \to D(R_S)$ over $i: R \to R_S$, defined by $D(i)(\langle r \rangle) = \langle \frac{r}{1} \rangle$, gives an R_S -homomorphism $h: D(R)_S \to D(R_S)$ such that

$$h\left(\frac{\langle r \rangle}{s}\right) = \frac{1}{s} \left\langle \frac{r}{1} \right\rangle.$$

Observe that $h = g^{-1}$. Indeed,

$$g\left(h\left(\frac{\langle r\rangle}{s}\right)\right) = \frac{1}{s}g\left(\left\langle\frac{r}{1}\right\rangle\right) = \frac{1}{s}\left(\frac{\langle r\rangle}{1} - \left(\frac{r}{1}\right)^n\frac{\langle 1\rangle}{1}\right) = \frac{\langle r\rangle}{s}$$

by Lemma 1(ii). On the other hand, using Lemma 1(iii) and (D) we compute

that

$$h\left(g\left(\left\langle \frac{r}{s}\right\rangle\right)\right) = h\left(\frac{\left\langle r\right\rangle}{s} - \left(\frac{r}{s}\right)^n \frac{\left\langle s\right\rangle}{s}\right) = \frac{1}{s}\left\langle \frac{r}{1}\right\rangle - \frac{r^n}{s^{n+1}}\left\langle \frac{s}{1}\right\rangle$$
$$= \frac{1}{s}\left\langle \frac{r}{1}\right\rangle + \left(\frac{r}{1}\right)^n\left\langle \frac{1}{s}\right\rangle = \left\langle \frac{r}{1}\frac{1}{s}\right\rangle = \left\langle \frac{r}{s}\right\rangle.$$

Hence h is an isomorphism, as required. \blacksquare

3. C-functions of degree $n = 2^l$. Let n be a fixed natural number of the form $n = 2^l$, $l = 1, 2, \ldots$ By a C-function of degree n over R we will mean any n-derivation $f: R \to M$ satisfying the additional condition

$$(C_n)$$
 $f(r+s) = f(r) + f(s) + p(r,s)f(-1), r, s \in R,$

or equivalently

$$(C'_n) \qquad (\Delta^2 f)(r,s) = p(r,s)f(-1), \quad r,s \in R,$$

where

$$p(r,s) = \sum_{k=1}^{n-1} \frac{1}{2} \binom{n}{k} r^{n-k} s^k$$

(note that $\frac{1}{2}\binom{n}{k} \in \mathbb{Z}$ for k = 1, ..., n-1 because of the shape of n). Using generalized Newton symbols

$$(i_{1}, \dots, i_{k}) = \frac{(i_{1} + \dots + i_{k})!}{i_{1}! \dots i_{k}!}$$

$$= \binom{i_{1} + \dots + i_{k}}{i_{k}} \binom{i_{1} + \dots + i_{k-1}}{i_{k-1}} \dots \binom{i_{1} + i_{2}}{i_{2}}$$

$$= (i_{1} + \dots + i_{k-1}, i_{k})(i_{1}, \dots, i_{k-1})$$

we define the following generalization of p(r, s):

$$p(r_1,\ldots,r_k) = \sum_{i=1}^{k} \frac{1}{2}(i_1,\ldots,i_k)r_1^{i_1}\ldots r_k^{i_k},$$

where the sum is over all systems of non-negative integers $i_1 \dots, i_k$ such that $i_1 + \dots + i_k = n$ and at least two i_j are non-zero (then all the coefficients in the sum are integers).

LEMMA 2. For any $r_1, \ldots, r_k, r_{k+1} \in R$ we have

(i)
$$p(r_1, \ldots, r_k, r_{k+1}) = p(r_1 + \cdots + r_k, r_{k+1}) + p(r_1, \ldots, r_k),$$

(ii)
$$f(\sum_{i=1}^k r_i) = \sum_{i=1}^k f(r_i) + p(r_1, \dots, r_k)f(-1)$$

provided that f is a C-function of degree n.

Proof. (i) The generalized Newton formula shows that

$$\begin{split} p(r_1+\cdots+r_k,r_{k+1}) &= \sum_{\substack{j_1+j_2=n\\j_1,j_2>0}} \frac{1}{2}(j_1,j_2)(r_1+\cdots+r_k)^{j_1}r_{k+1}^{j_2} \\ &= \sum_{\substack{j_1+j_2=n\\j_1,j_2>0}} \sum_{i_1+\cdots+i_k=j_1} \frac{1}{2}(j_1,j_2)(i_1,\ldots,i_k)(r_1^{i_1}\cdots r_k^{i_k})r_{k+1}^{j_2} \\ &= \sum_{\substack{i_1+\cdots+i_{k+1}=n\\i_1+\cdots+i_k>0,\,i_{k+1}>0}} \frac{1}{2}(i_1+\cdots+i_k,i_{k+1})(i_1,\ldots,i_k)r_1^{i_1}\cdots r_k^{i_k}r_{k+1}^{i_{k+1}} \\ &= \sum_{\substack{i_1+\cdots+i_{k+1}=n\\i_1+\cdots+i_k>0,\,i_{k+1}>0}} \frac{1}{2}(i_1,\ldots,i_k,i_{k+1})r_1^{i_1}\cdots r_{k+1}^{i_{k+1}}. \end{split}$$

Since $(i_1, \ldots, i_k, 0) = (i_1, \ldots, i_k)$, the above is equal to $p(r_1, \ldots, r_k, r_{k+1}) - p(r_1, \ldots, r_k)$, as required.

(ii) For k=2 see (C_n) . If (ii) holds for some $k\geq 2$ then, by (C_n) and (i),

$$f\left(\sum_{i=1}^{k+1} r_i\right) = f\left(\sum_{i=1}^{k} r_i + r_{k+1}\right)$$

$$= f\left(\sum_{i=1}^{k} r_i\right) + f(r_{k+1}) + p\left(\sum_{i=1}^{k} r_i, r_{k+1}\right) f(-1)$$

$$= \sum_{i=1}^{k} f(r_i) + p(r_1, \dots, r_k) f(-1) + f(r_{k+1}) + p(r_1 + \dots + r_k, r_{k+1}) f(-1)$$

$$= \sum_{i=1}^{k+1} f(r_i) + p(r_1, \dots, r_{k+1}) f(-1). \blacksquare$$

Since $n = 2^l$ is even, we have $(-1)^n - (-1) = 2$, and hence Lemma 1(i) gives $2f(r) = (r^n - r)f(-1)$. The function $f: R \to R$, $f(r) = r^n - r$, is a C-function of degree n. Indeed, it is an n-derivation and

$$(r+s)^{n} - (r+s) - (r^{n} - r) - (s^{n} - s) = \sum_{k=0}^{n} \binom{n}{k} r^{n-k} s^{k} - r^{n} - s^{n}$$
$$= 2\sum_{k=1}^{n-1} \frac{1}{2} \binom{n}{k} r^{n-k} s^{k} = 2p(r,s) = p(r,s)f(-1)$$

by the Newton binomial formula. Later, we prove that it is a universal C-function of degree n (Theorem 1).

4. C-functions of degree 3. By a C-function of degree 3 over R we will mean any 3-derivation $f: R \to M$ satisfying the following additional

conditions for any $a, b, r, s, t \in R$:

(C1)
$$3sf(r) - 3rf(s) = (r - s)(\Delta^2 f)(r, s),$$

(C2)
$$(\Delta^2 f)(ar^3, bs^3) - (\Delta^2 f)(ar, bs) = 3a^2bf(r^2s) + 3ab^2f(rs^2),$$

(C3)
$$(\Delta^2 f)(r+s,t) = (\Delta^2 f)(r,t) + (\Delta^2 f)(s,t) + rst f(2).$$

Observe that conditions (C1) and (C3) can be replaced respectively by

(C1')
$$3\tilde{f}(r,s) = (r-s)(\Delta^2 f)(r,s),$$

(C3')
$$(\Delta^3 f)(r, s, t) = rst f(2).$$

LEMMA 3. If $f: R \to M$ is a C-function of degree 3 then for any $r, s, t \in R$ and for any finite set of $r_i \in R$ we have

(i)
$$6f(r) = (r^3 - r)f(2),$$

(ii)
$$(t^3 - t)(\Delta^2 f)(r, s) = (3r^2s + 3rs^2)f(t),$$

(iii)
$$\Delta^4 f = 0$$
,

(iv)
$$f\left(\sum_{i} r_{i}\right) = \sum_{i} f(r_{i}) + \sum_{i < j} (\Delta^{2} f)(r_{i}, r_{j}) + \sum_{i < j < k} r_{i} r_{j} r_{k} f(2).$$

Proof. Equality (i) is given by Lemma 1(i) for n=3 and s=2. Property (ii) is obtained from the definition of $\Delta^2 f$ and Lemma 1(i). Indeed,

$$(t^3 - t)(\Delta^2 f)(r, s) = (t^3 - t)(f(r+s) - f(r) - f(s))$$

$$= ((r+s)^3 - (r+s))f(t) - (r^3 - r)f(t) - (s^3 - s)f(t)$$

$$= (3r^2s + 3rs^2)f(t).$$

Equality (iii) holds, since $\Delta^3 f$ is trilinear by (C3'). Finally, (iv) follows from the formula (1) of the introduction, (C3') and (iii) above.

EXAMPLE 1. We show that the mapping $f: R \to R$, $f(r) = r^3 - r$, is a C-function of degree 3. First observe that

(5)
$$(\Delta^2 f)(r,s) = 3r^2 s + 3r s^2, \quad (\Delta^3 f)(r,s,t) = 6r s t.$$

Indeed,

$$(\Delta^{2}f)(r,s) = f(r+s) - f(r) - f(s)$$

$$= (r+s)^{3} - (r+s) - (r^{3} - r) - (s^{3} - s) = 3r^{2}s + 3rs^{2},$$

$$(\Delta^{3}f)(r,s,t) = (\Delta^{2}f)(r+s,t) - (\Delta^{2}f)(r,t) - (\Delta^{2}f)(s,t)$$

$$= 3(r+s)^{2}t + 3(r+s)t^{2} - (3r^{2}t + 3rt^{2}) - (3s^{2}t + 3st^{2}) = 6rst.$$

We will check conditions (C1), (C2), (C3'):

$$\begin{aligned} \text{(C1)} & & 3sf(r) - 3rf(s) - (r-s)(\Delta^2 f)(r,s) \\ & = 3s(r^3 - r) - 3r(s^3 - s) - (r-s)(3r^2s + 3rs^2) = 0, \\ \text{(C2)} & & (\Delta^2 f)(ar^3, bs^3) - (\Delta^2 f)(ar, bs) - 3a^2bf(r^2s) - 3ab^2f(rs^2) \\ & = 3(ar^3)^2bs^3 + 3ar^3(bs^3)^2 - (3(ar)^2bs + 3ar(bs)^2) \\ & - 3a^2b((r^2s)^3 - r^2s) - 3ab^2((rs^2)^3 - rs^2) \\ & = 3a^2b(r^6s^3 - r^2s - r^6s^3 + r^2s) + 3ab^2(r^3s^6 - rs^2 - r^3s^6 + rs^2) = 0, \end{aligned}$$

and (C3') follows directly from (5) because f(2) = 6.

5. The functors $C=C^{(n)}$. If $n=2^l$ then we denote by $C(R)=C^{(n)}(R)$ the R-module generated by the elements $[r], r \in R$, with the relations

(D)
$$[rs] = r^n[s] + s[r], \quad r, s \in R,$$

(C)
$$[r+s] = [r] + [s] + p(r,s)[-1], r, s \in R.$$

If n = 3 then we denote by $C(R) = C^{(3)}(R)$ the R-module generated by the elements [r], $r \in R$, with the relations

(D)
$$[rs] = r^3[s] + s[r], \quad r, s \in R,$$

(C1)
$$3s[r] - 3r[s] = (r - s)[r, s], \quad r, s \in R,$$

(C2)
$$[ar^3, bs^3] - [ar, bs] = 3a^2b[r^2s] + 3ab^2[rs^2], \quad a, b, r, s \in \mathbb{R},$$

(C3)
$$[r+s,t] = [r,t] + [s,t] + rst[2], \quad r,s,t \in R,$$

where
$$[r, s] = [r + s] - [r] - [s] = (\Delta^{2}[\])(r, s).$$

Let $n=2^l$ or 3. Any unitary ring homomorphism $i\colon R\to R'$ induces a module homomorphism $C(i)\colon C(R)\to C(R')$ over i such that C(i)([r])=[i(r)]. This shows that C is a functor. Observe that C(R) is a universal object with respect to C-functions of degree n over R, meaning that any C-function of degree n can be uniquely expressed as a composition of the canonical C-function $c\colon R\to C(R), c(r)=[r],$ and an R-homomorphism defined on C(R).

In particular, the C-function $f: R \to R$, $f(r) = r^n - r$, gives

COROLLARY 2. There exists an R-homomorphism $P: C(R) \to I_n(R)$ such that $P([r]) = r^n - r$ for $r \in R$.

Our goal is to show that P is an isomorphism (Theorem 1). As a first step, we prove that C commutes with localizations. Let S be a multiplicatively closed set in R and let $i: R \to R_S$ and $i: M \to M_S$ be the canonical homomorphisms, $i(r) = \frac{r}{1}$, $i(m) = \frac{m}{1}$.

PROPOSITION 3. If $f: R \to M$ is a C-function of degree n then the only n-derivation $f_S: R_S \to M_S$ satisfying the condition $f_S(i(r)) = i(f(r))$ for all $r \in R$ (Proposition 1) is a C-function of degree n.

Proof. First let $n = 2^l$. Observe that $f_S(-1) = \frac{f(-1)}{1}$ and

$$p\left(\frac{a}{s}, \frac{b}{s}\right) = \sum_{k=1}^{n-1} \frac{1}{2} \binom{n}{k} \left(\frac{a}{s}\right)^{n-k} \left(\frac{b}{s}\right)^k = \frac{p(a, b)}{s^n}.$$

Then using Proposition 1 we compute that

$$(C'_n)$$
 $(\Delta^2 f_S) \left(\frac{a}{s}, \frac{b}{s}\right) = \frac{(\Delta^2 f)(a, b)}{s^n} = \frac{p(a, b)f(-1)}{s^n} = p\left(\frac{a}{s}, \frac{b}{s}\right) f_S(-1).$

Let now n=3. We will prove that f_S satisfies (C1'), (C2), (C3'). Let $\frac{a}{t}$, $\frac{b}{t}$, $\frac{c}{t}$, $\frac{r}{t}$, $\frac{s}{t}$ be arbitrary elements of R_S .

(C1') It follows from Lemma 1(ix) and Proposition 1 that

$$3\tilde{f}_S\left(\frac{r}{t}, \frac{s}{t}\right) = 3\frac{1}{t^4}\tilde{f}_S\left(\frac{r}{1}, \frac{s}{1}\right) = 3\frac{\tilde{f}(r, s)}{t^4}$$
$$= \frac{(r - s)(\Delta^2 f)(r, s)}{t^4} = \left(\frac{r}{t} - \frac{s}{t}\right)(\Delta^2 f_S)\left(\frac{r}{t}, \frac{s}{t}\right).$$

(C2) Using Proposition 1 and Lemma 3(ii) we obtain

$$(\Delta^{2}f_{S})\left(\frac{a}{t}\left(\frac{r}{t}\right)^{3}, \frac{b}{t}\left(\frac{s}{t}\right)^{3}\right) - (\Delta^{2}f_{S})\left(\frac{a}{t}\frac{r}{t}, \frac{b}{t}\frac{s}{t}\right)$$

$$= \frac{(\Delta^{2}f)(ar^{3}, bs^{3})}{t^{12}} - \frac{(\Delta^{2}f)(ar, bs)}{t^{6}}$$

$$= \frac{(\Delta^{2}f)(ar^{3}, bs^{3}) - (\Delta^{2}f)(ar, bs)}{t^{12}} - \frac{(t^{9} - t^{3})(\Delta^{2}f)(ar, bs)}{t^{15}}$$

$$= \frac{3a^{2}bt^{3}f(r^{2}s) + 3ab^{2}t^{3}f(rs^{2})}{t^{15}} - \frac{(3(ar)^{2}bs + 3ar(bs^{2}))f(t^{3})}{t^{15}}$$

$$= 3\frac{a^{2}b}{t^{3}}\frac{t^{3}f(r^{2}s) - r^{2}sf(t^{3})}{t^{12}} + 3\frac{ab^{2}}{t^{3}}\frac{t^{3}f(rs^{2}) - rs^{2}f(t^{3})}{t^{12}}$$

$$= 3\frac{a^{2}b}{t^{3}}f_{S}\left(\frac{r^{2}s}{t^{3}}\right) + 3\frac{ab^{2}}{t^{3}}f_{S}\left(\frac{rs^{2}}{t^{3}}\right)$$

$$= 3\left(\frac{a}{t}\right)^{2}\frac{b}{t}f_{S}\left(\left(\frac{r}{t}\right)^{2}\frac{s}{t}\right) + 3\frac{a}{t}\left(\frac{b}{t}\right)^{2}f_{S}\left(\frac{r}{t}\left(\frac{s}{t}\right)^{2}\right).$$

(C3') Since $f_S(\frac{2}{1}) = \frac{f(2)}{1}$, it follows from Proposition 1 that

$$(\Delta^3 f_S) \left(\frac{a}{t}, \frac{b}{t}, \frac{c}{t}\right) = \frac{(\Delta^3 f)(a, b, c)}{t^3} = \frac{abcf(2)}{t^3} = \frac{a}{t} \frac{b}{t} \frac{c}{t} \frac{f(2)}{1}. \blacksquare$$

As in Section 2, we deduce

PROPOSITION 4. There exists an R_S -isomorphism $C(R)_S \approx C(R_S)$ such that $\frac{[r]}{s} \leftrightarrow \frac{1}{s} [\frac{r}{1}]$.

Proof. Replace $\langle r \rangle$ by [r] in the proof of Proposition 2.

6. The main lemmas. Let $n=2^l$ or n=3. We consider the kernel of the R-homomorphism $P: C(R) \to I_n(R), P([r]) = r^n - r$ for $r \in R$.

LEMMA 4.
$$I_n(R) \operatorname{Ker}(P) = 0$$
.

Proof. Let $x = \sum_i a_i[r_i] \in \text{Ker}(P)$, that is, $\sum_i a_i(r_i^n - r_i) = 0$. Then (D) shows that

$$(r^n - r)x = \sum_i a_i(r^n - r)[r_i] = \sum_i a_i(r_i^n - r_i)[r] = 0[r] = 0.$$

Let $n = 2^l$. Lemmas 2(ii) and 1(vii) give the following formulas:

(6)
$$\left[\sum_{i=1}^{k} r_i\right] = \sum_{i=1}^{k} [r_i] + p(r_1, \dots, r_k)[-1],$$

(7)
$$[r^n] = [r^{2l}] = ((r^{2l-1})^n + r^{2l-1})((r^{2l-2})^n + r^{2l-2})\dots(r^n + r)[r].$$

LEMMA 5. Let $n=2^l$ and $x=\sum_{i=1}^k a_i[r_i] \in \operatorname{Ker}(P)$, where one of the r_i is -1. If all a_i belong to $I_n(R)^m$ for some $m \geq 0$ then $x=\sum_{i=1}^k b_i[r_i]$ where all b_i belong to $I_n(R)^{nm+1}$.

Proof. By the assumption, $\sum_{i=1}^k a_i r_i^n = \sum_{i=1}^k a_i r_i$. Using (6) we obtain

$$\left[\sum_{i=1}^{k} a_i r_i\right] = \sum_{i=1}^{k} [a_i r_i] + p[-1] = \sum_{i=1}^{k} a_i [r_i] + \sum_{i=1}^{k} r_i^n [a_i] + p[-1],$$

$$\left[\sum_{i=1}^{k} a_i r_i^n\right] = \sum_{i=1}^{k} [a_i r_i^n] + q[-1] = \sum_{i=1}^{k} a_i^n [r_i^n] + \sum_{i=1}^{k} r_i^n [a_i] + q[-1],$$

where

$$p = p(a_1 r_1, \dots, a_k r_k) = \sum_{k=1}^{n} \frac{1}{2} (i_1, \dots, i_k) a_1^{i_1} \dots a_k^{i_k} r_1^{i_1} \dots r_k^{i_k},$$

$$q = p(a_1 r_1^n, \dots, a_k r_k^n) = \sum_{k=1}^{n} \frac{1}{2} (i_1, \dots, i_k) a_1^{i_1} \dots a_k^{i_k} (r_1^{i_1} \dots r_k^{i_k})^n,$$

and the sums are over all systems of non-negative integers i_1, \ldots, i_k such that $i_1 + \cdots + i_k = n$ and at least two i_j are non-zero. Since

$$\sum_{i=1}^{k} a_i[r_i] + \sum_{i=1}^{k} r_i^n[a_i] + p[-1] = \sum_{i=1}^{k} a_i^n[r_i^n] + \sum_{i=1}^{k} r_i^n[a_i] + q[-1],$$

we obtain

$$x = \sum_{i=1}^{k} a_i[r_i] = \sum_{i=1}^{k} a_i^n[r_i^n] + (q-p)[-1]$$

$$= \sum_{i=1}^{k} a_i^n ((r_i^{2l-1})^n + r_i^{2l-1}) ((r_i^{2l-2})^n + r_i^{2l-2}) \dots$$

$$\dots (r_i^n + r_i)[r_i] + (q-p)[-1]$$

by (7). Since $a_i \in I_n(R)^m$ it follows that $a_i^n \in I_n(R)^{nm}$ and $r_i^n + r_i = (-r_i)^n - (-r_i) \in I_n(R)$, since n is even. Hence

$$a_i^n((r_i^{2m-1})^n + r_i^{2m-1})((r_i^{2m-2})^n + r_i^{2m-2})\dots(r_i^n + r_i) \in I_n(R)^{nm+1}$$

Moreover, $a_1^{i_1} \dots a_k^{i_k} \in I_n(R)^{nm}$ since $a_i \in I_n(R)^m$ and $i_1 + \dots + i_k = n$, and $(r_1^{i_1} \dots r_k^{i_k})^n - r_1^{i_1} \dots r_k^{i_k} \in I_n(R)$. Hence

$$q - p = \sum_{k=0}^{\infty} \frac{1}{2} (i_1, \dots, i_k) a_1^{i_1} \dots a_k^{i_k} ((r_1^{i_1} \dots r_k^{i_k})^n - r_1^{i_1} \dots r_k^{i_k}) \in I_n(R)^{nm+1}.$$

This completes the proof.

The above lemma gives immediately

COROLLARY 3. Let $n = 2^l$ and $x = \sum_{i=1}^k a_i[r_i] \in \text{Ker}(P)$. Let M denote the submodule of C(R) generated by $[r_1], \ldots, [r_k]$ and [-1]. Then

$$x \in \bigcap_{m=0}^{\infty} I_n(R)^m M.$$

Let now n = 3. Lemmas 3(iv) and 1(vi) give the formulas

(8)
$$\left[\sum_{i} r_{i}\right] = \sum_{i} [r_{i}] + \sum_{i < j} [r_{i}, r_{j}] + \sum_{i < j < k} r_{i} r_{j} r_{k} [2]$$

for any finite set of elements $r_i \in R$, and

(9)
$$[r^3] = (r^6 + r^4 + r^2)[r], \quad r \in \mathbb{R}.$$

LEMMA 6. Let n = 3 and $x = \sum_i a_i[r_i] \in \text{Ker}(P)$ where one of the r_i is equal to 2. If all a_i belong to $I_3(R)^m$ for some $m \geq 0$ and one of the following conditions is satisfied:

- (1) all r_i belong to $I_3(R)$, or
- $(2) \ 3 \in I_3(R),$

then $x = \sum_i b_i[r_i]$ where all b_i belong to $I_3(R)^{3m+1}$.

Proof. By the assumption, $\sum_i a_i r_i^3 = \sum_i a_i r_i$. Using (8), (9) and (D) we obtain

$$\left[\sum_{i} a_{i} r_{i}\right] = \sum_{i} [a_{i} r_{i}] + \sum_{i < j} [a_{i} r_{i}, a_{j} r_{j}] + \sum_{i < j < k} a_{i} r_{i} a_{j} r_{j} a_{k} r_{k}[2]$$

$$= \sum_{i} a_{i} [r_{i}] + \sum_{i} r_{i}^{3} [a_{i}] + \sum_{i < j} [a_{i} r_{i}, a_{j} r_{j}] + \sum_{i < j < k} a_{i} r_{i} a_{j} r_{j} a_{k} r_{k}[2]$$

and

$$\begin{split} \left[\sum_{i} a_{i} r_{i}^{3}\right] &= \sum_{i} [a_{i} r_{i}^{3}] + \sum_{i < j} [a_{i} r_{i}^{3}, a_{j} r_{j}^{3}] + \sum_{i < j < k} a_{i} r_{i}^{3} a_{j} r_{j}^{3} a_{k} r_{k}^{3}[2] \\ &= \sum_{i} a_{i}^{3} [r_{i}^{3}] + \sum_{i} r_{i}^{3} [a_{i}] + \sum_{i < j} [a_{i} r_{i}^{3}, a_{j} r_{j}^{3}] + \sum_{i < j < k} a_{i} r_{i}^{3} a_{j} r_{j}^{3} a_{k} r_{k}^{3}[2] \\ &= \sum_{i} a_{i}^{3} (r_{i}^{6} + r_{i}^{4} + r_{i}^{2})[r_{i}] + \sum_{i} r_{i}^{3} [a_{i}] + \sum_{i < j < k} [a_{i} r_{i}^{3}, a_{j} r_{j}^{3}] \\ &+ \sum_{i < i < k} a_{i} r_{i}^{3} a_{j} r_{j}^{3} a_{k} r_{k}^{3}[2]. \end{split}$$

Since the left hand sides above are equal, (C2) and Lemma 1(v) give

$$\begin{split} x &= \sum_{i} a_{i}[r_{i}] \\ &= \sum_{i} a_{i}^{3}(r_{i}^{6} + r_{i}^{4} + r_{i}^{2})[r_{i}] + \sum_{i < j} [a_{i}r_{i}^{3}, a_{j}r_{j}^{3}] - \sum_{i < j} [a_{i}r_{i}, a_{j}r_{j}] \\ &+ \sum_{i < j < k} a_{i}r_{i}^{3}a_{j}r_{j}^{3}a_{k}r_{k}^{3}[2] - \sum_{i < j < k} a_{i}r_{i}a_{j}r_{j}a_{k}r_{k}[2] \\ &= \sum_{i} a_{i}^{3}(r_{i}^{6} + r_{i}^{4} + r_{i}^{2})[r_{i}] + \sum_{i < j} 3a_{i}^{2}a_{j}[r_{i}^{2}r_{j}] + \sum_{i < j} 3a_{i}a_{j}^{2}[r_{i}r_{j}^{2}] \\ &+ \sum_{i < j < k} a_{i}a_{j}a_{k}(r_{i}^{3}r_{j}^{3}r_{k}^{3} - r_{i}r_{j}r_{k})[2] \\ &= \sum_{i} a_{i}^{3}((r_{i}^{2})^{3} - r_{i}^{2} + r_{i}(r_{i}^{3} - r_{i}) + 3r_{i}^{2})[r_{i}] \\ &+ \sum_{i < j} 3a_{i}^{2}a_{j}(r_{i}^{6}[r_{j}] + r_{i}^{3}r_{j}[r_{i}] + r_{i}r_{j}[r_{i}]) \\ &+ \sum_{i < j} 3a_{i}a_{j}^{2}(r_{j}^{6}[r_{i}] + r_{i}r_{j}^{3}[r_{j}] + r_{i}r_{j}[r_{j}]) \\ &+ \sum_{i < j < k} a_{i}a_{j}a_{k}((r_{i}r_{j}r_{k})^{3} - r_{i}r_{j}r_{k})[2]. \end{split}$$

Observe that $(r_i^2)^3 - r_i^2$, $r_i^3 - r_i$, $(r_i r_j r_k)^3 - r_i r_j r_k \in I_3(R)$; hence the summands not multiplied by 3 belong to $I_3(R)^{3m+1}$. If all r_i belong to $I_3(R)$, or

 $3 \in I_3(R)$, the remaining summands also belong to $I_3(R)^{3m+1}$. This means that in both cases all coefficients in the above sums belong to $I_3(R)^{3m+1}$.

COROLLARY 4. Let n = 3 and $x = \sum_i a_i[r_i] \in \text{Ker}(P)$. Let M denote the submodule of C(R) generated by all $[r_i]$ and [2]. If one of the following conditions is satisfied:

- (1) all r_i and 2 belong to $I_3(R)$, or
- (2) $3 \in I_3(R)$, then $x \in \bigcap_{m=0}^{\infty} I_3(R)^m M$.

m=0.13(10) m=0.13(10)

7. The main theorem. Proving the following fact is the purpose of this paper:

THEOREM 1. Let $C(R) = C^{(n)}(R)$ where $n = 2^l$, l = 1, 2, ... or n = 3. Then $P: C(R) \to I_n(R)$, $P([r]) = r^n - r$ for $r \in R$, is an R-isomorphism. In other words, if $n = 2^l$, l = 1, 2, ..., then the following are generating relations between the generators $[r] = r^n - r$ of $I_n(R)$:

(D)
$$[rs] = r^n[s] + s[r], \quad r, s \in R,$$

(C)
$$[r+s] = [r] + [s] + p(r,s)[-1], \quad r,s \in R,$$

where

$$p(r,s) = \sum_{k=1}^{n-1} \frac{1}{2} \binom{n}{k} r^{n-k} s^k;$$

and if n = 3 then the following are generating relations between the generators $[r] = r^3 - r$ of $I_3(R)$:

- (D) $[rs] = r^3[s] + s[r], \quad r, s \in R,$
- (C1) $3s[r] 3r[s] = (r s)[r, s], \quad r, s \in R,$

(C2)
$$[ar^3, bs^3] - [ar, bs] = 3a^2b[r^2s] + 3ab^2[rs^2], \quad a, b, r, s \in \mathbb{R},$$

(C3)
$$[r+s,t] = [r,t] + [s,t] + rst[2], \quad r,s,t \in R,$$

where $[r, s] = [r + s] - [r] - [s] = (\Delta^2[])(r, s)$.

Proof. Our goal is to prove that Ker(P) = 0.

Noetherian case. Assume that R is noetherian. By Proposition 4 we can assume that R is local and noetherian with quotient field K. Then $I_n(R)$ is the maximal ideal if |K| - 1 |n - 1, and $I_n(R) = R$ otherwise (see Introduction).

If $I_n(R) = R$ then Lemma 4 shows that Ker(P) = 0, as we want. So let $I_n(R)$ be the maximal ideal of R.

Assume first that $n = 2^l$. Let $x \in \text{Ker}(P)$. Define the submodule M as in Corollary 3 and observe that it is finitely generated over a local noetherian ring. Then the intersection in the corollary is zero by the Krull intersection theorem, and hence x = 0. This proves that Ker(P) = 0.

Let now n = 3. Then |K| = 2 or 3.

Case 1: |K| = 3. Then $3 \in I_3(R)$. Let $x \in \text{Ker}(P)$. Define M as in Corollary 4 and observe that condition (2) of the corollary holds. As before, x = 0 by the Krull intersection theorem, and so Ker(P) = 0.

CASE 2: |K| = 2. Then $2 \in I_3(R)$ and $K = \{I_3(R), 1 + I_3(R)\}$. Hence the set of units of R is $1 + I_3(R)$. Condition (C1) for s = 1 gives

$$3[r] - 3r[1] = (r-1)([r+1] - [r] - [1]),$$

and since [1] = 0 this shows that (r+2)[r] = (r-1)[r+1]. So if r is invertible then so is r+2, and

 $[r] = \frac{r-1}{r+2}[r+1]$

where r+1 is non-invertible. Let $x=\sum_i a_i[r_i]\in \operatorname{Ker}(P)$. If one of r_i is invertible then using the above formula we can replace $[r_i]$ by $\frac{r_i-1}{r_i+2}[r_i+1]$. So we can assume that all r_i above are non-invertible, that is, belong to $I_3(R)$. Since $1 \in I_3(R)$, condition (1) of Corollary 4 holds, and as before we find that $1 \in I_3(R)$ and finally $1 \in I_3(R)$.

General case. Let $x = \sum_i a_i[r_i] \in \operatorname{Ker}(P)$. Define S to be the subring of R generated by all a_i and r_i . Since S is a finitely generated ring, and hence noetherian, the previous part of the proof shows that $P \colon C(S) \to S$ is injective. Let $i \colon S \to R$ denote the injection. Then x = (C(i))(y), where $y = \sum_i a_i[r_i] \in C(S)$. Since P(y) = P(x) = 0 we conclude that y = 0 and consequently x = 0. This completes the proof.

References

- [1] M. Maciejewski and A. Prószyński, Mappings of degree 5, part II, in preparation.
- [2] A. Prószyński, Forms and mappings. I: Generalities, Fund. Math. 122 (1984), 219–235.
- [3] A. Prószyński, Forms and mappings. III: Regular m-applications, Comment. Math. 28 (1989), 305–330.
- [4] A. Prószyński, Forms and mappings. IV: Degree 4, Bull. Polish Acad. Sci. 37 (1989), 269–278.
- [5] A. Prószyński, Mappings of Higher Degrees, WSP, Bydgoszcz, 1987 (in Polish).
- [6] A. Prószyński, Relations between elements $r^2 r$, Bull. Polish Acad. Sci. Math. 55 (2007), 317–323.

Maciej Maciejewski, Andrzej Prószyński

Kazimierz Wielki University

85-072 Bydgoszcz, Poland

E-mail: maciejm@ukw.edu.pl, apmat@ukw.edu.pl

Received April 9, 2014; received in final form June 6, 2014 (7967)