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Summary. We estimate from above and below the Hausdor� dimension of SRB measurefor ontrating-on-average baker maps.1. Introdution. One of the main open problems in the dimension the-ory of dynamial systems is how to work with non-onformal systems, i.e.systems with two (or more) di�erent negative Lyapunov exponents or withtwo (or more) di�erent positive Lyapunov exponents. The simplest suh sys-tems are solenoids, and it is for them that some results are known (f. [B℄,[S2℄, [SS℄, [RS℄).These results were ahieved by onsidering a projetion of the system inthe diretion of maximal ontration. The resulting (non-invertible) hyper-boli systems are alled baker maps. They are of independent interest andwere studied as well: see for example [S1℄, [T℄, [R1℄.In all these papers a transversality ondition was assumed, �rst intro-dued by Polliott and Simon [PS℄ in the ontext of one-parameter fam-ilies of iterated funtion systems. This ondition is open and it is easyto show examples of systems satisfying it. For some regions in parameterspae, the transversality ondition is satis�ed on a dense subset, as shownby Bothe [B℄.In this paper we onsider a generalisation of baker maps: ontrating-on-average baker maps. Those are non-uniformly hyperboli systems. However,we show the same dimension estimates for the SRB measures of COA bakermaps as are known for standard baker maps. The upper bound does not2000 Mathematis Subjet Classi�ation: Primary 28A78, 37D25.Key words and phrases: baker map, Hausdor� dimension, SRB measure, transversalityondition.Supported by Polish KBN Grant No 2P0 3A 034 25.[219℄
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require any additional assumptions. To obtain the lower bound we need thetransversality ondition to be satis�ed.2. Geometry of ontrating-on-average baker maps2.1. De�nition of ontrating-on-average baker maps. Let us start fromsome notations. We are going to use three symboli spaes:

Σ− = {0, . . . , k − 1}−N∪{0},

Σ+ = {0, . . . , k − 1}N,

Σ = Σ− ×Σ+ = {0, . . . , k − 1}Z.We de�ne a map σ ating on Σ− and on Σ by
(σω)i = ωi−1.On Σ+ we de�ne k maps σi as follows:

σi(ω1ω2 . . .) = iω1ω2 . . . , i = 0, . . . , k − 1.Finite sequenes of symbols from {0, . . . , k − 1} will be denoted by ωn =
ω1 . . . ωn. By ω−n we will denote ωn written bakwards, i.e. ω−n = ωn . . . ω1.We will onsider maps of the form(2.1) f(x, y) = (g(x), h(x, y)),ating on S1 × R.We demand that g is a k-1 C2 orientation preserving expanding map ofthe irle, i.e. g is C2, g′ > 1 everywhere and every point has preisely kpreimages under g. We parametrise the irle as the interval (0, 1], where 1 isone of the �xed points of g. We assume g to be C2 exept possibly at points
x ∈ g−1(1) and to be ontinuous and have left and right derivative every-where. Similarly, we assume h to be C2 exept on the lines {x ∈ g−1(1)}.We will also assume that the map f has uniformly bounded �rst andseond order derivatives in its whole domain (again exept possibly on thelines {x ∈ g−1(1)}) and that ∂2h is bounded away from zero. We denote theiterations of f by fn(x, y) = (gn(x), hn(x, y)).Given x, the supremum of |∂2h(x, ·)| will be denoted by Φ(x); we assumethat(2.2) |Φ(x)| < |g′(x)|.Let

L = exp
(\

S1

logΦ(x) dν−(x)
)
.

Definition 2.1. The map (2.1) satisfying the smoothness assumptionsabove will be alled a ontrating-on-average (COA) baker map if L < 1.
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2.2. One-dimensional dynamis of g. The results of this subsetion are astandard appliation of the thermodynamial formalism to expanding maps.An introdution to the thermodynamial formalism an be found in Bowen'sbook [Bo℄. The way of applying it to expanding maps is explained (in aslightly di�erent situation) in the fourth hapter of Faloner's book [F℄, sowe will omit the detailed proofs.There are k intervals of the form (a, b] that are mapped by g onto (0, 1]in a bijetive way. These intervals are pairwise disjoint and form a overingof (0, 1]. We will denote them by G0, . . . , Gk−1. The branh of g−1 moving

(0, 1] onto Gi will be denoted by gi.Similarly, we have kn intervals of the form (a, b] that are mapped by
gn onto (0, 1] in a bijetive way. We will write Gωn = gω1

(Gω2...ωn
). Theorresponding branh of g−n will be denoted by gω−n = gωn

◦ · · · ◦ gω1
.We introdue a symboli expansion on (0, 1] in the following way:

πi(x) = {j; gi(x) ∈ Gj}, i ≥ 0.In other words,
x =

∞⋂

n=0

Gπ0(x)...πn(x).Let τ(x) = . . . πn(x) . . . π1(x)π0(x). The map τ : (0, 1] → Σ− is bijetive andalmost onto (the set Σ−\τ((0, 1]) is ountable). Moreover, it is a onjugationbetween g ating on (0, 1] and σ ating on Σ−.For any funtion ψ : (0, 1] → R de�ne
Snψ(x)=

n−1∑

i=0

ψ(gi(x)), Sn
−ψ(ωn)= inf

G
ω

n

Snψ(x), Sn
+ψ(ωn)=sup

G
ω

n

Snψ(x).The following lemma is equivalent to Proposition 4.1 in [F℄.Lemma 2.2. Let ψ : (0, 1] → R be Lipshitz on every Gi. Then
maxSnψ(·) − minSnψ(·) is bounded inside any Gωn ; the bound is uniformwith respet to both n and ωn.Hene, Sn

+ψ − Sn
−ψ < K with K depending only on ψ.The Lasota�Yorke theorem states that there exists a unique absolutelyontinuous g-invariant probability measure ν− on (0, 1] and its density isbounded away from zero and in�nity. As every gi is C2, if we take ν−|G

ω
nfor any ωn, iterate it n times under g and normalise, the resulting measurewill still have its density uniformly bounded away from zero and in�nity.Hene,(2.3) K−1 ≤

1

ν−(Gωn)
dν−|G

ω
n
d(ν− ◦ gω−n) ≤ Kfor some K independent of ω and n.
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The image of ν− under τ is a shift-invariant probability measure on Σ−that will be denoted by µ−. It is the equilibrium measure for the potential

φ(ω) = − log g′(τ−1(ω)), hene it is ergodi.For ψ as in Lemma 2.2 set
D(ψ,K, ε, n) =

{
x; n(1− ε)

\
ψ dν−−K ≤ Snψ(x) ≤ n(1+ ε)

\
ψ dν− +K

}
.The entral limit theorem for equilibrium measures (Theorem 1.27 in [Bo℄)implies the following lemma.Lemma 2.3. Let ψ be as in Lemma 2.2. Fix ε > 0. For any δ > 0 thereexists K > 0 suh that

∞∑

n=1

(1 − ν−(D(ψ,K, ε, n))) < δ.

In partiular, for any positive ε and for ν−-almost every x ∈ (0, 1] thereexists K1 suh that(2.4) K−1
1 λ

n(1+ε)
− < |Gτn(x)| < K1λ

n(1−ε)
− ,where

λ− = exp
(
−
\

S1

log g′(x) dν−(x)
)
.

2.3. Geometry and dynamis of f , SRB measure. The measure µ− is
σ-invariant. Hene there exists a unique σ-invariant measure on Σ for whih
µ− is the marginal distribution on Σ−. We will denote this measure by µand let µ+ be the marginal distribution of µ on Σ+. As µ− is ergodi, sois µ.Fix a small positive ε and let ω be a sequene from Σ+ suh that forsome K and for all n,(2.5) Sn logΦ(ω−n) < n(1 − ε) logL+K.Lemma 2.3 guarantees us plenty of suh ω. Consider the sequene of urves(2.6) fn(Gω−n × {0}).They are graphs of C2 funtions y = Λn,ω(x).Proposition 2.4. Assume that (2.5) is satis�ed for some ω ∈ Σ+. Thenthe sequene Λn,ω onverges uniformly in C2 to some Λω. Moreover , the �rsttwo derivatives of Λω are uniformly bounded independently of ω. The limitdoes not hange if in (2.6) we replae Gω−n × {0} by Gω−n × {t} for any t.Proof. We have

Λn+1,ω(x) − Λn,ω(x) = hn(gωn(x), h(gωn+1
, 0))) − hn(gωn(x), 0).
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By the hoie of ω, |∂2hn| is not greater than eKLn(1−ε). As this is asummable series and |h(·, 0)| is uniformly bounded, Λn,ω(x) is a Cauhysequene in sup norm.Of ourse, if we used fn(Gω−n × {t}) (the graphs of funtions that wewill denote by Λt

n,ω), the limit would be the same, as
‖Λt

n,ω − Λn,ω‖ = ‖hn(·, t) − hn(·, 0)‖ ≤ t · eKLn(1−ε) → 0.To estimate the derivatives of Λω note that f may be loally expanding in thevertial diretion, but the expansion in the horizontal diretion is stronger(by a uniform onstant). We an thus write f loally as the sum of a linearmap f0(x, y) = (x0 + M(x − x0), y0 + m(y − y0)) (with M/m uniformlygreater than 1) and a nonlinear distortion term f1 (with �rst and seondorder derivatives uniformly bounded). Hene,
|Λ′

n+1,ω| ≤
m

M
max |Λ′

n,ω| + Cand
|Λ′′

n+1,ω| ≤
m

M2
max |Λ′′

n,ω| + C,thus the �rst and seond derivatives of Λω exist and are uniformly bounded(note that the bounds do not depend on K or ε; we only need to know that
Λn,ω onverges).The urves Λω will be alled the leaves of the map f . We proved theexistene of the leaves for some ω given by (2.5). Denote by Σ̃+ the set of ωfor whih leaves exist. As the image of a leaf under f is a union of k leaves,(2.7) Σ̃+ ⊂

k−1⋃

i=0

σi(Σ̃+).Heneforth we will onentrate on the points of the form (x,Λω(x)) for
ω ∈ Σ̃+. The natural symboli spae for suh points is Σ̃ = Σ− × Σ̃+ ⊂ Σ.Let us denote this expansion by τ̃(x, y), i.e. τ̃ : (0, 1] × R → Σ̃. This map isnot uniquely de�ned�intersetion points of leaves will have more than onesymboli expansion (orresponding to their history under iteration of f).The map τ̃ onjugates f with σ ating on Σ̃ as a subset of Σ. By (2.7), Σ̃is σ-invariant.Note here a relation between the measures µ− and µ+. Denote by C−(ωn)the set of all sequenes from Σ− ending with ωn and by C+(ωn) set of allsequenes from Σ+ beginning with ωn. Then by invariane of µ under σ,

µ−(C−(ωn)) = µ+(C+(ωn)).Lemma 2.3 implies that Σ̃ has positive µ-measure. By ergodiity of µ, wehave µ(Σ̃) = 1.
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We an projet µ bak from the symboli spae by π = τ̃−1; the resultingmeasure will be denoted by ν. It is the SRB measure for our system and wewill work with it in the rest of the paper. For ν we ompute the Lyapunovexponent of the map f :

log λ =
\
log |∂2h(x, y)| dν(x, y)(it is the Lyapunov exponent in the vertial diretion; the one in the hori-zontal diretion equals − log λ− and we need only g and ν− to ompute it).We need to introdue our last geometri assumption: transversality.Definition 2.5. If there exists b > 0 suh that for any two leaves Λωand Λω̃ with ω1 6= ω̃1 we have

|Λω(x) − Λω̃(x)| + |Λ′
ω(x) − Λ′

ω̃(x)| > bthen we say that the baker map satis�es the transversality ondition.The name omes from the fat that the ondition implies that two suhleaves have only a uniformly bounded number of intersetions and thoseintersetions are transversal. As the transversality of intersetions betweenleaves is preserved under iteration of f , the transversality ondition impliesthat all the leaf intersetions are transversal (but not onversely).The transversality ondition is open and we an give a family of examplesof baker maps satisfying it.Example 2.6. Consider a linear baker map of the form g(x) = kx(mod 1) and h(x, y) = hj
1x+hj

2y, with hj
1 and hj

2 depending only on j = ⌊kx⌋.For suh a map, Λω(x) = b(ω) + a(ω)x, where
a(ω) =

∑

i

k−iSih2(ω
−i+1)h1(ω

−i).In other words, a(ω) is the limit point of the iterated funtion system of themaps
fj : x 7→ hj

2k
−1x+ hj

1and suh a system will satisfy the strong separation ondition if ∑hj
2 < k, forproperly hosen hj

1. The strong separation ondition for this system impliesthat a(ω) and a(ω̃) will di�er at least by a onstant if ω1 6= ω̃1, hene thetransversality follows.We an now formulate our main theorem. We de�ne
s =

log λ−
log λ

.Theorem 2.7. For any ontrating-on-average baker map the upperHausdor� dimension of its SRB measure is not greater than min(2, 1 + s).
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If the map satis�es the transversality ondition, then the upper and lowerHausdor� dimensions of the SRB measure are equal to min(2, 1 + s).3. Proof of Theorem 2.73.1. Upper bound for Hausdor� dimension. We may freely assume s < 1,otherwise the assertion is empty. We �x some small positive ε. We denoteby WK the set of points (x, y) ∈ π(Σ̃) ∩ {y ∈ [−K,K]} for whih for all n,(3.1) n(1 + ε) logλ− logK <

n−1∑

i=0

log |∂2hi(x, y)| < n(1 − ε) log λ+ logKand (2.4) holds.For inreasing K, ν(WK) will inrease to 1 by Lemma 2.3. We hoosesome large K.We have to hek how some iteration fn (n large) behaves in the neigh-bourhood of a point (x, y) ∈ WK . We know that (3.1) holds at (x, y) andwould like to �nd some neighbourhood of this point where it holds as well(possibly with worse K, but at most worse by a multipliative onstant).We will take this neighbourhood U in the form of a retangle U = I1×I2,
x ∈ I1, y ∈ I2.Lemma 3.1. There exists dK suh that for all n, if the retangle U =
I1 × I2 has nonempty intersetion with WK where I1 = Gωn and |I2| < dKthen

n(1 + ε) log λ− logK0 <
n−1∑

i=0

log |∂2h(f
i(·))| < n(1 − ε) log λ+ logK0for all points in U , with K0 depending on K and ε but not on n.Proof. The map f is C2 and its derivative |∂2h| is bounded away fromzero. Hene, its logarithm is C1 with bounded derivative and the onditionwe need is that the sum of the diameters of the �rst n images of U under fis uniformly bounded:(3.2) n−1∑

j=0

|f j(U)| ≤ c(K).

Any image of U is an approximate retangle: the images of the vertialintervals are vertial intervals while the horizontal intervals are mapped ontoapproximately horizontal lines (graphs of funtions with uniformly boundedderivative; hek the proof of Proposition 2.4). Hene
|f j(U)| ≤ c|gj(I1)| + inf

x∈I1
|hj(x, I2)|.
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The �rst part of the sum (3.2) is easy to estimate: ∑n−1

j=0 |gj(Gωn)| isuniformly bounded and the bound depends neither on n nor on ωn. Toestimate the seond part, let (x, t) ∈ U∩WK and onsider zj = |hj({x}×I2)|.We have
zj ≤ dK max

y∈I2
|∂2hj(x, y)|.We an use the Leibniz formula for the derivative to get

log

∣∣∣∣
∂2hj(x, y)

∂2hj(x, t)

∣∣∣∣ ≤ c

j−1∑

i=0

|hi(x, y) − hi(x, t)| ≤ c

j−1∑

i=0

ziand using (3.1) one gets bounds like those in Lemma 4.3 from [R2℄.Hene, ∑n−1
i=0 zi is bounded and the bound does not depend on n.We overWK by retangles of the formGωn×[jdK , (j+1)dK ] and take theimage of this family under fn. We get a family of approximately horizontalstrips with the following properties. First, as stated above, their width isnot greater than K0λ

n(1−ε). Seond, there are at most (2K/dK) ·Kλ
−n(1+ε)
−strips. Third, their union ontains fn(WK), hene its measure ν is at least

ν(WK).Cutting those strips into approximate squares {Ei} we get a over of aset of measure at least ν(WK) with 2K2K−1
0 λ

−n(1+ε)
− λ−n(1−ε) squares of size

K0λ
n(1−ε). If n was hosen su�iently large,(3.3) ∑

(diamEi)
1+s(1+3ε) < 1.Repeating all this proedure for greater and greater K and n we get afamily of sets of inreasing measures and their �ner and �ner overs, satis-fying (3.3). The upper limit of those sets has measure 1. We an over thisset with the union of our overs and this proves that the resulting set haszero Hausdor� measure in any dimension greater than 1 + s(1 + 3ε).As ε may be hosen arbitrarily small, we are done.3.2. Lower bound for Hausdor� dimension. The measure ν is absolutelyontinuous on leaves by (2.3). Even more, by Lemma 2.2 its density variesat most by a onstant along any leaf. Hene, we an write(3.4) dν(x, y) ≈ dx ·
∑

π∗µ+(dω),where the sum is taken over all leaves Λω passing through (x, y).Fix a small ε. We denote by VK the set of leaves Λω for whih for all n,for at least one point x,
n(1 + ε) log λ− logK <

n−1∑

i=0

log |∂2h(f
i(x,Λω(x)))|(3.5)

< n(1 − ε) log λ+ logK
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and(3.6) n(1 + ε) log λ− − logK < µ+(C+(ωn)) < n(1 − ε) log λ− + logK.The formula (3.6) may be seen as dual to (2.4); it is satis�ed for anarbitrarily large set of ω by Lemma 2.3. We denote by νK the restrition of
ν to VK .Note that if (x,Λω(x)) satis�es (3.5) then for all x′, (x′, Λω(x′)) willsatisfy (3.5) for slightly (by a multipliative onstant) greater K. Hene, westill have(3.7) dνK(x, y) ≈ dx ·

∑
π∗µ+K(dω)for some measure µ+K ≤ µ+ of norm lose to 1.We are going to estimate from above the integral

Z(K, δ) =
\
νK(Bδ(x, y)) dνK(x, y)(for small δ), where Bδ(x, y) is the square of side-length δ entred at (x, y).By (3.7) we an write(3.8) Z(K, δ) ≤ c

\\\
Leb(Bδ(x,Λω(x)) ∩ Λω′) dx dµ+K(ω) dµ+K(ω′).Set

Iδ(ω, ω
′) =
\

Leb(Bδ(x,Λω(x)) ∩ Λω′) dx.If ω1 6= ω′
1, the above is easy to estimate from transversality: whenever Λωand Λω′ are at a distane smaller than b/2, their derivatives must di�er byat least b/2. Hene for suh pairs

Iδ(ω, ω
′) ≤ min

(
4

b
δ2, 1

)
.We will write(3.9) Z(K, δ) ≤

∑

n

Zn(K, δ),where Zn(K, δ) is the part of the integral (3.8) over pairs ω, ω′ with �rst nsymbols idential.Let ω = ηnα and ω′ = ηnβ, α1 6= β1. We will estimate not Iδ(ω, ω′) but
Jn,δ(α, β) =

∑

ηn

Iδ(η
nα, ηnβ),where the sum is taken over all n-digit sequenes ηn suh that both Ληnαand Ληnβ belong to VK . Note that

dµ+(τnα) ≈ µ+(C+(τn))dµ+(α)(this follows from a similar estimate for ν− given by Lemma 2.2). For µ+Kthe same estimate holds, but only for τn and α suh that α ∈ VK and τnsatis�es (3.6).
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We thus have(3.10) Zn(K, δ) ≤ sup

ηn

µ+K(C+(ηn))
\\
Jn,δ(α, β) dµ+(α) dµ+(β).The union of the pairs (Ληnα, Ληnβ) is the image of (Λα, Λβ) under fn.By assumption we keep only those branhes ηn of the map fn for whih itis loally a ontration in the vertial diretion (with ontration ratio notgreater than D+

1 = cKλn(1−ε) and not smaller than D−
1 = (cK)−1λn(1+ε))and a dilatation in the horizontal diretion (with dilatation ratio between

D+
2 = Kλ

−n(1+ε)
− and D−

2 = K−1λ
−n(1−ε)
− ). The square Bδ is the image of anapproximate retangle with horizontal side-length between δ/D+

2 and δ/D−
2and vertial side-length δ/D1, D1 ∈ [D−

1 , D
+
1 ]. Hene,

Jn,δ(α, β) ≤ Iδ/D1
·
D1

D−
2

·D+
2 ≤ D+

1 K
2λ−2nε

− min

(
4δ2

b(D−
1 )2

, 1

)
.Substituting this into (3.10) and estimating supηn µ+K(Cηn) by Kλ

n(1−ε)
−from (3.6), we get(3.11) Zn(K, δ) ≤ min

[
c(K)

(
λ−
λ

)n(1−3ε)

δ2, c(K)λ
n(1−3ε)
− λn(1−ε)

]
.Now, there are two ases: s < 1 or s ≥ 1. Assume �rst that s < 1.The sequene Zn is �rst inreasing (exponentially fast) and then dereasing(also exponentially fast). The sum of the series in (3.9) is thus approximatelyequal to the greatest element, i.e.

Z(K, δ) ≤ c(K)λ
n0(1−3ε)
− λn0(1−ε)for

n0 =
log δ − c(K)

(1 + ε) log λ
.Hene

Z(K, δ) ≤ c(K)δ1−3ε+(1−5ε)sfor δ small enough. By Tsujii's lemma from [T℄, for all K the Hausdor�dimension of νK (hene, of ν as well) is not smaller than 1− 3ε+ (1− 5ε)s.As ε may be hosen arbitrarily small, the assertion follows.Let now s ≥ 1. The sequene Zn is then noninreasing (even dereasingwhen s > 1) for n < n0, so we an estimate the sum in (3.9) by n0Z0:
Z(K, δ) ≤ c(K)δ2|log δ|.Now Tsujii's lemma implies that the Hausdor� dimension of νK is equal to 2.
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