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Summary. For positive integers m, U and V , we obtain an asymptotic formula for the
number of integer points (u, v) ∈ [1, U ] × [1, V ] which belong to the modular hyperbola
uv ≡ 1 (mod m) and also have gcd(u, v) = 1, which are also known as primitive points.
Such points have a nice geometric interpretation as points on the modular hyperbola which
are “visible” from the origin.

1. Introduction. For a positive integer m we consider the modular

hyperbola
Hm = {(u, v) : uv ≡ 1 (modm), 1 ≤ u, v < m}.

Various properties of the points (u, v) ∈ Hm have been considered in the
literature. For example,

• the question about the joint distribution of parity of u and v is known
as the Lehmer problem and has attracted a lot of attention (see [27]–
[29]);

• the distribution of the distances |u − v| for (u, v) ∈ Hm has been
addressed in the literature as well (see [5, 14, 30]);

• some geometric properties of the convex hull of Hm have been studied
in [15].

Here we consider an apparently new question of estimating the number
of points (u, v) ∈ Hm with gcd(u, v) = 1 which belong to a given box (u, v) ∈
[1, U ] × [1, V ]. These points have an attractive geometric interpretation as
points on Hm which are “visible” from the origin (see [2, 12, 18, 26] and
references therein for several other aspects of distribution of “visible” points
in various regions).
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More precisely, for positive real numbers U and V we consider the set

Hm(U, V ) = {(u, v) ∈ Hm : 1 ≤ u ≤ U, 1 ≤ v ≤ V }

and we define
Nm(U, V ) =

∑

(u,v)∈Hm(U,V )
gcd(u,v)=1

1.

We obtain an asymptotic formula for Nm(U, V ) which is nontrivial whenever

(1) UV ≥ m3/2+ε

for any fixed ε > 0 and sufficiently large m.
We recall that the notations U ≪ V and U = O(V ) are both equivalent

to the statement that |U | ≤ cV with some constant c > 0. Throughout the
paper, o(1) denotes a quantity which tends to zero as m → ∞.

2. Preparation. We need the following bound on the distribution of
inverses of squares in residue rings which could be of independent interest.

For an integer d with gcd(d, m) = 1, we use d to denote the modular
inverse of d modulo m, that is, dd ≡ 1 (modm), 1 ≤ d < m.

For a real R and integers K and L with 1 ≤ K, R < m we denote by
Tm(R; K, L) the number of integers d ∈ [L, L + K − 1] with gcd(d, m) = 1

and such that d2 ≡ r (modm) for some integer r with 1 ≤ r ≤ R.

Lemma 1. For any real R and integers K and L with 1 ≤ K, R < m,
we have

Tm(R; K, L) =
R

m

L+K−1
∑

d=L
gcd(d,m)=1

1 + O(m1/2+o(1)).

Proof. The proof uses very standard arguments so we give only the main
ingredients.

Our basic ingredient is the following bound on complete exponential
sums:

max
b=1,...,m

∣

∣

∣

∣

m
∑

d=1
gcd(d,m)=1

exp

(

2πi
ad2 + bd

m

)∣

∣

∣

∣

≤ (m gcd(a, m))1/2+o(1),

which holds for any integer a and is a very special case of the more general
bound of [20] for exponential sums with monomials. Now, using the standard
reduction between complete and incomplete sums (see [13, Section 12.2]),
we obtain

∣

∣

∣

∣

L+K−1
∑

d=L
gcd(d,m)=1

exp

(

2πi
ad2

m

)∣

∣

∣

∣

≤ (m gcd(a, m))1/2+o(1).
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Combining this with the Erdős–Turán inequality (see [17, Corollary 1.1,
Chapter 1]), after simple calculations we obtain the desired result.

We also remark that the Weil and Salié bounds of complete Kloosterman
sums together imply that

∣

∣

∣

∣

m
∑

u=1
gcd(u,m)=1

exp

(

2πi
au + bu

m

)∣

∣

∣

∣

≤ (m gcd(a, m))1/2+o(1)

(see [13, Corollary 11.12]). Now, the above mentioned reduction between
complete and incomplete sums (see [13, Section 12.2]) leads to the following
well known bound on incomplete Kloosterman sums.

Lemma 2. For any integer a and real Z with 1 ≤ Z ≤ m, we have

∑

(u,v)∈Hm

1≤u≤Z

exp

(

2πi
av

m

)

≤ (m gcd(a, m))1/2+o(1) .

3. Main result. As usual, ϕ(m) denotes the Euler function.

Theorem 3. For all integers m and real U , V with 1 ≤ U, V < m, we

have

Nm(U, V ) =
6

π2
·
UV

m

∏

p|m

(

1 +
1

p

)−1

+ O(U1/2V 1/2m−1/4+o(1)),

where the product is taken over all prime numbers p |m.

Proof. For an integer d, we let

Mm(d; U, V ) =
∑

(u,v)∈Hm(U,V )
d|gcd(u,v)

1

be the number of pairs (u, v) ∈ Hm(U, V ) with d | gcd(u, v).

Let µ(d) denote the Möbius function. We recall that µ(1) = 1, µ(d) = 0
if d ≥ 2 is not square-free and µ(d) = (−1)ω(d) otherwise, where ω(d) is the
number of distinct prime divisors of d. By the inclusion-exclusion principle,
we write

(2) Nm(U, V ) =

∞
∑

d=1

µ(d)Mm(d; U, V ).

Clearly

(3) Mm(d; U, V ) = 0

if gcd(d, m) > 1 or d > m.
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For gcd(d, m) = 1, writing

(4) u = ds and v = dt,

we have

Mm(d; U, V ) = #{(s, t) : st ≡ d2 (modm), 1 ≤ s ≤ U/d, 1 ≤ t ≤ V/d}

where as before, d denotes the modular inverse of d modulo m.

Lemma 2, combined with the Erdős–Turán inequality (see [17, Corol-
lary 1.1, Chapter 1]), immediately implies that

(5) Mm(d; U, V ) =
UV ϕ(m)

d2m2
+ O(m1/2+o(1))

(see, for example, [2, Lemma 1.7]; similar results are also obtained in
[14, 29]).

We also note that for each d, the product r = st ≤ UV/d2, where s and t
are given by (4), belongs to a fixed residue class modulo m and thus can take
at most UV/d2m+1 possible values. Denoting by τ(k) the number of positive
integer divisors of k ≥ 1, we see that for each fixed r ≤ UV/d2 ≤ UV ≤ m2,
there are τ(r) = mo(1) pairs (s, t) of integers s and t with r = st (see [24,
Section I.5.2]). Therefore, we also have

(6) Mm(d; U, V ) ≤

(

UV

d2m
+ 1

)

mo(1).

Finally, we note that for any integer ∆ ≥
√

UV/m we have
∑

2∆>d≥∆

Mm(d; U, V ) ≤ Tm(UV/∆2; ∆, ∆)mo(1)

since d2 ≡ r (modm) where, as before, r = st ≤ UV/d2 ≤ UV/∆2 ≤ m
(thus for every d the value of r is uniquely defined and for every r there are
at most τ(r) = mo(1) possible pairs (s, t)). Therefore,

∑

m≥d≥∆

Mm(d; U, V ) ≤

⌈2 log m⌉
∑

ν=0

∑

2ν+1∆>d≥2ν∆

Mm(d; U, V )

≤

⌈2 log m⌉
∑

ν=0

Tm(UV/(2ν∆)2; 2ν∆, 2ν∆)mo(1).

Hence, by Lemma 1 we obtain

(7)

∑

m≥d≥∆

Mm(d; U, V ) ≤

⌈2 log m⌉
∑

ν=0

(

2ν∆UV

(2ν∆)2m1+o(1)
+ m1/2+o(1)

)

≪
UV

∆m1+o(1)
+ m1/2+o(1).
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Therefore, for arbitrary integers ∆ > δ > 1, using the asymptotic for-
mula (5) for d ≤ δ, the bound (6) for δ < d ≤ ∆, and the bound (7) for
d ≥ ∆, we derive from (2) and (3) that

(8) Nm(U, V ) =
UV ϕ(m)

m2

∑

1≤d≤δ
gcd(d,m)=1

µ(d)

d2
+ E,

where

(9)
E ≪ δm1/2+o(1) +

∑

δ≤d≤∆

(

UV

d2m
+ 1

)

mo(1) + U1/2V 1/2∆−1mo(1)

≪ δm1/2+o(1) + UV δ−1m−1 + ∆mo(1) + UV ∆−1m−1.

We also have
∑

1≤d≤δ
gcd(d,m)=1

µ(d)

d2
=

∑

d≥1
gcd(d,m)=1

µ(d)

d2
+ O(δ−1) =

∏

p∤m

(

1 −
1

p2

)

+ O(δ−1),

where the product is taken over all prime numbers p ∤ m. Recalling that
∏

p

(

1 −
1

p2

)

=
∑

d≥1

µ(d)

d2
= ζ(2)−1 =

6

π2

and
∏

p|m

(

1 −
1

p2

)

=
∏

p|m

(

1 −
1

p

)

∏

p|m

(

1 +
1

p

)

=
ϕ(m)

m

∏

p|m

(

1 +
1

p

)

,

we obtain

(10)
∑

1≤d≤δ
gcd(d,m)=1

µ(d)

d2
=

6

π2

m

ϕ(m)

∏

p|m

(

1 +
1

p

)−1

+ O(δ−1).

We now substitute (9) and (10) in (8), which yields

Nm(U, V ) =
6

π2
·
UV

m

∏

p|m

(

1 +
1

p

)−1

+ O(δm1/2+o(1) + UV δ−1m−1 + ∆mo(1) + UV ∆−1m−1).

Taking

δ = ⌈U1/2V 1/2m−3/4⌉ and ∆ = ⌈U1/2V 1/2m−1/2⌉,

we derive the desired result.

It is easy to see that

∏

p|m

(

1 +
1

p

)

≪
∏

p|m

(

1 −
1

p

)−1

=
m

ϕ(m)
≪ log log m.
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In particular, we conclude that Theorem 3 is nontrivial under the condi-
tion (1).

Corollary 4. For all integers m and real U , V with 1 ≤ U, V < m
and UV ≥ m3/2+ε, we have

Nm(U, V ) =

(

6

π2
+ O(m−ε/2+o(1))

)

UV

m

∏

p|m

(

1 +
1

p

)−1

.

4. Remarks. There is little doubt that our approach can also be used
to obtain asymptotic formulas for the sums

∑

(u,v)∈Hm(U,V )

|µ(uv)| and
∑

(u,v)∈Hm(U,V )

|µ(u)µ(v)|

and several other sums. However, we do not see any approaches to bound
the sums

∑

(u,v)∈Hm(U,V )

µ(uv) and
∑

(u,v)∈Hm(U,V )

(

u

v

)

,

where (u/v) is the Jacobi symbol, which we also extend to even values of v
by putting (u/v) = 0 if gcd(v, 2) = 2.

Various properties of points on multidimensional hyperbolas

u1 · · ·uk ≡ 1 (modm)

have been studied as well [1, 21, 22].

Hyperbolas uv ≡ a (modm) for an arbitrary integer a with gcd(a, m) = 1
are also of interest. Although for every given a their theory is similar to the
case a = 1, these new settings lead to a new type of problem of getting more
precise results on average over a (see [6–10, 16, 19, 23, 31] and references
therein)

Finally, solutions of more general polynomial congruences have also been
studied in the literature (see for example [3, 4, 11, 25, 32]).
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