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Summary. It is shown that for a typical continuous learning system defined on a compact
convex subset of R the Hausdorff dimension of its invariant measure is equal to zero.

1. Introduction. Generic properties of Markov operators were studied
in[1, 5,7, 8, 10]. In [1] it was proved that for a typical finite iterated function
system with place dependent probabilities satisfying the average contractiv-
ity condition the Hausdorff dimension of its stationary distribution is equal
to zero.

In this paper we prove an analogous result for nonexpansive continuous
iterated function systems with place dependent probabilities satisfying the
condition Sé( Ip(t,z) — p(t,y)| dt < cpllx —y]|-

Continuous iterated function systems with place dependent probabilities
were studied by A. Lasota and M. C. Mackey in [4]. They were interested in
biological interpretation of such systems. They applied criteria for asymp-
totic stability of such systems to describe stability of cell structures.

Continuous iterated function systems were also studied by T. Szarek [7]
who showed that a typical system is asymptotically stable and its stationary
distribution is singular. The proofs of Lemma 3.6 and Theorem 4.1 base on
the approximation method used by T. Szarek (see Lemma 3.5 and Theo-
rem 3.1).
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The organization of the paper is as follows. In Section 2 we introduce
the definitions and notation. Section 3 contains auxiliary lemmas which are
used in proving the main result of the paper. The main theorem is proved
in Section 4.

2. Preliminaries. Let X C R¥ be a compact convex set and let B(X)
denote the g-algebra of all Borel subsets of X.

Throughout this paper B(z,r) stands for the open ball with center at
x € X and radius r > 0. Given a set A C X and a number r > 0 we denote
by B(A,r) the open r-neighbourhood of the set A in X.

We denote by M the family of all finite Borel measures on X, and by
M the space of all p € M such that ;(X) = 1. The elements of M; are
called distributions.

Let Mjs be the space of all finite signed Borel measures on X. For every
| > 1 we introduce the Fortet-Mourier norm

[plly = sup{[(f, m)|: f € Fi},
where

(f,m) = | f(2) p(dz)
X

and F; is the space of all continuous functions f: X — R such that
supgex |f(z)] < 1 and |f(z) — f(y)| < |z — y| for z,y € X. Since the
convergence in the Fortet—Mourier norm is equivalent to the weak conver-
gence (see [2]), the norms || - ||;, and | - ||;, for I1,l2 > 1 are equivalent.

An operator P: M — M is called a Markov operatorif it is positive linear
and preserves the norm. An operator P: M — M is called nonexpansive in
the norm || - ||;, L > 1, if

[Pp1 = Ppally < [lp1 — p2lli - for pi, p2 € M.

A measure p € M is called stationary or invariant if Py = p. A Markov
operator P is called asymptotically stable if there exists a stationary distri-
bution p, such that

Jim (f, P"u) = (fipe) - for pe My, f € C(X)

(here C'(X) stands for the space of all continuous functions f: X — R).
For A C X and s, > 0 define

H;(A) = inf { i(diam U)®: AC fj U;, diamU; < 6}
i=1 i=1

and

H(4) = lim H3(A).
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The value
dimpg A = inf{s > 0: H*(A4) =0}
is called the Hausdorff dimension of the set A.
The Hausdorff dimension of a measure p € M is defined by the formula

dimp g = inf{dimyg A: A € B(X), p(A) = 1}.

By a countable iterated function system with place dependent probabilities
(briefly countable learning system) (S, p)x, = (Si, pi):2, We mean a sequence
of continuous transformations S;: X — X, i € Ny, and a sequence of contin-
uous functions p;: X — [0, 1], i € Ng, such that Y ;2 pi(xz) =1 for z € X.
The sequence (p;);2,, as above is called a probability vector. We assume that
S; is Lipschitzian with Lipschitz constant L; for ¢ € Ny.

For a learning system (5, p)y, we define

(2.1) As Sy = maprl

For a given learning system (.9, p)x, we define the corresponding Markov
operator P(S,p)uo : M — M by

P(S,p)NOM(A) = Z S pi(x) p(dr) for A € B(X)
=S

and its adjoint U(g ), - C(X) — C(X) by

@NO Z:pZ Si(x) for x € X.

In this paper we consider continuous learning systems. Fix K € (0, o0].
Let S: [0,K) x X — X be a continuous function. We assume that there
exists a measurable function Ag: [0, K) — R4 such that

(2.2) 1S(t,x) = S(t,y)|| < As(D)llz —yl| for z,y € X, t € [0, K).
Let p: [0, K) x X — R4 be a continuous function such that
K
(2.3) S p(t,x)dt =1 forz e X.
0
We assume that there exists ¢, > 0 such that
K
(24) | Ip(t, ) — p(t,y)| dt < cpllz — y]|
0

for every z,y € X.
Every such pair (S, p) will be called a continuous iterated function system
with place dependent probabilities (briefly continuous learning system). The
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set of all continuous functions p: [0, K) — R, satisfying (2.3) and (2.4) is
denoted by Pjg f)-

Set
K
(2.5) A(s,p) = max §) p(t, ) Ag(t) dt.

A continuous learning system (5, p) such that A(g,) < 1 will be called non-
expansive.

For a given learning system (S, p) we define the corresponding Markov
operator Pg,): M — M by

K
Pspyi(A) = S S L4(S(t,x))p(t,z) dt u(dz) for A € B(X)
X0
and its adjoint Ug,): C(X) — C(X) by
K
Usp @)=\ pt,x)f(S(t, ) dt for € X.
0

For two continuous learning systems (.5, p) and (7, g) we define

d((S,p), (T, q)) = d(p, q) + d(S,T),

where
_ K
d(p,q) = sup ( § Ip(t,2) = q(t.2)|dt + sup |p(t,x) = q(t,)]),
zeX 0 t€[07K)
d(S,T) = sup |S(t,z) — T(t,x)].

(t,2)€[0,K)x X

Denote by F the set of all continuous nonexpansive learning systems
(S, p). Observe that F endowed with the metric d is a complete metric space.

We say that the learning system (.S, p) has a stationary distribution (resp.
is asymptotically stable) if the corresponding Markov operator P(g, has a
stationary distribution (resp. is asymptotically stable).

Finally, recall that a subset of a complete metric space X is called residual
if its complement is a set of first Baire category.

3. Auxiliary results
LEMMA 3.1. Let pi,pu2 € My, 1> 1 and e > 0. If ||u1 — poll; < €2, then
ni(B(A,€)) > pa(A) —¢
for every A € B(X).

The lemma follows from [11, Lemma 3.1].
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LEMMA 3.2. If q € Py k), then for every € > 0 there exists a function
p € Pjo,i) such that

(3.1) p(t,z) >0 forte[0,K), ze€X
and
(3.2) d(p,q) < ¢

Proof. Fix e € (0,1). Let r, k: [0, K) — Ry be continuous functions such
that
0 < k(t) <max{l,1/K} forte[0,K)

(we admit 1/00 = 0),

k() dt =1
0

and

(3.3) 1-— 4max{m3§<q( D L1/K] <r(t)<1l forte]|0,K).

We define the function p: [0, K) x X — Ry by the formula
K

p(t,2) = r(t)q(t,x) + k() [ (1 = r(s))a(s,x) ds
0

for (t,z) € [0, K) x X. It is easy to see that p is continuous and conditions
(

(2.3) and (3.1) are satisfied. For every z,y € X we have
K K
} Ip(t,z) =t )l dt < | [r(t)a(t, ) = r(t)alt.y)| dt
0 0

K
+ J 1 —r(s)als,2) = (1= r(s))als, )| ds
0

K

= {la(t.2) = q(t, )| dt < cglz —y]
0

and so (2.4) is satisfied with constant ¢, = ¢4. By (3.3) for (¢,z) € [0, K) x X
we have

K
p(t.2) = q(t, )| = |(r() = Dalt,2) + k(t) [ (1= 7())a(s, ) ds| < 2/2,
0

K

} Ip(t, 2) — q(t, )| dt < /2
0

and (3.2) follows. =
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Let (S,p)x, be an asymptotically stable countable learning system and
let o be the corresponding invariant distribution. Define

X(SJJ)NO = {33‘ €X: ,LL({.’L‘}) > O}.

LEmMA 3.3. If ,LL(X(SP)NO) > 0, then for every € > 0 there exists a finite
set Ze C X(sp),, such that w(Ze) >1—e.

The proof can be found in [1, Corollary 3.1]. In fact, Corollary 3.1 in [1]
was proved for finite learning systems but the same argument works for
countable learning systems.

REMARK 3.1. Let (S,p) be a continuous learning system such that
(3.4) A(S,p) < 1.

Let P(g5,) and Ug,) be the corresponding Markov operator and its adjoint,
respectively. Then there exists [ > 1 such that

(3.5) U(Syp)f €k, for feF

and consequently P(g,) is nonexpansive in the norm || - [|;. Indeed, a simple
calculation shows that (3.5) holds for

C
zzmax{ip,l},
L= Asp)

where ¢, is defined by (2.4).

LEMMA 3.4. If a continuous learning system (S,p) satisfies (3.1) and
(3.4), then it is asymptotically stable and for every e > 0 there exists n € N
such that

(3.6) [Pl i — Plopypalli <e  for pi, pa € My,

where | is defined in Remark 3.1.

Proof. We claim that for every € > 0 there are a Borel set A with
diam A < ¢, a real number o > 0 and an integer m such that

(3.7) Pl yn(A) = a  for p e M.

In fact, fix ¢ > 0. From (3.4) it follows that there exists E C [0, K) such
that [*(E) > 0 and

7y =supAs(t) < 1,
tek

where {! stands for one-dimensional Lebesgue measure. Now we can choose
a € (0, K] such that for every § > 0,

M[a,a + 0] N E) > 0.
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Let m € N be such that 7™ diam X < ¢/2. From (2.2) it follows that
there exists d; > 0 such that

diam( U S(tl,X)> SfydiamX+;—6.
t1€[a,a+61]NE m

By an induction argument for every k € {1,...,m} we can find d; > 0 such
that
diam( U S(tk, U (tk I U Stl, )))
tL€EFRL th_1€F_1 t1€E1
k
. ~¥Fe
<rdiam( | S o))+ 2
< 7y diam U thots.- () S, X o
tp—1€Ek—1 t1€E

’yk<diamX + E),
2m
where E; = [a,a + J;] N E. Define
A= U Sty S(tm—1,-..,5(t1,X)...),
{t1,....tm}Cla,a+|NE

where § = min{di,...,dy}. Clearly diam A < e. From the definition of the
adjoint Markov operator we have

P{g,p)H(A) = S S Xp t17 ...p(tm,S(tm_l,...S(tl,ﬁ)))
X0

X LA(S(tmy ... S(t1,2))) dty ... dty, u(dr)

VoV o) pltm, Sttm—1, ... S(t, 7))
X (Ja,a+8)NE)™
X LA(S(tms - .. S(tr,2))) dty ... dby p(dz)

> 1 E)N™ inf m
> (@ (ata]nE)" b ()" >0

Y

for every p € M. This completes the proof of the claim. Application of the
proof of Theorem 3.1 in [9] finishes the proof. m

The following lemma is an analogue of Lemma 3.2 in [8].

LEMMA 3.5. If a continuous learning system (S,p) € F satisfies condi-

tion (3.4), then for all e > 0 and n € N there exists 6 > 0 such that for each
(T.q) € F,

d((s,p), (Tv Q)) <o = (HP(TTS'7p)M - P&,q)ﬂul <e fO’I‘ e Ml)v
where [ is defined by Remark 3.1.
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Proof. Fixe >0,n € N. Let f € F; and x € X. Then
\Usp)f(x) = Urg) f(@)]

K

K
| [ p(ta)f(S(ta) dt = § at.2)f(T(t,) dt
0

0

K K

< | Ip(t, =) — gq(t, )| dt + | q(t, )| F(S(t,2)) = F(T(t,x))| dt
" 'K

< | Ip(t,2) — q(t,x)| dt + 1 § q(t,2)||S(t, 2) — T(t,2)|| dt
0 0

< d(p,q) +1d(S, T).
This yields
(3-8) Uisp) f (@) = Ui g f(2)| < 1d((S,p), (T, q)).
For m > 1 we have
U ) f (@) = Ul gy f(2)] < Ui (U (@) = Ugr, )(U{Rf )( )|
+Ue) (Ul ) F)(@) = Uts ) (Ul ()]

< su Um_ ymn-l
—y€§| (S,p) (y) — (T'q) (v)]

Uiz (U ) (@) = Ugs (U ) @),

Since U(";;)lf € F}, we obtain

Ui @) = Ut /@) < st (U5, 30(0) = U hio)

+ sup  |Uwsph(y) — Uirgh(y)l.
heF,yeX

This and inequality (3.8) yield

su z)| < su umnl ULy
s (U f@) Ul F@) < sup [T, () = Uiy £ (@)

+1d((S,p), (T, q)).

Consequently, we have

HP(TE,p)N - P(Tfr,q)MHl < ; sup ’U(ns,p)f(x) - Uﬁr,q)f(w)‘

eF,xe
< nld((S,p), (T, q))
for p € M. Set 6 = e(nl)~! to complete the proof. =
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For every n € N, let F,, be the set of all (S,p) € F satisfying (3.1) and
(3.4) and such that there exist Z, C X and r, € (0,1/n) such that

fi(sp)(B(Zn,m)) >1—=1/n
and
s (Bla,4r)) 2 31/ /2 - for & € B(Zn, 2rn),

where (15, is the stationary distribution corresponding to (S, p).
LEMMA 3.6. For every n € N the set F,, is dense in the space (F,d).

Proof. Let z € X and o € (0,1). Since X is convex, for every transfor-
mation 7: [0, K) x X — X we can define a transformation T": [0, K) x X
— X by

T(t,z) =az+ (1—a)T(t,z) for (t,z) € [0,K) x X.
From this and Lemma 3.2 it follows that the set F of all learning systems
(S,p) € F satistying (3.1) and (3.4) is dense in F. To complete the proof it
is sufficient to show that for every n € N, the set F,, is dense in F.

Fixn € N, (T,p) € F and € > 0. Since X is compact and 7": [0, K)x X —
X is continuous, we can choose two sequences (a;);en, and (b;);en, such that

(3.9) ag =0, a1 < a; < bji_1 < Qi1 for ¢ € N,
(3.10) 0, K) = | Jlai, bi

=1
and

(3.11) || T(t,z) = T(t,x)|| <e/2 for t,t € [aj—1,bi—1],i €N, z € X,

Let so = 0 and s; € (a;,b;—1) for i € N. Define v = (1 — A(7;,))/2. For every
i € Ny we can choose t; € [s;, $;+1) such that

Ar(ti) < Ap(t) ++  for t € [s, siy1)

and consequently

Si+1 Sit1

M) | optta)dt < § Oa(t) +9)p(t ) dt
for x € X. For i € Ny we define St X - X by
(3.12) Si(z) = T(t;, x)

and S: [0,K) x X — X by

S(t,z) = S;(x) for (t,2) € [si, sip1) x X.
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From [s;, si+1) C (a4, b;) and inequality (3.11) it follows that

sup |8t 2) — T(t,2)| <e/2.
(t,2)€[0,K)x X

Observe that for every ¢ € Ny the function g@ is Lipschitzian with Lip-
schitz constant L; = Ap(;). Consider a countable learning system (S, p)x, =
(Si,pi)52, where S; is given by (3.12) and

Sit+1

pite) = | plt,x)d.

Si

We have
o0 Si+1
MG, = TN & Lipi(= %%ZAT S p(t, ) dt
o0 Si+1
< max S (Ar(t) +y)p(t,z)dt

reX 0 &
K

= max x | (\(t) +)p(t, ) dt = Apyy +7 < 1.
0

Consequently, there exists jo € Ng such that L;; < 1. Let 9 € X be a fixed
point of Sj;. Choose ¢ such that

(3.13) 0 <d <min{l — Ljy, (1 - AG ) )(Inezg?p]o( x))" 1}

By [5, Lemma 3.5] there exists >0 and a Lipschitz transformation S: XX
with Lipschitz constant Lg and with the following properties:

(3.14) Lg < Ljo +4d< 1,
(3.15 s |(2) — ()] < /2
(3.16) S(z)=z¢ for ||z — mo| <1

Consider a countable learning system (§ DRy = (§Z, Pi)i2 such that

= S(z) fori=j ,
Sila) = 4 500 fori=o
Si(x) for i # jo.
Set Ag = )\(§ D Since Ag < 1, the system (§, D)x, is asymptotically stable
’ 0
(see [3]). From (3.14), (3.16) and compactness of X it follows that there

exists an integer m such that

§m(m) =x9 foraxeX.

Jo
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Let Pg and pg be the Markov operator corresponding to (§ ,D)x, and its
invariant distribution, respectively. We have

ng(fo}) = PRug({o})

= Z szl(m)(plmoslmfloOSZl)(x)
i1yeim=1 X

X U} (Siy 0+ 0 8y,.) ({2}) pg(da).
Consequently,

ps(fo}) = (minpjy (2)"ug(X) > 0.

From this and Lemma 3.3 it follows that there exists a finite set Z, C X

such that

1
#g(Zn) > 1= o

and
pg(r) >0 for z € Zy,.

Let 7, € (0,1/n) be such that
(3.17) pg(B(z,m)) > 2r)/™  for x € Z,.

Set | = max{2c,/(1 — Ag),1}. Let m € N be such that

2
(3.18) ™ diam X <
Sio 321

and let £ € N be such that
2
r
3.19 1-— min tx))™M)k <
(3.19) ( ((t’m)e[ojsmﬂx){p( N™) 39

Since X is compact we can choose a sequence (t;);en such that ¢; € (ay, s;)
for ¢ € N and the following properties are satisfied:

o) Si
~ R — s
(3.20) max 1(LSZ__1 +Lg) tg p(t,z)dt < 5
1= i
o0 % 1— M)
(3.21) max Sp(t,x) dt < ( i

. ~ 16mk(c, + 1) diam X

Now, we define the function S: [0, K) x X — X by the formula
t—t; i—t

SZ(I‘) + i

S(t,z) =< si—t si— 1
Sifl(l‘) for (t,l‘) S [Sifl,ti] x X, 1 €eN.

Si_i(x) for (t,x) € (ti,s;) x X, i €N,
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It is easy to check that S(¢,x) is continuous and

sup |S(t,x) — T(t,x)| <e.
(t,x)€[0,K)x X

By (3.20) we have

K
A(sp) = max | As(t)p(t, z) dt
0

oo tit+1 00 S
:max(z S As(t)p(t, x dt—i—z As(t)p(t, x dt)
e X M0 s i—1 t;
e tir1 Si
<max(ZL§_ | pt,> dt+z s) Vi, x)dt)
eeX VT T t
< )\g + S <1

Consequently, due to Lemma 3.4, (S, p) is asymptotically stable. Moreover,
there exists an interval [a,b] C [0, sj,41] such that

(3.22) As(t) < Lg  fort € [a,b].
Jo

Let P(g,), Usp) and p be the Markov operator corresponding to (5, p),
its dual and the invariant distribution, respectively. Let [ be the constant
defined by Remark 3.1. Since [ > [, from (3.18), (3.22) and the proof of
Lemma 3.4 it follows that there exists a Borel set A such that (3.7) holds
for a = (ming z)eap)x x P(t; )™ and diam A < r2(161)~!. From this, (3.19)
and the proof of Theorem 3.1 in [9] it follows that (3.6) holds for n = mk
and ¢ = r2 /8. Hence

(3.23)  llug—pll = | P2*pg - (Sp el
< HPg‘ pg — (Sp gl + ||P5p)/‘5 (7192)“”1
< |1Pg*ng — Plsgynglli+ /8.
Fix f € F}. Using the definition of S(¢,x) we obtain
UZ* f(x) — Uleh) f ()]

oo S

<3 5 p(t, @) |[UZ* 1 f(Sima (@) = UlEh  F(S(t,2)) | dt

1si—1

)

||b”18

§ p(t, @) [ UZF (S5 (x)) — URE  F(S(t, @) de
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t;

37§ ) UL F (S (@) — Uk (S ()] de

< j_'f jgfp@, DU (S (@) — U £ (S (2, )] b
+ itg p(t, x)( i g p(s, ) |UZF 2 f(Sj-1(Si-1(x)))
— U2 (S (s, Sae)) ds) dt
< i jfpa, NI (i () — U (S (02
¥ ipi<x>(§3p<s,x>|ugmf<§j1<§zl<a:>>>
— U2 (S (5, 811 () ds)

— U2 1 (81(8ia ()| ds )

for x € X. Consequently, by an induction argument we have
oo 85
UZ* f() — Uk, £ ()] < mkldiam X - | p(t, z) dt
=1 t;

for z € X. Hence
1P g — Prek gl = sup (f, P2 ng) — (f, Py ng)l
l

mk mk
= sup [(Ug" f,ug) — (Ulspy [ g
sup (UG fng) — Ulsp) frug)l
< sup { mkldiam X - sup p(t,x)dt, g
fer < zeX zz;tsl S>
< mkl diam X - sup Z S p(t, x) dt.
rxeX i=1 1,

By (3.21) this gives

IPE* g — Pk ugll < ri/8.
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From this and (3.23) it follows that
g = pulle < 72 /8 + 72 /8 =17 /4.
Moreover, for every y € B(Z,,2r,) there exists x € Z,, such that
B(z,ry) C B(y,3ry).
Consequently, by (3.17) and Lemma 3.1 we obtain
1(B(y,4rn)) 2 pg(B(y,3rn)) — 1n/2 2 pg(B(x,m)) — /2
> ork/m —rl/m 2 = 3rkim 2.
From the definition of Z,, and Lemma 3.1 it follows that
W(B(Zn,mn)) > pg(Zn) —mn/22>21-1/2n—1/2n=1-1/n.
The proof is complete. »

LEMMA 3.7. Assume that (S,p) is an asymptotically stable continuous
learning system and p is the corresponding invariant measure. Let o > 0. If

1 B
(3.24) ,u({x € X: liminf 28HB@:) a}) —1,
r—0 logr
then dimpg ¢ < .
The proof can be found in [1, Lemma 3.8]. In fact, Lemma 3.8 in [1]

was proved for finite learning systems but the same argument works for
continuous learning systems.

4. Main theorem
THEOREM 4.1. The set F. of all (T, q) € F such that the unique invari-
ant distribution pr ) satisfies dimy w4 = 0, is residual in F.

Proof. Fix n € N and (S,p) € Fy. Let P(gp) be the Markov opera-
tor corresponding to (5, p) and let (g ,) be its stationary distribution. Let
Z(spyn C X and 7(g,) , < 1/n be such that

(4'1) N(S,p)(B(Z(S,p),nv T(S,p),n)) >1- 1/”
and
(42) (S p) (B(.I‘, 4T(S,p),n)) > 37“(157; /2 for x € B(Z(S,p),nv QT(S,p),n)'

Let l(s,) > 1 be defined by Remark 3.1. By Lemma 3.4 there exists k(g ) »
€ N such that

k
(43) ||P (S P) P(sgp;) N?Hl(syp) < r(zs,p),n/8 for B, p2 € Ml-

By Lemma 3.5 there exists d(g ), > 0 such that for all (T, q) € F,
(44) d((57 p)a (T7 q)) < 6(5,;7)

(Sp)n k(s,p)n
~ usel/l\a 1Psp) "1 = Pergy "Hllis < 7“(54,) /8.
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Define
F= U Br(S:0):55pn);
n=1(S,p)eFn

where Bz((S,p),0(s,p)n) is the open ball in (F,d) with center (S5, p) and
radius d(g,) - From Lemma 3.6 it follows that F is an intersection of count-

ably many open dense sets. Consequently, F is residual. We are going to
show that F C F..

Fix (T,q) € F. Let P14 denotes the corresponding Markov operator.
Since X is compact, the operator P(7,) has an invariant distribution it g
(see [6]). From (4.3) and (4.4) it follows that (7', q) is asymptotically stable
(see the proof of Theorem 4.1 in [1]).

Let ((S,p)n)nen be a sequence of learning systems such that (S, p), € F,
and

(T, Q) € B]-'((S, p)n, (5(5713)”7”) for n € N.

For every n € N assume that Zg,),» C X, 7@p.n € (0,1/n),
l($p)ynn > 1 and k(gp), » € N are such that (4.1)-(4.3) hold for the cor-
responding operator Pg ), and its stationary measure fi(gp) - For abbre-
viation we set

Pon=Pspn  bn=HSpn  In=Z(Sppnn
Tn =TS pns I = lSpme K = K(Sp)an-
By (4.3) and (4.4) we obtain
gy = tnlle, = 1P gy — Pam il
<Py 1rg) = Pam il + 1 Pam ey = P pnll,
<r2/4.
Consequently, by (4.2) and Lemma 3.1 for every « € B(Z,, 2r,) we have
(4.5)  pirg) (B(2,510)) > pn(B(w, 4ry)) — 10 /2 > 378" /2 = r}/" j2 = p /"
Define

Y = ﬂU (Zn, 2r).

m=1n=m
By the definition of Z,, and Lemma 3.1 we have
w(T,q)(B(Zn,2r0)) = pin(B(Zp, 7)) — 1 21— 1/n — 1/n=1-2/n.

Consequently, fi(7,4)(Y) = 1. On the other hand, if y € Y then y € B(Z,, 2r,,)
for infinitely many n € N and by (4.5) we can choose a sequence (sy)nen of
integers such that

prg (Bly, 5rs,)) = ri/*n for n € N.
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Hence
1 B(y,5 1/sn
lim g i(1,q)(B(Y, 575,,)) < lim logre,™" _
n—oo log 5rs,, n—oo log drs,

Since y € Y was arbitrary, by Lemma 3.7 we have dimy p(4 = 0. The
proof is complete. =
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