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Summary. We calculate the exact value of the color number of a periodic homeomor-
phism without fixed points on a finite connected graph.

1. Introduction. All spaces are assumed separable metrizable and all
maps are continuous. We denote the set of natural numbers by N and write
the unit interval [0, 1] as I. If f : X → X is a map, then we write inductively
f0 = idX and fn = f ◦ fn−1 for each n ∈ N.

Let f : X → X be a fixed-point free map. A closed subset A of X is
called a color of (X, f) if f(A)∩A = ∅. A coloring of (X, f) is a finite cover
U of X consisting of colors. The minimal cardinality of a coloring is called
the color number of (X, f), denoted by col(X, f), i.e.,

col(X, f) = min{|U| | U is a coloring of (X, f)}.

Since finite open covers can be shrunk to closed covers, and finite closed cov-
ers can be swelled to open covers, the closedness of the coloring is irrelevant.
Finite open covers do equally well.

Let X be a set and f : X → X a fixed-point free map. It is known that
X is the union of disjoint subsets X1, X2, X3 such that f(Xi) ∩Xi = ∅ for
i = 1, 2, 3 (cf. [4], [7]). Subsequently, Błaszczyk and Kim proved the following
topological version of the above.

Theorem 1.1 ([3]). Let X be a 0-dimensional paracompact space and
f : X → X a fixed-point free homeomorphism. Then X is the union of
disjoint clopen sets X1, X2, X3 such that f(Xi) ∩Xi = ∅ for i = 1, 2, 3.
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On the other hand, van Douwen proved that any fixed-point free auto-
homeomorphism on a finite-dimensional paracompact space has finite color
number (cf. [5]). Moreover, an upper bound of the color number was estab-
lished as follows.

Theorem 1.2 ([6, Theorem 3]). Let X be a paracompact Hausdorff space
with dimX ≤ n. If f : X → X is a fixed-point free homeomorphism, then
col(X, f) ≤ n+ 3.

In [8, Theorem 1.1], J. van Mill gives a simple proof of the theorem above.
Furthermore, for a fixed-point free involution, the upper bound of the color
number can be improved.

Theorem 1.3 ([1, Theorem 2]). Let X be a paracompact Hausdorff space
with dimX ≤ n and f : X → X a fixed-point free homeomorphism. If f is
an involution, i.e., f2(x) = x for all x ∈ X, then col(X, f) ≤ n+ 2.

For example, the color number of the rotation through 2π/3 on a circle
is 4. Moreover, let Sn

Y be the n-dimensional Y -sphere and γn+1 : Sn
Y → Sn

Y
the period 3 homeomorphism defined in [2, p. 258]. Then col(Sn

Y , γ
n+1) =

n+ 3 ([2, Theorem 4]). Here, S1
Y is the bipartite cubic graph K(3, 3) on six

nodes.
Now, let X be a connected space and f : X → X a fixed-point free

homeomorphism. Clearly, col(X, f) ≥ 3. By Theorem 1.2, it is natural to
ask whether col(X, f) = n + 3 or not. In this paper, we concentrate on the
following question.

Question 1.4. Let X be a finite connected graph, i.e., a 1-dimensional
connected finite simplicial complex , and f : X → X a fixed-point free hom-
eomorphism on X. Which is true, col(X, f) = 3 or col(X, f) = 4?

We calculate the exact values of the color numbers of certain periodic
homeomorphisms. First, we show that if a fixed-point free homeomorphism
on an arcwise-connected space has a point of period 3, then its color number
is at least 4. Next, we calculate the exact value of the color number of a fixed-
point free homeomorphism which has no period 3 point on a finite connected
graph: Let f : X → X be a fixed-point free homeomorphism with a periodic
point on a finite connected graph X and nx = min{m | fm(x) = x}. If the
greatest common divisor of {nx} is neither 1 nor 3, then col(X, f) = 3.

2. Fixed-point free homeomorphisms with a period three point.
Let X be a connected space and f : X → X a fixed-point free homeo-
morphism. Clearly, col(X, f) ≥ 3. Moreover, if f3(x) = x for each x ∈ X,
then col(X, f) ≥ 4 (cf. [1, Example 7(1)]). In fact, suppose that there is a
coloring {U1, U2, U3} of (X, f). We may assume that U1 ∩ U2 6= ∅, and let
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a ∈ U1 ∩ U2. Then we have f(a) ∈ U3, so f2(a) ∈ U1 ∪ U2. However, since
f3(a) = a ∈ U1 ∩ U2, we have a contradiction.

The next proposition asserts that if a fixed-point free homeomorphism
on an arcwise-connected space with fn = idX for some n ∈ N has a point of
period 3 then its color number is at least 4.

Proposition 2.1. Let X be an arcwise-connected space and f : X → X
a fixed-point free homeomorphism with fn = idX for some n ∈ N. If f has
a period 3 point in X, then col(X, f) ≥ 4.

Proof. On the contrary, suppose that there exists a closed coloring U =
{U1, U2, U3} of (X, f). Let x be a period 3 point for f in X, i.e., f3(x) = x.
Since no two elements of {x, f(x), f2(x)} belong to only one element of U ,
we may assume that fp−1(x) ∈ IntX Up for each p = 1, 2, 3 and fp−1(x) 6∈ Uq

whenever p 6= q.
Let a ∈ XrU1. Since X is arcwise-connected, there exists an embedding

ϕ : I→ X such that ϕ(0) = x and ϕ(1) = a. Let t0 = inf{s ∈ I | ϕ(s) /∈ U1}.
Then ϕ(t0) ∈ U2 ∪ U3.

Assume that ϕ(t0) ∈ U2. Since U is a coloring, f(ϕ(t0)) /∈ U2. Let t1 =
inf{s ∈ I | f(ϕ(s)) /∈ U2}. Note that t1 < t0, and thus f(ϕ([0, t1])) (
f(ϕ([0, t0])). Moreover, we have f(ϕ([0, t0])) ∩ U1 = ∅ and f(ϕ(t1)) ∈ U3.
Since U is a coloring, f2(ϕ(t1)) /∈ U3. Let t2 = inf{s ∈ I | f2(ϕ(s)) /∈ U3}.
As t2 < t1, we have f2(ϕ([0, t2])) ( f2(ϕ([0, t1])), f2(ϕ([0, t1])) ∩ U2 = ∅,
and f2(ϕ(t2)) ∈ U1. Continuing in this fashion, we obtain

fn−1(ϕ(tn−2)) /∈ U3, fn−1(ϕ(tn−1)) ∈ U1,

fn−1(ϕ([0, tn−1])) ( fn−1(ϕ([0, tn−2])), and tn−1 < tn−2.

Let tn = inf{s ∈ I | fn(ϕ(s)) /∈ U1}. Since tn < tn−1, it follows that
fn(ϕ([0, tn])) ( fn(ϕ([0, tn−1])). On the other hand, by the definition of tn
and fn = idX , we obtain tn = t0, a contradiction.

If ϕ(t0) ∈ U3, mimicking the argument above, we also have a contradic-
tion.

By Theorem 1.2 and Proposition 2.1, we have the following.

Corollary 2.2. Let X be a 1-dimensional arcwise-connected space and
f : X → X a fixed-point free homeomorphism with fn = idX for some
n ∈ N. If f has a period 3 point in X, then col(X, f) = 4.

Example 2.3. Let Zn = {x0, x1, . . . , xn−1} be an n-point discrete space,
and Zm∗Zn a join of Zm and Zn. Define fn : Zn → Zn by fn(xi) = xi+1 mod-
ulo n for i = 0, . . . , n− 1, and let fm ∗ fn : Zm ∗ Zn → Zm ∗ Zn be the natu-
ral map constructed from fm and fn. By Corollary 2.2, col(Z3 ∗ Zn, f3 ∗ fn)
= 4 for all n ∈ N with n ≥ 2.
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3. Fixed-point free homeomorphisms without period three
point. In this section, we calculate the exact value of the color number
for a fixed-point free homeomorphism without period 3 points on a finite
connected graph.

Let U = {U1, . . . , Up} be a coloring of (X, f). If we wish to emphasize
the number of colors of U , we say that U is a p-coloring of (X, f).

Definition 3.1. Let f : X → X be a map, A a closed subset of X with
f(A) ⊂ A, and U = {U1, . . . , Up} a p-coloring of (A, f |A). We say that a
coloring Ũ = {Ũ1, . . . , Ũq} (p ≤ q) of (X, f) is an extension of U to (X, f),
or U extends to the q-coloring Ũ of (X, f) if Ũi ∩A = Ui for each i ≤ p.

We denote by 〈n〉 = {0, 1, . . . , n − 1} the cyclic additive group with 0
the unit element. Let Xn = I × 〈n〉, Bn = {0, 1} × 〈n〉, and fn : Xn → Xn

be a homeomorphism which is represented by fn(t, i) = (fn,i(t), i + 1) with
addition modulo n, where fn,i : I→ I is an order preserving homeomorphism
for each i = 0, 1, . . . , n− 1. Note that fp

n(δ, i) = (δ, i+ p) = f i
n(δ, p) for each

δ = 0, 1.
Let f : X → X be a map. Then the mapping torus of (X, f), written

M(X, f), is obtained from X × I by identifying (x, 1) with (f(x), 0). Let
sn : 〈n〉 → 〈n〉 be the shift map, i.e., sn(i) = i + 1. Then sn has a natural
extension s̃n on M(〈n〉, sn), namely, s̃n(i, t) = (sn(i), t) and the rotation
Rn : S1 → S1 through 2π/n can be viewed as s̃n on M(〈n〉, sn).

We will consider extension of colorings of (Bn, fn|Bn) to colorings of
(Xn, fn) for n ≥ 2.

Notation 3.2. Let j = 0, 1, k = 0, . . . , n−1, and U = {Up | p= 1, . . . , q}
a coloring of (Bn, fn|Bn). We represent U by the 2 × n matrix whose (j +
1, k + 1)-component is p if (j, k) ∈ Up.

For example, let n = 3, U1 = {0, 1} × {1}, U2 = {0, 1} × {2} and U3 =
{0, 1} × {0}. Then U = {U1, U2, U3} is represented by

(
3
3

1
1

2
2

)
. Let n = 4,

V1 = {(0, 0), (0, 2), (1, 1), (1, 3)} and V2 = {(0, 1), (0, 3), (1, 0), (1, 2)}. Then
V = {V1, V2} is represented by

(
1
2

2
1

1
2

2
1

)
.

Lemma 3.3. Let n = 2m with m ≥ 1 and U (n) = {U1, U2} a 2-coloring
of (Bn, fn|Bn).

(1) The 2-coloring U (n) =
(

1
1

2
2
···
···

1
1

2
2

)
of (Bn, fn|Bn) extends to a

2-coloring Ũ (n) of (Xn, fn).
(2) The 2-coloring U (n) =

(
1
2

2
1
···
···

1
2

2
1

)
of (Bn, fn|Bn) extends to a

3-coloring Ũ (n) of (Xn, fn).
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Proof. (1) Let

Ũ1 =
m−1⋃
i=0

I× {2i} and Ũ2 =
m−1⋃
i=0

I× {2i+ 1}.

Since Ũp ∩Bn = Up for p = 1, 2, the covering Ũ = {Ũ1, Ũ2} is as desired.
(2) Let x0 = (1/2, 0), y0 = 1/2, xi = f i

n(x0) = (yi, i) for each i =
1, . . . , 2m− 1, and x′2m−1 = f−1

n (x0) = (y′2m−1, 2m− 1). Let

Ũ1 =
(m−1⋃

i=0

[0, y2i]× {2i}
)
∪
(m−2⋃

i=0

[
1
2

(1 + y2i+1), 1
]
× {2i+ 1}

)

∪
[
1
2

(1 + max{y2m−1, y
′
2m−1}), 1

]
× {2m− 1},

Ũ2 =
(m−1⋃

i=0

[y2i, 1]× {2i}
)
∪
(m−2⋃

i=0

[
0,
y2i+1

2

]
× {2i+ 1}

)

∪
[
0,

1
2

min{y2m−1, y
′
2m−1}

]
× {2m− 1},

Ũ3 =
(m−2⋃

i=0

[
y2i+1

2
,
1
2

(1 + y2i+1)
]
× {2i+ 1}

)

∪
[
min{y2m−1, y

′
2m−1}

2
,
1
2

(1 + max{y2m−1, y
′
2m−1})

]
× {2m− 1}.

The covering Ũ = {Ũ1, Ũ2, Ũ3} is as desired.

Fix n = 2m + 1 and l = 0, 1, . . . , n − 1. Define the 3-coloring U (l,n) of
(Bn, fn|Bn) to be U (l,n) = {U (l,n)

1 , U
(l,n)
2 , U

(l,n)
3 }, where

U
(l,n)
1 = {(0, 2i+ 1), (1, l + 2i+ 1) | i = 0, 1, . . . ,m− 1},

U
(l,n)
2 = {(0, 2i+ 2), (1, l + 2i+ 2) | i = 0, 1, . . . ,m− 1},

U
(l,n)
3 = {(0, 0), (1, l)}.

For any k = 1, 2, U (k,3) does not extend to a 3-coloring of (X3, f3). In fact,
the existence of an extended 3-coloring Ũ (k,3) of (M(〈3〉, s3), s̃3) which is the
rotation through 2π/3 on the circle contradicts Proposition 2.1. Thus, in the
rest of this paper, we only consider the case where m ≥ 2.

We define the map ϕ : {0, 1} × 〈n〉 → {0, 1} × 〈n〉 by ϕ(t, i) = (1− t, i).

Lemma 3.4. For any p = 1, 2, 3, fn−l
n ◦ ϕ(U (l,n)

p ) = U
(n−l,n)
p .
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Proof. We can calculate as follows:

fn−l
n ◦ ϕ(U (l,n)

1 ) = fn−l
n ({(1, 2i+ 1), (0, l + 2i+ 1) | i = 0, 1, . . . ,m− 1})

= {(1, 2i+ 1 + n− l), (0, l + 2i+ 1 + n− l) | i = 0, 1, . . . ,m− 1}

= {(0, 2i+ 1), (1, n− l + 2i+ 1) | i = 0, 1, . . . ,m− 1} = U
(n−l,n)
1 ,

fn−l
n ◦ ϕ(U (l,n)

2 ) = fn−l
n ({(1, 2i+ 2), (0, l + 2i+ 2) | i = 0, 1, . . . ,m− 1})

= {(1, 2i+ 2 + n− l), (0, l + 2i+ 2 + n− l) | i = 0, 1, . . . ,m− 1}

= {(0, 2i+ 2), (1, n− l + 2i+ 2) | i = 0, 1, . . . ,m− 1} = U
(n−l,n)
2 ,

fn−l
n ◦ ϕ(U (l,n)

3 ) = fn−l
n ({(1, 0), (0, l)}) = {(1, n− l), (0, l + n− l)}

= {(0, 0), (1, n− l)} = U
(n−l,n)
3 .

Remark 3.5. By the lemma above, if U (l,n) extends to a coloring of
(Xn, fn), then so does U (n−l,n) for 1 ≤ l ≤ n − 1. Note that U (0,n) ex-
tends to a 3-coloring of (Xn, fn). In fact, let Ũ (0,n)

1 =
⋃m−1

i=0 I × {2i + 1},
Ũ

(0,n)
2 =

⋃m−1
i=0 I × {2i + 2}, and Ũ

(0,n)
3 = I × {0}. Then the coloring

Ũ (0,n) = {Ũ (0,n)
1 , Ũ

(0,n)
2 , Ũ

(0,n)
3 } of (Xn, fn) extends U (0,n). Hence, we need

only check whether U (l,n) extends to a 3-coloring of (Xn, fn) for l = 1, . . . ,m
and n = 2m+ 1 with m ≥ 2.

Notation 3.6. Let Ũ (m) = {Um
1 , U

m
2 , U

m
3 } and Ũ (n) = {Un

1 , U
n
2 , U

n
3 }

be covers of Xm and Xn, respectively. Define a cover Ũ (m) + Ũ (n) =
{Um+n

1 , Um+n
2 , Um+n

3 } of Xm+n by Um+n
i = Um

i ∪ fm
m+n(Un

i ) for i = 1, 2, 3.

Lemma 3.7. Let n = 2m + 1 with m ≥ 2. Then the 3-colorings U (1,n)

and U (2,n) extend to 3-colorings of (Xn, fn).

Proof. We note that

U (1,n) =

(
3 1 2 · · · 1 2
2 3 1 · · · 2 1

)
can be considered as(

2 1 · · · 1 2 3 1 2 1
1 2 · · · 2 1 2 3 1 2

)
.

Let x0 = (1/2, 0) and xi = f i
n(x0) = (yi, i) for each i = 0, . . . , 2m− 3. Set

y′2m−3 = (1+y2m−3)/2, y2m−2 ∈ I with fn(y′2m−3, 2m−3) = (y2m−2, 2m−2),
y′2m−2 = (1+y2m−2)/2, y2m−1 ∈ I with fn(y′2m−2, 2m−2) = (y2m−1, 2m−1),
y′2m−1 = (1+y2m−1)/2, y2m ∈ I with fn(y′2m−1, 2m−1) = (y2m, 2m),
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and y′′2m ∈ I with f−1
n (x0) = (y′′2m, 2m). Let

Ũ1 =
(m−2⋃

i=0

[y2i, 1]× {2i} ∪
m−3⋃
i=0

[
0,
y2i+1

2

]
× {2i+ 1}

)
∪ [0, y′2m−2]× {2m− 2} ∪ [y′2m−1, 1]× {2m− 1}

∪
[
0,

1
2

min{y2m, y
′′
2m}

]
× {2m},

Ũ2 =
(m−2⋃

i=0

[0, y2i]× {2i} ∪
m−3⋃
i=0

[
1
2

(1 + y2i+1), 1
]
× {2i+ 1}

)
∪ [y′2m−3, 1]× {2m− 3} ∪ [0, y′2m−1]× {2m− 1}

∪
[
1
2
(1 + max{y2m, y

′′
2m}), 1

]
× {2m},

Ũ3 =
(m−3⋃

i=0

[
y2i+1

2
,
1
2

(1 + y2i+1)
]
× {2i+ 1}

)
∪ [0, y′2m−3]× {2m− 3} ∪ [y′2m−2, 1]× {2m− 2}

∪
[
1
2

min{y2m, y
′′
2m},

1
2

(1 + max{y2m, y
′′
2m})

]
× {2m}.

Then Ũ = {Ũ1, Ũ2, Ũ3} is a 3-coloring of (X2m+1, f2m+1) extending

U (1,n) =

(
2 1 · · · 1 2 3 1 2 1
1 2 · · · 2 1 2 3 1 2

)
.

Next, we consider the 3-coloring

U (2,n) =

(
3 1 2 1 2 · · · 1 2
1 2 3 1 2 · · · 1 2

)
.

Let x0 = (1/2, 0) = (y0, 0), x1 = fn(x0) = (y1, 1), x2 = fn(y1/2, 1) = (y2, 2),

Ṽ 3
1 = [y0, 1]× {0} ∪ [0, y1/2]× {1},
Ṽ 3

2 = [y1/2, 1]× {1} ∪ [0, y2/2]× {2},
Ṽ 3

3 = [0, y0]× {0} ∪ [y2/2, 1]× {2}.

Then Ṽ(3) = {Ṽ 3
1 , Ṽ

3
2 , Ṽ

3
3 } is a cover of X3, and Ṽ(3)+ Ũ (2m−2) is a 3-coloring

of (X2m+1, f2m+1) extending U (2,n), where Ũ (2m−2) is defined as in Lem-
ma 3.3(1).

Lemma 3.8. Let n = 2m + 1 with m ≥ 2. Then U (l,n) extends to 3-
coloring Ũ (l,n) of (Xn, fn) for each l = 0, 1, . . . , n− 1.
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Proof. By Remark 3.5, we argue by induction on m and l with l =
1, . . . ,m.

By Lemma 3.7, the coloring U (l,5) extends to a 3-coloring of (X5, f5) for
m = 2 and l = 1, 2.

Suppose that the coloring

U (l,n) =

(
3 1 2 · · · i j · · · 1 2

· · · 2 3 1 · · ·

)
of (Bn, fn|Bn), represented by a 2×n matrix whose (2, l+1)-component is 3,
extends to a 3-coloring Ũ (l,n) = {Ũ (l,n)

1 , Ũ
(l,n)
2 , Ũ

(l,n)
3 } for each n ≤ 2m + 1

and each l = 0, . . . , n − 1. We may assume that Ũ (l,n)
2 ∩ (I × {l}) = ∅ and

Ũ
(l,n)
1 ∩(I×{0}) = ∅ if (i, j) = (1, 2), Ũ (l,n)

1 ∩(I×{l}) = ∅ and I×{n} ⊂ Ũ (l,n)
2

if (i, j) = (2, 1), and I×{k} ⊂ Ũ (l,n)
i if the (1, k+1)-component and (2, k+1)-

component are equal to i.
In the case of (i, j) = (1, 2), by Lemma 3.7, the 3-coloring U (1,2m+3),

represented by a 2 × (2m + 3) matrix whose (2, 2)-component is 3, extends
to a 3-coloring of (X2m+3, f2m+3). Then we may assume that l ≥ 3. We will
consider the 3-coloring

U (l,2m+3) =

(
3 1 2 · · · 2 1 2 1 2 · · · 1 2
2 1 2 · · · 2 3 1 2 1 · · · 2 1

)
,

represented by a 2× (2m+ 3) matrix whose (2, l + 1)-component is 3, as(
1 2 · · · 2 1 2 1 2 · · · 1 2 3
1 2 · · · 2 3 1 2 1 · · · 2 1 2

)
,

represented by a 2× (2m+3) matrix whose (2, l)-component is 3. By induc-
tion, the 3-coloring

U (l−2,2m+1) =

(
1 2 · · · 2 1 2 1 2 · · · 1 2 3
1 2 · · · 2 3 1 2 1 · · · 2 1 2

)
,

represented by a 2×(2m+1) matrix whose (2, l−2)-component is 3, extends
to a 3-coloring Ũ (l−2,2m+1) of (X2m+1, f2m+1). Here, we may assume that
I × {0} ⊂ Ũ

(l−2,2m+1)
1 and Ũ

(l−2,2m+1)
1 ∩ (I × {2m}) = ∅. Let Ũ (2) be as

in Lemma 3.3(1). Then Ũ (2) + Ũ (l−2,2m+1) is a 3-coloring of (X2m+3, f2m+3)
extending U (l,2m+3).

In the case of (i, j) = (2, 1), by the arguments above, we may assume
that l ≥ 3. By induction, the coloring

U (l,2m+1) =

(
3 1 2 · · · 1 2 1 2 · · · 1 2
1 2 1 · · · 2 3 1 2 · · · 1 2

)
,
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represented by a 2×(2m+1) matrix whose (2, l+1)-component is 3, extends
to a 3-coloring Ũ (l,2m+1) of (X2m+1, f2m+1) such that Ũ (l,2m+1)

2 ∩(I×{0}) = ∅
and I×{2m} ⊂ Ũ (l,2m+1)

2 . Let Ũ (2) be as in Lemma 3.3(1). Then Ũ (l,2m+1) +
Ũ (2) is a 3-coloring of (X2m+3, f2m+3) extending U (l,2m+3).

Combining the lemmas above, we have the following.

Lemma 3.9. Let U (n) and U (l,n) be colorings as in Lemma 3.3 and 3.8
of (Bn, fn|Bn) with n ∈ Nr{1, 3}, respectively. Then U (n) and U (l,n) extend
to 3-colorings of (Xn, fn) for l = 0, 1, . . . , n− 1.

For any homeomorphism f : X → X and any periodic point x ∈ X, we
write nx = min{m | fm(x) = x}. Set P(f) = {x | x is a periodic point of f}
and O(x) = {x, f(x), . . . , fnx−1(x)}.

Proposition 3.10. Let T be a triangulation of a finite connected graph
X and f : X → X a fixed-point free homeomorphism with P(f) 6= ∅. If there
exists an n ∈ Nr{1, 3} such that nx is a multiple of n for each x ∈ P(f),
then col(X, f) = 3.

Proof. Since X is connected, col(X, f) ≥ 3. We may assume that |T(0)|
⊂ P(f). We can choose xi ∈ |T(0)| and decompose |T(0)| =

⋃N0
i=1 O(xi). For

each i, let mi be the number such that nxi = min.
If n = 2n′, for each i = 1, . . . , N0 let

Ui,1 = {f2p(xi) | 0 ≤ p ≤ min
′ − 1)},

Ui,2 = {f2p+1(xi) | 0 ≤ p ≤ min
′ − 1}.

For simplicity of notation, as in Notation 3.2, we can write

(

min︷ ︸︸ ︷
1, 2, . . . , 1, 2︸ ︷︷ ︸

n

, 1, 2, . . . , 1, 2︸ ︷︷ ︸
n

, . . . , 1, 2, . . . , 1, 2︸ ︷︷ ︸
n

)

instead of the coloring {Ui,1, Ui,2} of O(xi). Let Uj =
⋃N0

i=1 Ui,j for j = 1, 2
and U = {U1, U2}. If n = 2n′ + 1, let us denote a coloring of O(xi) by

{Ui,1, Ui,2, Ui,3} = (

min︷ ︸︸ ︷
1, 2, . . . , 1, 2, 3︸ ︷︷ ︸

n

, 1, 2, . . . , 1, 2, 3︸ ︷︷ ︸
n

, . . . , 1, 2, . . . , 1, 2, 3︸ ︷︷ ︸
n

),

where Ui,j = {fp(xi) | (1, p+ 1)-component is equal to j} for j = 1, 2, 3. Let
Uj =

⋃N0
i=1 Ui,j for j = 1, 2, 3 and U = {U1, U2, U3}. Note that U is a coloring

of (|T(0)|, f ||T(0)|).
Now, there exist 1-simplexes σ1, . . . , σN1 of T and l1, . . . , lN1 ∈ N such

that |σk| = fp(|σk|) for 1 ≤ p ≤ lkn if and only if p = lkn. Let Yk =⋃lkn
p=1 f

p(|σk|) for each k = 1, . . . , N1, and thus X =
⋃N1

k=1 Yk, with Yi = Yj

if and only if i = j.
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Suppose that there exists an x ∈ Y
(0)
k =

⋃lkn
p=1 f

p(|σ(0)
k |) such that

O(x) = Y
(0)
k . Then, by the fixed point theorem, there exists a y ∈ YkrY (0)

k

such that f lkn(y) = y. In this case, adding O(y) to T(0), we may assume that
f lkn(x) = x for each x ∈ Y (0)

k .
Consider a disjoint sum Xlkn =

⊕lkn
p=1 f

p(|σk|) for each k = 1, . . . , N1

and a coloring (Xlkn, flkn). Let Blkn =
⊕lkn

p=1 f
p(|σ(0)

k |). Then the coloring

Vk of (Blkn, flkn|Blkn
) is naturally induced by U ∩ Y (0)

k , i.e., there exist an l
with 0 ≤ l ≤ n− 1 and a coloring Wk ∈ {U (n),U (l,n)} such that

Vk =Wk + · · ·+Wk︸ ︷︷ ︸
lk

,

where U (n), U (l,n) are as in Lemma 3.9. Thus, Vk extends to a 3-coloring Ṽk of
(Xlkn, flkn). This shows that U∩Y (0)

k extends to a 3-coloring {Ũk,1, Ũk,2, Ũk,3}
of (U ∩ Yk, f |Yk

).
Let Ũj =

⋃N1
k=1 Ũk,j for each j = 1, 2, 3. Then {Ũ1, Ũ2, Ũ3} is the desired

3-coloring of (X, f).

Lemma 3.11. Let {a1, . . . , am} be a set of natural numbers. Then the
following conditions are equivalent :

(1) There exists an n ∈ Nr{1, 3} such that ak is a multiple of n for each
k = 1, . . . ,m.

(2) gcd{a1, . . . , am} 6= 1, 3, where gcd is the greatest common divisor.

Proof. (2)⇒(1). Put n = gcd{a1, . . . , am}. Then clearly n satisfies con-
dition (1).

(1)⇒(2). Let n witness condition (1). Notice that ak ≥ n > 1 for each
k = 1, . . . ,m, and so gcd{a1, . . . , am} 6= 1. Assume to the contrary that
gcd{a1, . . . , am} = 3. Since n 6= 1, 3 and n ≤ 3, it follows that n = 2, and so
2 and 3 are common divisors of {a1, . . . , am}. Thus, gcd{a1, . . . , am} ≥ 6, a
contradiction.

Let Per(f) = {nx | x ∈ P(f)}. By Proposition 3.10 and Lemma 3.11, we
conclude the following.

Theorem 3.12. Let f : X → X be a fixed-point free homeomorphism
on a finite connected graph X with P(f) 6= ∅. If gcd(Per(f)) 6= 1, 3, then
col(X, f) = 3.

Corollary 3.13. Let X be a finite connected graph and f : X → X
a fixed-point free homeomorphism. If there exists an m ∈ Nr{1, 3} such
that fp(x) 6= x with 1 ≤ p < m and fm(x) = x for each x ∈ X, then
col(X, f) = 3.
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Corollary 3.14. Let X be a finite connected graph and f : X → X a
fixed-point free homeomorphism. Then col(X, f) = 3 if either of the following
conditions is satisfied:

(1) Per(f) consists of even numbers.
(2) Per(f) consists of powers of some prime number p with p 6= 3.

Example 3.15. (1) Let Rn : S1 → S1 be the rotation through 2π/n for
each n ∈ N. If n 6= 1, 3, by Corollary 3.13, we have col(S1, Rn) = 3. On the
other hand, by Theorem 1.2 and Proposition 2.1, col(S1, R3) = 4.

(2) Let Z4 ∗ Z4 be as in Example 2.3. For any fixed-point free homeo-
morphism f : Z4 ∗ Z4 → Z4 ∗ Z4, each vertex has an even period. In fact,
let Z4,i = Z4 for i = 0, 1 and x ∈ Z4,0. First, assume that f(x) ∈ Z4,0. If
f2(x) ∈ Z4,1, then by finitely many iterations of f , we can find a simplex
x ∗ f(x), which is a contradiction. This implies that {fn(x) | n ≥ 0} ⊂ Z4,0,
and thus nx ∈ {2, 3, 4}. Now, if x is a period 3 point, then we can take a
y ∈ Z4,0 \ {x, f(x), f2(x)} such that f(y) ∈ Z4,1. Then the following two
cases can occur: (i) f2(y) = y, (ii) f2(y) ∈ Z4,1. Assuming (i), we note
that f(y ∗ f(y)) = y ∗ f(y), and hence f has a fixed point, which is impos-
sible. On the other hand, (ii) ensures that there exists a simplex f(y)∗f2(y)
with {f(y), f2(y)} ⊂ Z4,1, a contradiction again. Hence, x has an even pe-
riod.

Next, assume that f(x) ∈ Z4,1. Repeating the same arguments, we can
verify that x has an even period nx with nx = 4, 6, 8.

Thus, every vertex of Z4 ∗ Z4 has an even period. Therefore, by Corol-
lary 3.14, we have col(Z4 ∗ Z4, f) = 3. This shows that the condition that
col(X, f) ≤ n+ 3 for any fixed-point free homeomorphism f : X → X does
not imply dimX ≤ n.
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