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A Redution in Consisteny Strength forUniversal IndestrutibilitybyArthur W. APTER and Grigor SARGSYANPresented by Stanisªaw KWAPIE�
Summary. We show how to redue the assumptions in onsisteny strength used to proveseveral theorems on universal indestrutibility.In [3℄, the �rst author and Hamkins introdued the onept of univer-sal indestrutibility and established several theorems onerning this notion,most prominently the relative onsisteny of universal indestrutibility forboth superompatness and strong ompatness. In [1℄, the �rst author ex-tended this work and showed the relative onsisteny of two strongly om-pat ardinals with universal indestrutibility for both superompatnessand strong ompatness. All of these results were proven using a high-jumpardinal, a very strong notion re�eted by almost hugeness.The purpose of this paper is to redue the onsisteny strength usedto prove eah of these theorems from a high-jump ardinal to somethingre�eted by this notion whih we will all a ardinal Woodin for superom-patness. Spei�ally, we prove the following two theorems.Theorem 1. Universal indestrutibility for superompatness in the pres-ene of a superompat ardinal is onsistent relative to the existene of aardinal Woodin for superompatness.
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Theorem 2. Universal indestrutibility for either superompatness orstrong ompatness in the presene of two strongly ompat ardinals is on-sistent relative to the existene of a ardinal Woodin for superompatness.As we will also indiate without proving expliitly, other theorems from[3℄ are onsistent relative to the existene of a ardinal Woodin for super-ompatness.Before ontinuing, we take this opportunity to remind readers of someof the relevant de�nitions. We say that universal indestrutibility for su-perompatness holds in a model V for ZFC if every V -superompat andpartially superompat (inluding measurable) ardinal δ has its degree ofsuperompatness fully Laver indestrutible [7℄ under δ-direted losed for-ing. Analogously, universal indestrutibility for strong ompatness holds ina model V for ZFC if every V -strongly ompat and partially strongly om-pat (inluding measurable) ardinal δ has its degree of strong ompatnessfully indestrutible under δ-direted losed foring. We reall from [3℄ thatthe ardinal κ is a high-jump ardinal if there is an elementary embedding

j : V → M having ritial point κ suh that for some θ we have Mθ ⊆ Mand j(f)(κ) < θ for every funtion f : κ → κ. As Lemma 2 of [3℄ indiates,if κ is almost huge, then κ is the κth high-jump ardinal.Our key new onept is that of a ardinal κ being Woodin for superom-patness. This will hold if for every f : κ → κ with f(α) a ardinal, thereis some δ < κ with f ′′δ ⊆ δ and an elementary embedding j : V → Mhaving ritial point δ generated by a superompat ultra�lter having rankbelow κ suh that M j(f)(δ) ⊆ M . Our terminology omes from the usual def-inition of a Woodin ardinal. Sine by its de�nition, a ardinal Woodin forsuperompatness is also a Woodin ardinal, it follows that if κ is Woodin forsuperompatness, then κ is both regular and a limit of measurable ardinals(and as Lemma 1.3 will show, muh more). In addition, essentially the sameproof used with Woodin ardinals shows that the least ardinal Woodin forsuperompatness is not weakly ompat.The following lemma is entral to establishing our results.Lemma 1.1. If κ is a high-jump ardinal , then κ arries a normal mea-sure onentrating on A = {δ < κ | δ is Woodin for superompatness}.Proof. Our proof is reminisent of the usual proof that a superstrong ar-dinal has a normal measure onentrating on Woodin ardinals (see Proposi-tion 26.12 of [6℄). Suppose j : V → M is an elementary embedding witnessingthat κ is a high-jump ardinal, with θ suh that Mθ ⊆ M and j(f)(κ) < θfor every f : κ → κ. Fix f : κ → κ suh that f(α) is a ardinal, and let
λ = j(f)(κ). Take U and U ′ as the λ superompatness measure and normalmeasure over κ derived from j, i.e., X ∈ U i� 〈j(α) | α < λ〉 ∈ j(X), and
Y ∈ U ′ i� κ ∈ j(Y ). Then both U and U ′ are elements of M . In addition,
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for i : V → Ult(V,U) and k : M → Ult(M,U) = M∗, the losure propertiesof M imply that i(f)(κ) = k(f)(κ). Now, for ℓ : Ult(V,U) → M the fatorembedding, i.e., the elementary embedding suh that ℓ ◦ i = j, we knowthat ℓ↾λ = id. Also, by the de�nitions of ℓ and λ, ℓ(i(f)(κ)) = j(f)(κ) = λ.Further, if i(f)(κ) < λ, there must be some ν < λ (namely i(f)(κ)) suhthat ℓ(ν) = λ. However, sine ℓ↾λ = id, ℓ(ν) = ν. This means that i(f)(κ) =
λ = j(f)(κ) = k(f)(κ). And, beause cp(j) = κ, M � “f : κ → κ and
j(f) : j(κ) → j(κ) are funtions whih agree below κ�. By elementar-ity, M∗ � “k(f) and k(j(f)) agree below k(κ)�, whih immediately yields
k(f)(κ) = k(j(f))(κ). Putting all of the preeding together allows us to in-fer that M � “j(f) : j(κ) → j(κ), j(f)′′κ ⊆ κ, and there is a δ < j(κ)(namely κ) and an elementary embedding k : M → M∗ with ritial point
κ generated by a superompat ultra�lter having rank below j(κ) suh that
(M∗)k(j(f))(κ) = (M∗)k(f)(κ) ⊆ M∗�. By re�etion, V � “There is a δ < κand an elementary embedding k∗ : V → N with ritial point δ generatedby a superompat ultra�lter having rank below κ suh that f ′′δ ⊆ δ and
Nk∗(f)(δ) ⊆ N �. Hene, V � “κ is Woodin for superompatness�, so sine
Mθ ⊆ M , M � “κ is Woodin for superompatness� as well. Consequently,
κ ∈ j(A), whih means A ∈ U ′. This ompletes the proof of Lemma 1.1.Having ompleted the proof of Lemma 1.1, we now turn our attention tothe proof of Theorem 1. We proeed in analogy to the proof of Theorem 5given in [3℄, using the same de�nition for our foring onditions as foundthere. Suppose V � “ZFC + κ is Woodin for superompatness�. We de�nea reverse Easton iteration having length κ whih does nontrivial foringonly at those stages δ < κ whih are measurable ardinals in V . If at suha δ, some ondition p ∈ Pδ fores that δ is <γ superompat in V Pδ for γthe next measurable ardinal above δ and the <γ superompatness of δ isindestrutible under δ-direted losed foring having rank less than κ, thenwe stop the onstrution and use as our �nal model (Vγ)V Pδ , assuming wehave fored above p. Otherwise, we ontinue the iteration. In this ase, thereis some minimal α < γ suh that the α superompatness of δ is destroyedby some δ-direted losed partial ordering Q of rank below κ. By the workof [3℄, we may assume that foring with Q leaves no measurable ardinals inthe half-open interval (α, |Q|]. We then let Pδ+1 = Pδ ∗ Q̇, where Q̇ is a termfor suh a Q of smallest possible rank.By the same arguments as in [3℄, if there is a stage of foring δ < κ atwhih we an stop the onstrution and use (Vγ)V Pδ as our �nal model, thenwe have obtained a model for universal indestrutibility for superompat-ness ontaining a superompat ardinal. Thus, it su�es to show that thisis indeed what ours. If this is not the ase, then let f : κ → κ be de�nedindutively by f(δ) = 0 if δ is not a measurable ardinal, but for δ a mea-
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surable ardinal, f(δ) is the least inaessible ardinal above max(α, β, γ),where V Pδ � “γ is the least measurable ardinal above δ and α is the small-est degree of superompatness of δ below γ that an be destroyed by some
δ-direted losed foring Q whih leaves no measurable ardinals in the half-open interval (α, |Q|]�, and β is the smallest rank below κ of suh a Q. Bythe fat κ is Woodin for superompatness, let δ < κ be suh that f ′′δ ⊆ δand there is an elementary embedding j : V → M having ritial point δwith M j(f)(δ) ⊆ M . Write j(Pδ) = Pδ ∗ Q̇δ ∗ Ṙ. By the de�nition of f , thelosure properties of M , and the fat that j(κ) ≥ κ (in atuality, j(κ) = κ),we then see that in both V Pδ and MPδ , foring with Qδ destroys the α super-ompatness of δ, where α is minimal below the least measurable ardinalabove δ (whih is the same in both V Pδ and MPδ), foring with Qδ leaves nomeasurable ardinals in the half-open interval (α, |Qδ|], and Qδ has smallestpossible rank below κ = j(κ). However, as in the proof of Theorem 5 of [3℄,the usual reverse Easton arguments show that if G0 is V -generi over Pδ,
G1 is V [G0]-generi over Qδ, and G2 is V [G0][G1]-generi over R, then j liftsin V [G0][G1][G2] to j : V [G0] → M [G0][G1][G2]. We may then �nd a masterondition q for j′′G1 in V [G0][G1][G2] with respet to the partial ordering
j(Qδ), take G3 as a V [G0][G1][G2]-generi objet ontaining q, and workingin V [G0][G1][G2][G3], lift j further to j : V [G0][G1] → M [G0][G1][G2][G3].As usual, U given by X ∈ U i� 〈j(β) | β < α〉 ∈ j(X) is a superompatnessmeasure over (Pδ(α))V [G0][G1] whih is present in V [G0][G1][G2][G3]. How-ever, by the losure properties of R∗j(Q̇δ) in both M [G0][G1] and V [G0][G1],
U ∈ V [G0][G1]. This ontradits that foring with Qδ over V Pδ destroys the
α superompatness of δ and therefore ompletes the proof of Theorem 1.Theorems 7 and 8 from [3℄, in whih models for universal indestrutibilityfor strong ompatness and universal indestrutibility for strongness are on-struted, also remain valid when foring with the same partial orderings as in[3℄, using a ardinal Woodin for superompatness and the method of proofgiven in Theorem 1 above. In addition, Theorem 6 of [3℄, where a model foruniversal indestrutibility for superompatness is onstruted in whih ev-ery Ramsey and weakly ompat ardinal also satis�es the appropriate formof universal indestrutibility, an be proven as well using a ardinal Woodinfor superompatness and the same partial ordering as in [3℄. All of thesemodels ontain either a superompat, strongly ompat, or strong ardinal.In order to prove Theorem 2, we need the following lemma, whih is theanalogue of Lemma 1.1 of [1℄. It shows that the results of [8℄ are true forardinals Woodin for superompatness.Lemma 1.2. Suppose V � �ZFC + κ is Woodin for superompatness +
P is a partial ordering suh that |P| < κ�. Then V P � �κ is Woodin forsuperompatness�.
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Proof. Suppose p ∈ P and ḟ are suh that p  “ḟ : κ → κ is a funtionwith ḟ(α) a ardinal�. De�ne in V a funtion g by g(α) = |P|+ if α ≤ |P|,and g(α) = The least inaessible ardinal above sup({β < κ | For some qextending p, q  “ḟ(α) = β�}) if α > |P|. Sine |P| < κ and κ is a regularlimit of measurable ardinals, g is a well-de�ned funtion whose values arealways ardinals. It is then the ase that p  “For every α < κ, ḟ(α) < g(α)�.By the de�nitions of g and Woodin for superompatness, there is some

δ < κ, δ > |P| and elementary embedding j : V → M having ritial point
δ suh that g′′δ ⊆ δ and M j(g)(δ) ⊆ M . By the results of [8℄, sine |P| < δ,
j lifts in V P to j : V P → M j(P). Then p  “There is δ < κ and an elementaryembedding j : V P → M j(P) having ritial point δ suh that ḟ ′′δ ⊆ δ and
(M j(P))

j(ḟ)(δ)
⊆ M j(P)�. This ompletes the proof of Lemma 1.2.We are just about ready to begin the proof of Theorem 2. Before doingso, however, we prove the following lemma.Lemma 1.3. If κ is Woodin for superompatness, then {δ < κ | δ is <κsuperompat} is unbounded in κ.Proof. Assume towards a ontradition that {δ < κ | δ is <κ super-ompat} is bounded in κ. Let therefore α0 be suh that for every α ≥ α0, θαis the least ardinal below κ with the property that α is not θα superompat.De�ne f : α → α by f(α) = α+

0 if α < α0, and f(α) = The least inaessibleardinal above θα if α ≥ α0. By the fat κ is Woodin for superompatness,we may �nd δ < κ, δ > α+
0 , and an elementary embedding j : V → Mwith ritial point δ suh that f ′′δ ⊆ δ and M j(f)(δ) ⊆ M . By the losureproperties of M and the de�nition of f , it then immediately follows that δis θδ superompat in both V and M , a ontradition. This ompletes theproof of Lemma 1.3.We are now ready to prove Theorem 2. Suppose one again that V �

“ZFC + κ is Woodin for superompatness�. By Lemma 1.3, let δ < κ bethe smallest ardinal suh that V � “δ is <κ superompat�. Fore withthe partial ordering P of Theorem 1 of [2℄ de�ned with respet to δ. By theresults of [2℄, V P � “δ is the least measurable ardinal, δ is <κ stronglyompat, and the <κ strong ompatness of δ is indestrutible under for-ing with δ-direted losed partial orderings having rank below κ�. Sine Pmay be de�ned so that |P| = δ < κ, by Lemma 1.2, V P � �κ is Woodin forsuperompatness�. If we then let Q be the partial ordering of either Theo-rem 5 or Theorem 6 of [3℄ (both of whih fore universal indestrutibility forsuperompatness) or Theorem 7 of [3℄ (whih fores universal indestrutibil-ity for strong ompatness), with the �rst nontrivial stage of foring takingplae at or above the least weakly ompat ardinal in V P above δ, thenthe arguments given in the proof of Theorem 1 of this paper show that the
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onstrution of Q terminates at some stage γ < κ. Let σ < κ, σ > γ, be theleast weakly ompat ardinal above γ in V P∗Q̇. By the same arguments asin [1℄, (Vσ)V P∗Q̇ is our model for either universal indestrutibility for strongompatness or universal indestrutibility for superompatness (dependingupon the exat de�nition of Q) ontaining two strongly ompat ardinals.This ompletes the proof of Theorem 2.Sine our onstrutions require impliit appliations of Hamkins' GapForing Theorem of [4℄ and [5℄, our proofs are going to require at the mini-mum as a hypothesis a superompat limit of superompat ardinals. Read-ers are urged to onsult [3℄ for the expliit details. The exat onsistenystrength of universal indestrutibility as disussed in this paper thereforeremains unknown.Added in proof (Marh 2007). It is possible to redue the onsisteny strength ofthe assumptions used to establish Theorems 1 and 2 still further. Details an be found inour forthoming paper �An Equionsisteny for Universal Indestrutibility�.
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