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Summary. We find complete sets of generating relations between the elements [r] =

™ —r for n = 2! and for n = 3. One of these relations is the n-derivation property

[rs] = r"[s] + s[r], r,s € R.

1. Introduction. Let R be a commutative ring with 1. In [2], the sec-
ond author introduced the ideals I,,(R) generated by all elements r"™ — r
where r € R. It follows from [2, Proposition 5.5] that I,,(R) is precisely the
intersection of all maximal ideals M of R such that |[R/M|— 1 divides n —1
(in particular, for n = 3 this means that |R/M| = 2 or 3). These ideals are
used to find relations satisfied by mappings of higher degrees (see [2]-[5]).
The main result of [6] determines generating relations for the elements 72 —7.
The purpose of this paper is to find generating relations for the generators
" —r of I,(R), where n is a power of 2 or n = 3 (Theorem [1]). This will be
used in [1] to find generating relations for mappings of degree 5; however,
the present paper is independent of the theory of higher degree mappings.

If f is a mapping between R-modules and f(0) = 0 then we define by
induction the functions A™f in m variables as follows: A'f = f and

(A" ) (o, ..., xm) = (A™F)(z0 + 21, T2, - . ., Tin)
— (A" f)(xo,x2, ..y xm) — (A" f) (21,22, .., Tm)-
Then we have the following formula:

(1) flar+ o tam) =Y > (A, ).

k=1 1<t <<t <m
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2. Definition and properties of n-derivations and the functor D.
Let n be a fixed natural number. By an n-derivation over R we will mean
a function f: R — M, where M is an R-module, satisfying the following
condition:

(D) flrs)=r"f(s)+sf(r), r,se€R.

For example, the function f: R — R, f(r) = r™ — r, is an n-derivation. On
the other hand, any (ordinary) derivation is a 1-derivation (observe that we
do not assume additivity in our definition).

LEMMA 1. If f is an n-derivation then for any r,s € R we have
(i) (" =r)f(s) = (s" = 8) f(r),
(i) 1(0) = £(1) =0,
if s is invertible then f(s™1) = —s "1 f(s),
£7) = 1"+ 1)),
F(725) = 1271 (5) + (s + 7)),
) = (@ 4 e ) (),
k— . k— k— N
FO2) = (@)D 2 L) £,
(viii) (Akf)(trl, o try) =t (AR ) (r, . ) for k>2,t 1, ..., TEER.
If we denote f(r,s) = sf(r) —rf(s) = s"f(r) —r"f(s) forr,s € R then
(ix) f(tr,ts) ="+ f(r,s) for any r,s,t € R.

Proof. Relation (i) follows from the two symmetric versions of (D).
The equalities f(0) = f(1) = 0 follow from (D,,) for r = s = 0 or 1. Using
(Dy,) and (ii) we obtain 0 = f(1) = f(s-s71) = s"f(s71) + s 1 f(s), and
this gives (iii). Equality (iv) follows from (D), (v) from (iv) and (D,),
(vi) from (v), and (vii) by induction from (iv). Moreover, (viii) holds for
k = 2 since

(A%f)(tr ts) = f(tr +ts) — f(tr) — f(ts)
=t f(r+s)+(r+s)f(t) —t"f(r) —rf(t) =" f(s) = sf (1)
=t"(f(r+s) = f(r) = f(s)) = "(A%f)(r,s),
and for k£ > 2 by induction. Finally, we prove (ix):
Ftr,ts) = ts(t" £(r) + (1)) — tr(t" £ (5) + () = "1 (7, ). m

Let D(R) = D™ (R) denote the R-module generated by all elements (r),
r € R, with the relations
(D) (rs) =r"(s) +s(r), rseR.

Any unitary ring homomorphism i: R — R’ induces a module homomor-
phism D(i): D(R) — D(R’) over i such that D(7)({r)) = (i(r)). This shows
that D is a functor. Observe that D(R) is a universal object with respect
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to n-derivations over R, in the sense that any n-derivation can be uniquely
expressed as the composition of the canonical n-derivation d: R — D(R),
d(r) = (r), and an R-homomorphism defined on D(R).

In particular, the n-derivation f: R — R, f(r) = r" — r, gives

COROLLARY 1. There exists an R-homomorphism P: D(R) — I,(R)
such that P({r)) = 1" —r forr € R.

We now prove that D commutes with localizations. Let S be a mul-
tiplicatively closed set in R and let ¢: R — Rg and i: M — Mg be the
m

canonical homomorphisms, i(r) = §, i(m) = .

PROPOSITION 1. For any n-derivation f: R — M there exists a unique
n-derivation fs: Rg — Mg satisfying the condition fs(i(r)) = i(f(r)) for
r € R. It is given by the formula

(2) fs (Z) _ fir) B <:>nfis)

or equivalently

(3) fSC) _ frs) _ sfr) —ri(s)

gn+l gn+1

Moreover, for any k > 2,

AR (ry, ..., 78)
4 Avpgy( T, ) 2 A,
(@) @ops) (e e

Proof. First observe that the right hand sides of and are equal
for any n-derivation f. Indeed, the definition of f gives

f) <r>"f<s> s ) = () _ f(rs)

S S s gnt1 - gntl -’

The required condition means that fs(%) = f(lr) forr € R. Let s € S. If fg
is an n-derivation then

19 5(5) - (35) - ()5 (3) +55()
_ (;)nf(ls) + ifSC)

which gives . This proves the uniqueness of fg.

Now we define fg by . To prove that fg is properly defined, it suffices
to check that the formula remains the same if we replace r by tr and s by
ts for any t € S. But this follows from Lemma 1(ix).

It follows by induction that (4) holds for ¢t = 1. Then the general case
follows from Lemma 1(viii).
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It remains to prove (D) for fs. Let ¢ and g be arbitrary elements of Rg.
Using formula we obtain

s(10) - (5) #(2) - ()

sf(ab) — abf(s®) _a"sf(b) —bf(s) _bsf(a)—af(s)

S2n+2 s 8n+1 s Sn—l—l
s f(ab) —abf(s?) a"s?f(b) —a™bsf(s) bs"t!f(a) — abs" f(s)
- §2n+2 - g2n+2 o g2n+2
_ s*(f(ab) —a"f(b) — s""'bf(a)) — ab(f(s®) — a""'sf(s) — 5" f(s))
- 52n+2
s (b—bs") f(a) — ab(s — sa™ 1) f(s)
- 52n+2
_bs((s = )f(@) — (a—aM ()

$2n+2

by (D,) and Lemma 1(i) for f. This completes the proof. m

PROPOSITION 2. There exists an Rg-isomorphism D(R)s ~ D(Rg) such
that {1 ¢ L(1),

Proof. Propositionapplied to the canonical n-derivation d: R — D(R),
d(r) = (r), gives an n-derivation dg: Rg — D(R)s over Rg,

w(0)-5-()%

The universal property yields an Rg-homomorphism g: D(Rs) — D(R)g

such that .
() =)= -0

On the other hand, the homomorphism D(i): D(R) — D(Rg)overi: R — Rg,
defined by D(i)((r)) = (), gives an Rg-homomorphism h: D(R)s — D(Rg)

such that
(7))

Observe that h = ¢~ '. Indeed,

() - ((5) -5 ()'9)-

by Lemma 1(ii). On the other hand, using Lemma 1(iii) and (D) we compute
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that

Hence h is an isomorphism, as required. m

3. C-functions of degree n = 2'. Let n be a fixed natural number of

the form n = 2!, 1 = 1,2,.... By a C-function of degree n over R we will
mean any n-derivation f: R — M satisfying the additional condition

(Cn) fr+s)=f(r)+ f(s) +p(r,s)f(=1), rs€ER,

or equivalently

(Cn) (A%f)(r,s) = p(r,s)f (1), ms€R,

where

— 1
'I” 8 Z 2( >
(note that 3 () € Z for k =1,...,n — 1 because of the shape of n). Using
generalized Newton symbols

(i1 4 - +ix)!

il !

_ (il—l—---—i-ik) <i1+-~—|—ik1> <i1+i2)
(27 U—1 12
= (i1 + 4 g1, i6) (01, - ip1)
we define the following generalization of p(r, s):

1. o .
p(ri,..., 1K) = 25(21,...,%)7“?...7”;’“,

where the sum is over all systems of non-negative integers i1 ..., i, such that
i1+ --+1i, = n and at least two i; are non-zero (then all the coefficients in
the sum are integers).

(i1y... 1) =

LEMMA 2. For any ri,...,7Tk,Tk+1 € R we have

(1) p(riy. e mkg1) =01+ -+ 7 Teg1) F (11, - TE)s

(i) SOCEyre) =S5 Fra) +p(ry,. . ) f(=1)

provided that f is a C-function of degree n.
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Proof. (i) The generalized Newton formula shows that

1, .
p<7'1+-..—|—7’k,7’k+1) = E 5(]1,J2)(r1+...+7«k)]1ri2+1
Jit+j2=n
J1,J2>0

L
Z Z 5(]17]2)(711,-.. 7@]6)(71;1 ,r,k )7"}762_‘_1
J1Hjo=n i1+-+Fip=71
J1,52>0

1 7 %
B , o , , kT4
- Z 5(11 o k) (1, )Ty T
i14-Figp1=n
i1t +ig >0, 141 >0

1 i
_ . . . k+1
= g 5(21,...,zk,zk+1) ST
11+t p1=n
114415 >0, 9541 >0

Since (i1,...,0%,0) = (i1,...,1x), the above is equal to p(r1,..., 7k, Tks1) —
p(r1,...,7%), as required.
(ii) For k = 2 see (C,,). If (ii) holds for some k > 2 then, by (C,,) and (i),
k+1

() = 1( St )

=1 =1
k

(in) + f(re+1) +p<zm,rk+1>f(_1)

=1 =1

= Zf(rz) +p(7‘1, R 7Tk)f(_1) + f(rkJrl) +p(7“1 +ooet rk?TkJrl)f(_l)
k+1

= Zf(ﬁ') +p(r1, .y Teg1) f(—1). =
i=1

Since n = 2! is even, we have (—1)” — (—1) = 2, and hence Lemma 1(i)
gives 2f(r) = (r™ — r)f(—1). The function f: R — R, f(r) =r" —r,is a
C-function of degree n. Indeed, it is an n-derivation and

(r+8)"—(r+s) —(@"—r)—(s" — 3) :f: (Z)r"ksk—rn—s”
_ zni % (Z)r"_ksk — 2p(r,5) = p(r, s) F(—1)
k=1

by the Newton binomial formula. Later, we prove that it is a universal
C-function of degree n (Theorem [1)).

4. C-functions of degree 3. By a C-function of degree 3 over R we
will mean any 3-derivation f: R — M satisfying the following additional
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conditions for any a,b,r,s,t € R:

(C1) 3sf(r) = 3rf(s) = (r — s)(A%f)(r,s),

(C2) (A%f)(ar3,bs) — (A2 f)(ar,bs) = 3a®bf (r?s) + 3ab® f(rs?),
(C3) (A%f)(r +s,t) = (A2f)(r,t) + (A% f)(s,1) + 75t £(2).
Observe that conditions (C1) and (C3) can be replaced respectively by
(C1) 3f(r,s) = (r — s)(A%f)(r,9),

(C3) (A3F)(r, s,t) = rstf(2).

LEmMA 3. If f: R — M is a C-function of degree 3 then for anyr,s,t €
R and for any finite set of r; € R we have

i) 6f(r) =" —1)f(2),

(i) (£ =A%), s) = (3r¥s + 3rs*) £ (1),

(iii)  A*f =0,

(iv) <Z ) Zf Ti —}—ZA f)(riyry) + Z riririf(2)
i<j i<j<k

Proof. Equality (i) is given by Lemma 1(i) for n = 3 and s = 2. Prop-
erty (ii) is obtained from the definition of A%f and Lemma 1(i). Indeed,

(£ = )(A%f)(r,5) = (£ = )(f(r +5) = f(r) = f(5))
= ((r+5)> = (r+9))f(t) = (> =) f(t) = (s* = 5) [ (t)
= (3r%s + 3rs?) f(1).

Equality (iii) holds, since A3 f is trilinear by (C3'). Finally, (iv) follows from
the formula (1) of the introduction, (C3') and (iii) above. =

EXAMPLE 1. We show that the mapping f: R — R, f(r) =73 —r, is a
C-function of degree 3. First observe that

(5) (A2f)(r,s) = 3r?s + 3rs?,  (A3f)(r,s,t) = 6rst.
Indeed,
(A%f)(r,s) = f(r+s) = f(r) = f(s)
=(r+s)3—(r+s)— @3 —7r)—(s>—s) = 3r’s + 3rs’,
(A%f)(r,5,t) = (A% f)(r + 5,1) — (A f)(r,t) — (A%f)(s,1)
= 3(r+ )%t + 3(r+ s)t* — (3r%t + 3rt?) — (35°t + 3st?) = 6rst.
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We will check conditions (C1), (C2), (C3):
(C1)  3sf(r) = 3rf(s) = (r — s)(A%f)(r,s)
=3s(r® —r) = 3r(s® —5) — (r — 5)(3r%s + 3rs?) = 0,
(C2)  (A%f)(ar®,bs®) — (A% f)(ar, bs) — 3a®bf(r?s) — 3ab®f(rs?)
= 3(ar®)?bs® + 3ar?(bs*)? — (3(ar)?bs + 3ar(bs)?)
—3ab((r?s)3 — 12s) — 3ab*((rs*)® — rs?)
=3a%b(r%s® —r?s — 053+ 1r25) + 3ab? (r®sC — rs? — 1355+ rs?) = 0,

and (C3') follows directly from (5) because f(2) = 6.

5. The functors C = C™. If n = 2! then we denote by C(R) =
C™(R) the R-module generated by the elements [r], 7 € R, with the rela-
tions
(D) [rs] = r"[s| +slr], rseR,

(©) [r+s] =[]+ [s] +p(r,8)[-1], rseR

If n = 3 then we denote by C(R) = C®)(R) the R-module generated by the
elements [r], r € R, with the relations

(D) [rs] = 3[s] + s[r], r s€ER,

(C1) 3s[r] —3r[s] = (r —s)[r,s], r,s€R,

(C2) [ar3,bs®] — [ar, bs] = 3a®b[r?s] + 3ab*[rs®], a,b,7,s € R,
(C3) [r+s,t] =[r,t] + [s, t] + rst]2], 7rs,t€R,

where [r,s] = [r + s] — [r] — [s] = (A%[])(r, 5).

Let n = 2! or 3. Any unitary ring homomorphism i: R — R’ induces a
module homomorphism C(i): C(R) — C(R') over i such that C(i)([r]) =
[i(r)]. This shows that C' is a functor. Observe that C(R) is a universal
object with respect to C-functions of degree n over R, meaning that any
C-function of degree n can be uniquely expressed as a composition of the
canonical C-function ¢: R — C(R), ¢(r) = [r], and an R-homomorphism
defined on C(R).

In particular, the C-function f: R — R, f(r) =" — r, gives

COROLLARY 2. There ezists an R-homomorphism P: C(R) — I,(R)
such that P([r]) =r™ —r forr € R.

Our goal is to show that P is an isomorphism (Theorem. As a first step,
we prove that C' commutes with localizations. Let S be a multiplicatively
closed set in R and let :: R — Rg and i: M — Mg be the canonical

homomorphisms, i(r) = §, i(m) = 5.
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ProrosiTiON 3. If f: R — M 1is a C-function of degree n then the only
n-derivation fg: Rg — Mg satisfying the condition fs(i(r)) = i(f(r)) for
all r € R (Proposition[l)) is a C-function of degree n.

Proof. First let n = 2. Observe that fg(—1) = @ and

(50 -E3()() () -

Then using Proposition [1| we compute that

) (A2f5)<a7 b) _ (82f)(a,b) _ pla,b)f(-1) :p<27 l;) fs(=1).

s s s s

Let now n = 3. We will prove that fg satisfies (C1’), (C2),(C3’). Let

a b c r
% 1) §» §» 7 be arbitrary elements of Rg.

(C1') It follows from Lemma 1(ix) and Proposition [1| that
r s - (r s\ f(r,s)
3fs(t t>_ t4f5<1 1> S
s TS
2 ) (A2 - = ).
t>( fS)(t’t)

_ (r=s)(A%)(rs) _ <
= 3 =
(C2) Using Proposition [1] and Lemma 3(ii) we obtain
A2 a(r\* b/s\* A2 ar bs
() ) ) - (252
B (A%f)(ar3, bs® ) (A%f)(ar, bs)
o +12 6
_ (4%f)(ar®,bs®) — (A%f)(arbs) (" —t°)(A%f)(ar, bs)
- 112 o 15
_3a?bt3 f(r?s) 4+ 3ab*t3 f(rs?)  (3(ar)?bs + 3ar(bs?)) f(t?)
- 15 N 15
_ 3@ t3f(r2s) —r2sf(t3) ab?® 3 f(rs?) — rs?f(t3)

+3 12 37 112

a?b r?s ab? rs?
-5 (w) +3t3f5<t3)

(@) 8 (514 (0 =G 6))

(C3') Since fs(2) = @ it follows from Proposition ! that

1 ’
abc (A%f)(a,b,c)  abef(2)  abc f(2)
@) (55) = S = g =L

H-\ﬁ

+1 O
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As in Section 2, we deduce

PROPOSITION 4. There exists an Rg-isomorphism C(R)s ~ C(Rg) such
that I« 1[2].

Proof. Replace (r) by [r] in the proof of Proposition [2| =

6. The main lemmas. Let n = 2! or n = 3. We consider the kernel of
the R-homomorphism P: C(R) — I,(R), P([r]) = r"™ —r for r € R.

LeMMA 4. I,(R)Ker(P) = 0.

Proof. Let x =), a;[r;] € Ker(P), thatis, >, a;(r] —r;) = 0. Then (D)
shows that

(r"—r)x:Zaz Zaz —r)[r] = 0[] =0. m

Let n = 2!. Lemmas 2(ii) and 1(vii) give the following formulas:
k

(6) > n] —i[ri]—i-p(rl,...,rk)[—l],

=1
M) = = (T T 2T e )l

LEMMA 5. Letn=2! and x = Zle a;r;] € Ker(P), where one of the r;
is —1. If all a; belong to I,(R)™ for some m > 0 then x = Zle bi[r;] where
all b; belong to I,(R)"™*1.

Proof. By the assumption, Zf_ a;r’’ = Zf_l a;r;. Using @ we obtain

7

[Zalrl]:Zazm]—Fp[—l] ZWZJFZ [ai] + P~

i=1
k k
[Zaz 1] = 3 laart] +ql-1] = S ]+ rfa] + -1,
i=1 i=1 i=1
where
1 S .
p=nplarry,...,arg) = Z 5(zl, codg)at .. a;fr? ST,
1 o o A
q=plar?,...,axrp) = Z 5(21, codp)at ar (o)
and the sums are over all systems of non-negative integers i1,...,%; such

that i1 + --- + i, = n and at least two ij are non-zero. Since
k

k
> ailri] + Y rifai] +pl- Za Z lai] + q[—
=1

=1
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we obtain

k

x=) ar Za —p)[—1]
i=1

E

= e Ty T )
i=1 . ('r;1 + Ti)[ri] + (q - p)[—l]

by (7). Since a; € I,(R)™ it follows that a} € I,(R)™ and r}' + r; =
(=ri))" — (—r;) € I(R), since n is even. Hence

af (" 2T ) LG ) € (R
Moreover, all. .ai’“ € I,(R)"™ since a; € In(R)™ and i1 +- -+ +ix = n, and
(ri o)t =itk € I,(R). Hence

qg—p= Z %(il, gl .aﬁf((ril .. TZ’“)” —rl r,zf) € I,(R)"™ "L,
This completes the proof. m
The above lemma gives immediately

COROLLARY 3. Letn =2' and x = S | a;[r;] € Ker(P). Let M denote
the submodule of C(R) generated by [r1],...,[rx] and [-1]. Then

re [ I(R)™"M
m=0
Let now n = 3. Lemmas 3(iv) and 1(vi) give the formulas
(8) [ZT‘Z} = Z 7"1 + Z T‘Z,T] Z mrjrk[Q]
i 1<J 1<j<k
for any finite set of elements r; € R, and
(9) 3] = (@ +r* +3)[r], reR.

LEMMA 6. Let n = 3 and x = ) a;[r;] € Ker(P) where one of the r;
is equal to 2. If all a; belong to I3(R)™ for some m > 0 and one of the
following conditions is satisfied:

(1) all r; belong to I3(R), or
(2) 3 e I3(R);

then x =Y, bi[r;] where all b; belong to I3(R)>™ 1.
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Proof. By the assumption, Y, a;ry = >, a;r;. Using , @ and (D) we
obtain

[Zam} = Z airi] + Z [airs, ajrs] + Z airia;rjagry[2]
i i

i<j i<j<k
= Zal [ri] + E 2lag] + Z lairi, a;r;] + Z a;ria;riagry(2]
1<j i<j<k
and
3
[Zaﬂ‘i} = Z +Z aird, a;r ] Z a;r} a;ry Sapry]2]
% 1<J 1<j<k
= Z Z [a; +Z alrl,aj ] Z alr a;r; akrk[Q]
7 1<J 1<j<k
:Za +7" +r TZ+E al+ZaZrz,a3]
A 1<J

3
+ Z a;rs ajriagry 3[2].
i<j<k

Since the left hand sides above are equal, (C2) and Lemma 1(v) give

T = Zai[ri]
= Za S+ rd ) [ +Zam,a] T Z[am,ajrj]

1<J 1<J
+ Z airiajrjakrkm — Z a;ria;rjagr(2]
1<j<k 1<j<k
= Za 7‘ —I—T —|—7“ [ri +Z3a a]rrj +Z3al m
1<J 1<J
+ Z a;ajag( 3 Tk ririT) (2]

1<j<k

= Za3 T~2 3 r-2 +ri(rg’ —ri) + 37“?)[77]

+ Z 3a? sa;(r 7“] + 73 s + rirlri])

1<J

+Z3az Tz + rir 3[Tj] —|—’I“z‘7“j[’l“j])
1<j

+ Y aiajap((rirjre)” = rirjry)[2).
1<j<k

Observe that (r)% —r2, r3 —ry, (rirj7i)® — rirjry € I3(R); hence the sum-
mands not multiplied by 3 belong to I3(R)*™*!. If all r; belong to I3(R), or
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3 € I3(R), the remaining summands also belong to I3(R)>™*!. This means

that in both cases all coefficients in the above sums belong to I3(R)3™*!. u

COROLLARY 4. Let n = 3 and x = ), a;[r;] € Ker(P). Let M denote
the submodule of C'(R) generated by all [r;] and [2]. If one of the following
conditions is satisfied:

(1) all r; and 2 belong to I3(R), or

(2) 3 € I3(R),
then x € (oo_o I3(R)™M .

7. The main theorem. Proving the following fact is the purpose of
this paper:

THEOREM 1. Let C(R) = C"(R) wheren =2', 1 =1,2,... orn = 3.
Then P: C(R) — In(R), P([r]) =r"™ —r for r € R, is an R-isomorphism.
In other words, if n = 2!, 1 = 1,2,..., then the following are generating

relations between the generators [r] =" —r of In(R):

(D) [rs] =r"[s] + s[r], r,s€R,
(C) [r+s] =[r] + [s] +p(r,s)[-1], rs€ER,
where 1
r,s) = ¥ L rrhgh
Pl = 3 5 ()

and if n = 3 then the following are generating relations between the genera-
tors [r] =13 —r of I3(R):

(D) [rs] =73[s] + s[r], r,5€R,

(C1) 3s[r] —3r[s] = (r—s)[r,s], 1 s€ER,

(C2) [ar3,bs®] — [ar, bs] = 3a?b[r?s] + 3ab®[rs?], a,b,r,s € R,
(C3) [r+s,t] = [r,t] + [s,t] +-rst[2], 7rs,tER,

where [r,s] = [r + s] — [r] = [s] = (A%[ ])(r, 5).
Proof. Our goal is to prove that Ker(P) = 0.

Noetherian case. Assume that R is noetherian. By Proposition [4] we
can assume that R is local and noetherian with quotient field K. Then
I,(R) is the maximal ideal if |K| —1|n — 1, and I,,(R) = R otherwise (see
Introduction).

If I,(R) = R then Lemma 4] shows that Ker(P) = 0, as we want. So let
I,(R) be the maximal ideal of R.

Assume first that n = 2'. Let o € Ker(P). Define the submodule M as in
Corollary [3| and observe that it is finitely generated over a local noetherian
ring. Then the intersection in the corollary is zero by the Krull intersection
theorem, and hence z = 0. This proves that Ker(P) = 0.
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Let now n = 3. Then |K| =2 or 3.

CAsE 1: |K| = 3. Then 3 € I3(R). Let = € Ker(P). Define M as in
Corollary 4] and observe that condition (2) of the corollary holds. As before,
x = 0 by the Krull intersection theorem, and so Ker(P) = 0.

CASE 2: |K| = 2. Then 2 € I3(R) and K = {I3(R),1 + I3(R)}. Hence

the set of units of R is 1+ I3(R). Condition (C1) for s = 1 gives
3[r] =3r[1] = (r = )([r + 1] = [r] - [1]),
and since [1] = 0 this shows that (r+2)[r] = (r—1)[r+1]. So if r is invertible
then so is r + 2, and
r—1
=g+ 1

where r 4+ 1 is non-invertible. Let = ), a;[r;] € Ker(P). If one of r; is
invertible then using the above formula we can replace [r;] by :z%[n +1]. So

we can assume that all r; above are non-invertible, that is, belong to I3(R).
Since 2 € I3(R), condition (1) of Corollary {4| holds, and as before we find
that x = 0, and finally Ker(P) = 0.

General case. Let x = ), a;[r;] € Ker(P). Define S to be the subring
of R generated by all a; and r;. Since S is a finitely generated ring, and
hence noetherian, the previous part of the proof shows that P: C'(S) — S
is injective. Let i: S — R denote the injection. Then = = (C(4))(y), where
y = airi] € C(S). Since P(y) = P(x) = 0 we conclude that y = 0 and
consequently « = 0. This completes the proof. m
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