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Summary. Let f be a nonnegative submartingale and S(f) denote its square function.
We show that for any λ > 0,

λP(S(f) ≥ λ) ≤ π

2
‖f‖1,

and the constant π/2 is the best possible. The inequality is strict provided ‖f‖1 6= 0.

1. Introduction. Let (Ω,F ,P) be a probability space, filtered by
(Fn)∞n=0, a nondecreasing sequence of sub-σ-algebras of F . Assume f =
(fn)∞n=0 is an adapted sequence of integrable real-valued random variables.
The difference sequence df = (dfn)∞n=0 of f is given by the equations df0 = f0

and dfn = fn − fn−1, n = 1, 2, . . . . We define the square function of f by

S(f) =
( ∞∑
k=0

|dfk|2
)1/2

.

We will also use the notation

Sn(f) =
( n∑
k=0

|dfk|2
)1/2

and write ‖f‖p = supn ‖fn‖p for p ≥ 1.
In the present paper we deal with weak type inequalities for the square

function. As shown by Burkholder [2], if f is a martingale or nonnegative
submartingale, then

(1.1) λP(S(f) ≥ λ) ≤ 3‖f‖1.
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Cox [5] showed that the best constant in the above inequality for real-valued
martingales f equals

√
e (it is worth mentioning that in the earlier paper [1]

Bollobás conjectures that this is the right choice). The purpose of this note
is to determine the optimal constant in (1.1) under the assumption that f
is a nonnegative submartingale.

Theorem 1. If f is a nonnegative submartingale, then for any λ > 0,

(1.2) λP(S(f) ≥ λ) ≤ π

2
‖f‖1,

and the constant π/2 is the best possible. Furthermore, the inequality is strict
unless ‖f‖1 = 0.

A few words about the organization of the paper. The proof of the in-
equality (1.2) is based on Burkholder’s method, which translates the problem
of proving a given (sub-)martingale inequality to the problem of finding a
certain special function (for the description of the method, see e.g. [4] or [6]).
We construct the function and thus establish (1.2) in Section 2. In the last
section we show that the constant π/2 cannot be replaced by a smaller one
and that (1.2) is strict in all nontrivial cases.

2. The proof of the inequality (1.2). Let us start with the following
auxiliary result.

Lemma 1. For any x ∈ (0, 1) and d > −x such that (x + d)2 + d2 < 1
we have

(2.1)
√

1− x2 −
√

1− (x+ d)2 − d2

x+ d
+ arcsinx− arcsin

x+ d√
1− d2

≤ 0.

Proof. Denote the left hand side of (2.1) by F (x, d). If we fix d and
differentiate with respect to x, we obtain

Fx(x, d)(x+ d)2 =
√

1− (x+ d)2 − d2 −
√

1− x2 +
d(x+ d)√

1− x2

=
√

1− x2 − 2d(x+ d)−
√

1− x2 − −2d(x+ d)
2
√

1− x2
,

which is nonnegative, due to the concavity of the function t 7→
√
t. Therefore

the inequality F (x, d) ≤ 0 will be established once we have shown that
F (−d+, d) < 0 for d < 0 and F (0+, d) ≤ 0 for d ≥ 0. Suppose first that
d < 0. Then

F (−d+, d) =
d√

1− d2
+ arcsin(−d) =

−d�

0

(
1√

1− s2
− 1√

1− d2

)
ds < 0.
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If d = 0, then F (x, d) = 0 for any x. Finally, if d > 0, then

(2.2) F (0+, d) =
1−
√

1− 2d2

d
− arcsin

d√
1− d2

=
d�

0

√
1− 2s2 − 1

(1− s2)(1 +
√

1− 2s2)
ds < 0.

The proof is complete.

The crucial role in this paper is played by the functions U, V : [0,∞) ×
[0,∞)→ R, given by

U(x, y) =

 1−
√

1− x2 − y2 − x arcsin
x√

1− y2
if x2 + y2 < 1,

1− πx/2 if x2 + y2 ≥ 1,

and V (x, y) = I{y≥1} − πx/2.
The key properties of these functions are listed in the lemma below.

Lemma 2. The functions U , V have the following properties.

(i) U is of class C1 on (0,∞)× (0,∞).
(ii) For any x, y ≥ 0, we have

(2.3) Ux(x, y) ≤ 0

(if x = 0, then we understand Ux(0, y) as the limit Ux(0+, y)).
(iii) For any x, y ≥ 0,

(2.4) U(x, y) ≥ V (x, y)

and

(2.5) U(x, y) ≤ 1− πx/2.
(iv) For any x, y ≥ 0 and d ≥ −x we have

(2.6) U(x+ d,
√
y2 + d2) ≤ U(x, y) + Ux(x, y)d

(again, if x = 0, then the partial derivative is understood as the
limit).

(v) For any x ≥ 0,

(2.7) U(x, x) ≤ 0.

Furthermore, the inequality is strict if x > 0.

Proof. (i) A direct computation shows that

(2.8) Ux(x, y) =

− arcsin
x√

1− y2
if x2 + y2 < 1,

−π/2 if x2 + y2 ≥ 1,
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and

Uy(x, y) =

 y
√

1− x2 − y2

1− y2
if x2 + y2 < 1,

0 if x2 + y2 ≥ 1.
Now it can be easily verified that both derivatives are continuous on (0,∞)×
(0,∞).

(ii) This follows immediately from the formula for Ux above.
(iii) Clearly, it suffices to show the inequalities on the set {(x, y) : x, y > 0,

x2 + y2 < 1}. By (2.8) we have, for (x, y) in this set,

∂

∂x

(
U(x, y) +

π

2
x

)
=
π

2
− arcsin

x√
1− y2

≥ 0.

Hence

U(x, y)− V (x, y) ≥ U(0, y)− V (0, y) = 1−
√

1− y2 ≥ 0

and
U(x, y) +

π

2
x ≤ U(

√
1− y2, y) +

π

2

√
1− y2 = 1.

(iv) The inequality is easy if x2 + y2 ≥ 1: indeed, we have

U(x, y) + Ux(x, y)d = 1− π

2
(x+ d) ≥ U(x+ d,

√
y2 + d2),

the latter estimate being a consequence of (2.5). Suppose then that x2 + y2

< 1. If (x+ d)2 + (
√
y2 + d2)2 < 1, then the inequality (2.6) takes the form

−
√

1− (x+ d)2 − y2 − d2 − (x+ d) arcsin
x+ d√

1− y2 − d2

≤
√

1− x2 − y2 − (x+ d) arcsin
x√

1− y2
.

The first observation is that we may assume that y = 0: indeed, if this is
not the case, divide both sides by

√
1− y2 and substitute x := x/

√
1− y2,

d := d/
√

1− y2. The second step is to note that, by continuity, we may
assume x + d > 0. Then the desired estimate is precisely (2.1). The only
remaining case is that x2 + y2 < 1 and (x+ d)2 + (

√
y2 + d2)2 ≥ 1; then the

inequality (2.6) is equivalent to√
1− x2 − y2 + (x+ d)

(
π

2
− arcsin

x√
1− y2

)
− 1 ≥ 0.

It is clear that it suffices to prove it for the least possible d, i.e., satisfying
d ≥ 0 and (x + d)2 + (

√
y2 + d2)2 = 1. However, then the estimate follows

from continuity and the case x2 +y2 < 1, (x+d)2 +(
√
y2 + d2)2 < 1 already

considered.
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(v) This is a consequence of (iv): let x = y = 0 to obtain U(d, d) ≤
U(0, 0) +Ux(0+, 0)d = U(0, 0) = 0. Furthermore, for d > 0 the inequality is
strict: this is precisely (2.2).

Now we are ready to prove the main estimate of the paper.

Proof of (1.2). Let f be any nonnegative submartingale. By homogeneity,
it suffices to show (1.2) for λ = 1 only. First we will show that the process
(U(fn, Sn(f)))∞n=0 is a supermartingale. To this end, fix n ≥ 1 and observe
that, by (2.6),

U(fn, Sn(f)) = U(fn−1 + dfn,
√
Sn−1(f) + |dfn|2)

≤ U(fn−1, Sn−1(f)) + Ux(fn−1, Sn−1(f))dfn
Both sides are integrable: indeed, one easily checks that |U(x, y)| ≤ K+πx/2
for some absolute constant K; furthermore, Ux(x, y) is bounded, in view of
(2.8). Therefore, applying the conditional expectation with respect to Fn−1

and using (2.3) together with the submartingale property yields
E[U(fn, Sn(f)) | Fn−1]≤U(fn−1, Sn−1(f))+Ux(fn−1, Sn−1(f))E(dfn | Fn−1)

≤U(fn−1, Sn−1(f)).

Combined with (2.4), this will imply the inequality (1.2) for the submartin-
gales f of finite length (that is, satisfying P(dfn = dfn+1 = · · · = 0) = 1 for
some n). Namely, for any n = 0, 1, 2, . . . , we write

(2.9) P(Sn(f) ≥ 1)− π

2
Efn = EV (fn, Sn(f))

≤ EU(fn, Sn(f)) ≤ EU(f0, S0(f)) ≤ 0,

where in the last passage we have used the equality f0 = S0(f) and the
inequality (2.7). The final step is to let n → ∞: for any ε > 0, we have, by
(2.9) applied to the submartingale f/(1− ε),
(2.10) P(S(f) ≥ 1) ≤ lim

n→∞
P(Sn(f) ≥ 1− ε)

≤ lim
n→∞

π

2(1− ε)
Efn ≤

π

2(1− ε)
‖f‖1.

Now let ε→ 0 to complete the proof.

3. Strictness and sharpness

3.1. Strictness. Suppose ‖f‖1 > 0 and observe that if this is the case,
then with no loss of generality we may assume that P(f0 > 0) > 0. Arguing
as in (2.9) and (2.10), we obtain

P(S(f) ≥ 1) ≤ π

2
‖f‖1 + EU(f0, S0(f)).

It suffices to note that since f0 = S0(f) almost surely, it follows that
EU(f0, S0(f)) < 0, by Lemma 2(v). This yields the claim.
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3.2. Sharpness. Throughout this subsection we assume that the under-
lying probability space is the interval [0, 1] equipped with its Borel subsets
and Lebesgue’s measure. We will show that the constant is optimal even if we
restrict ourselves to the submartingales f satisfying S(f) ≥ 1 almost surely.
One could show this by giving appropriate examples; however, we take the
opportunity here to provide a different proof.

Recall that the process f is called simple if it is of finite length (hence its
limit f∞ exists almost surely) and for any n the variable fn takes only a finite
number of values. For any (x, y), let Z(x, y) be the class of all nonnegative
simple submartingales f for which f0 = x and y2 − x2 + S2(f) ≥ 1 almost
surely. Here the filtration is no longer fixed—it may be different for different
submartingales.

Lemma 3. Let the function W : [0,∞)× [0,∞)→ R be given by

W (x, y) = inf
f∈Z(x,y)

Ef∞.

The function W has the following properties:

(i) For all x ≥ 0, y ∈ [0, 1),

(3.1) W (x, y) =
√

1− y2W (x/
√

1− y2, 0).

(ii) For all x, y, d ≥ 0,

(3.2) W (x+ d,
√
y2 + d2) ≥W (x, y).

(iii) For all x, y ≥ 0, α ∈ (0, 1) and any d1, d2 ≥ −x satisfying αd1 +
(1− α)d2 = 0,

(3.3) αW
(
x+ d1,

√
y2 + d2

1

)
+ (1− α)W

(
x+ d2,

√
y2 + d2

2

)
≥W (x, y).

Proof. (i) Suppose f is a simple nonnegative submartingale. Then
f lies in Z(x, y) if and only if f ′ = f/

√
1− y2 belongs to the class

Z(x/
√

1− y2, 0); indeed, f0 = x is equivalent to f ′0 = x/
√

1− y2, and
furthermore

y2 − x2 + S2(f) ≥ 1

is equivalent to

− x2

1− y2
+ S2(f ′) ≥ 1.

This implies

W (x, y) = inf
f∈Z(x,y)

Ef∞ = inf
f ′∈Z(x/

√
1−y2,0)

E
√

1− y2f ′∞

=
√

1− y2W (x/
√

1− y2, 0).
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(ii) Suppose f ∈ Z(x+d,
√
y2 + d2) and consider a sequence f ′ such that,

with probability 1, f ′0 = x, df ′1 = d and df ′n+1 = dfn for n = 1, 2, . . . . Since
d ≥ 0, f ′ is a simple submartingale (with respect to its natural filtration)
and

y2 − x2 + S2(f ′) = y2 + d2 +
∞∑
n=2

|df ′n|2 = y2 + d2 − (x+ d)2 + S2(f) ≥ 1.

Hence f ′ ∈ Z(x, y) and since f ′n = fn−1 for n = 1, 2, . . . , we have

W (x, y) ≤ Ef ′∞ = Ef∞.

As f ∈ Z(x+ d,
√
y2 + d2) was arbitrary, (3.2) follows.

(iii) We will use the so-called “splicing” argument; see e.g. [3] for details.
Let f (1), f (2) be two submartingales belonging to Z(x + d1,

√
y2 + d2

1) and
Z(x + d2,

√
y2 + d2

2), respectively. Consider the process f such that (recall
that Ω = [0, 1])

f0 = xI[0,1], df1 = d1I[0,α] + d2I(α,1]

and, for ω ∈ Ω,

dfn(ω) = df
(1)
n−1(ω/α)I[0,α](ω) + df

(2)
n−1((ω − α)/(1− α))I(α,1](ω)

for n = 2, 3, . . . . It can be verified easily that f is a simple nonnegative
submartingale such that y2 − x2 + S2(f)(ω) equals

[y2 + d2
1 − (x+ d1)2 + S2(f (1))(ω/α)]I[0,α](ω)

+ [y2 + d2
2 − (x+ d2)2 + S2(f (2))((ω − α)/(1− α))]I(α,1](ω) ≥ 1.

Thus f ∈ Z(x, y). Moreover, by the construction, we have

f∞(ω) = f (1)
∞ (ω/α) + f (2)

∞ ((ω − α)/(1− α)),

so
W (x, y) ≤ Ef∞ = αEf (1)

∞ + (1− α)Ef (2)
∞ ,

and since f (1), f (2) were arbitrary, the inequality (3.3) is satisfied.

The lemma above is the tool to show that π/2 in (1.2) is the best possible.

Sharpness of (1.2). In terms of the function W , the proof will be com-
plete if we show that W (0, 0) ≤ 2/π. Let N be a fixed (large) integer and
δ = 1/(N + 1). By (3.2), applied to x = y = 0 and d = δ, we have

(3.4) W (0, 0) ≤W (δ, δ).

Now, for n ∈ {1, . . . , N}, use (3.3) with x = nδ, y =
√
n δ, d1 = −nδ, d2 = δ
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and α = 1/(n+ 1) to obtain

W (nδ,
√
n δ) ≤ W (0,

√
nδ2 + n2δ2)
n+ 1

+
nW ((n+ 1)δ,

√
n+ 1 δ)

n+ 1

=
√

1− nδ2 − n2δ2

n+ 1
W (0, 0) +

nW ((n+ 1)δ,
√
n+ 1 δ)

n+ 1
,

where in the last passage we have exploited (3.1). This inequality yields

W (nδ,
√
n δ)

n
− W ((n+ 1)δ,

√
n+ 1 δ)

n+ 1
≤
√

1− n2δ2

n(n+ 1)
W (0, 0),

and combining this with (3.4), we get

(3.5) W (0, 0) ≤ W ((N + 1)δ,
√
N + 1 δ)

N + 1
+W (0, 0)

N∑
n=1

√
1− n2δ2

n(n+ 1)
.

Now we make two observations. First, we have W ((N + 1)δ,
√
N + 1 δ) =

W (1,
√
δ) = 1. To see this, note that for any submartingale f ∈ Z(1,

√
δ) we

have Ef∞ ≥ Ef0 = 1, so W (1,
√
δ) ≥ 1. On the other hand, the martingale

f starting from 1 such that df1 = −I[0,1/2) + I[1/2,1] and dfn = 0 for n ≥ 2,
belongs to Z(1,

√
δ) and satisfies Ef∞ = Ef0 = 1. The second observation is

that
N∑
n=1

1
n(n+ 1)

= 1− 1
N + 1

.

Therefore, (3.5) can be rewritten in the form

W (0, 0) ≤ 1 +W (0, 0)
N∑
n=1

δ

√
1− n2δ2 − 1
nδ(n+ 1)δ

.

Now if we let N → ∞ (so δ → 0), then the sum above converges to	1
0(
√

1− x2−1)x−2 dx = 1−π/2 and then the inequality becomesW (0, 0) ≤
2/π. This completes the proof.
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