NUMBER THEORY

Extensions of Three Theorems of Nagell ^{by} A. SCHINZEL

Summary. Three theorems of Nagell of 1923 concerning integer values of certain sums of fractions are extended.

Nagell [3] has proved the following theorems.

1. If m, n and x are integers, m > 0, n > 0, $x \ge 0$, then except for m = 1, x = 0, the sum $\sum_{k=0}^{x} \frac{1}{m+kn}$ is never an integer.

2. Let a, b, c be integers. Then the sum $\sum_{k=0}^{x} \frac{c}{b+ka}$ is an integer only for finitely many integers x.

3. Let a, b, c and d be integers, a > 0, $c^2 + d^2 > 0$ and -ab be not a perfect square. Then the sum

$$\sum_{k=1}^{x} \frac{ck+d}{ak^2+b}$$

is an integer for only finitely many integers x.

In statement 2 it was probably meant that a, b, c, x are positive integers. Otherwise, the statement is not true, e.g. for c = 0 or b = -xa/2 (x odd).

The aim of this paper is to extend the above theorems as follows.

THEOREM 1. If m, n and x are integers, m > 0, n > 0, $x \ge 0$, $\varepsilon_k \in \{-1,1\}$ $(0 \le k \le x)$, then except for m = 1, x = 0 the sum

$$S_1 = \sum_{k=0}^x \frac{\varepsilon_k}{m+kn}$$

is never an integer.

²⁰¹⁰ Mathematics Subject Classification: Primary 11D68.

Key words and phrases: algebraic sum, arithmetic progression.

THEOREM 2. Let c be a positive integer. Then the sum

$$S_2 = \sum_{k=0}^x \frac{c_k}{b+ka},$$

where a, b are positive integers, c_k are integers satisfying $0 < |c_k| \le c$ (k = 0, 1, ..., x), is an integer only for finitely many positive integers xand possibly infinitely many pairs (a, b).

The following example shows that for c = 2 the sum S_2 can be an integer for x = 1 and for infinitely many pairs (a, b): $c_0 = 1$, $c_1 = -2$, a = b.

THEOREM 3. Let a, b, c, d be integers, a > 0, $c^2 + d^2 > 0$, and -ab be not a perfect square. Then the sum

$$S_3 = \sum_{k=1}^x \frac{c_k x + d_k}{ak^2 + b}$$

is an integer for only finitely many positive integers x, where c_k and d_k are integers satisfying $|c_k| \leq c$, $|d_k| \leq d$, $c_k^2 + d_k^2 > 0$ $(1 \leq k \leq x)$.

The proofs follow Nagell's arguments supplemented by the following lemmas, in which P(N) denotes the greatest prime factor of N, and $\pi(x)$ is the number of primes $\leq x$.

LEMMA 1. If x > 0, (m, n) = 1, and

(1)
$$(m+n)(m+2n)\dots(m+(x-\nu_1)n) > x!,$$

where ν_1 is the number of primes not exceeding x and not dividing n, then (2) $P((m+n)(m+2n)\dots(m+xn)) > x.$

Proof. See Sylvester [4, p. 688]; we have changed Sylvester's i to n and n to x to be in agreement with Nagell's notation.

LEMMA 2. If (m,n) = 1, $m \ge x > 0$, then (2) holds.

Proof. This is Sylvester's theorem [4, p. 703] quoted also by Dickson [1, p. 437]. ■

LEMMA 3. For $x \ge 14$ we have $\pi(x) < \frac{3}{8}x + 1$.

Proof. The primes are 2, 3 or $6k \pm 1$ (k > 0). The number of such numbers up to x does not exceed $\frac{x-1}{3} + 2$. Now

$$\frac{x-1}{3} + 2 < \frac{3}{8}x + 1 \quad \text{for } x > 16.$$

For x = 14, 15, 16 the lemma is verified directly.

LEMMA 4. For $x \ge 14$ the function $\left(\frac{x+1}{3}\left(x-\frac{t}{2}+1\right)\right)^{t-1}$ is a strictly increasing function of $t \le \frac{3}{8}x+1$.

Proof. By differentiation.

LEMMA 5. If $3n \ge x + 2$, 2 | n and (m, n) = 1, then (2) holds.

Proof. By Descartes's rule of signs the polynomial

$$\left(\frac{x+1}{3}\right)^5 - \left(\frac{13}{16}x + \frac{1}{2}\right)^3$$

has only one positive zero. Hence the inequality

$$\left(\frac{14+1}{3}\right)^5 > \left(\frac{13}{16} \cdot 14 + \frac{1}{2}\right)^3$$

implies

$$\left(\frac{x+1}{3}\right)^5 > \left(\frac{13}{16}x + \frac{1}{2}\right)^3$$

for all $x \ge 14$. Hence

$$\left(\frac{x+1}{3}\right)^x > \left(\frac{x+1}{3}\left(\frac{13}{16}x + \frac{1}{2}\right)\right)^{\frac{3}{8}x}.$$

By Lemmas 3 and 4 the right-hand side is greater than

$$\left(\frac{x+1}{3}\left(x-\frac{\pi(x)}{2}+1\right)\right)^{\pi(x)-1},$$

thus we obtain

$$\left(\frac{x+1}{3}\right)^{x-\pi(x)+1} > \left(x - \frac{\pi(x)}{2} + 1\right)^{\pi(x)-1}$$

By the assumption the left hand side is less than $n^{x-\pi(x)+1}$, on the other hand by the inequality of the arithmetic and geometric mean the right hand side is no smaller than $\frac{x!}{(x-\pi(x)+1)!} = \prod_{i=0}^{\pi(x)-2} (x-i)$. Thus we obtain $n^{x-\pi(x)+1}(x-\pi(x)+1)! > x!$.

However, by the assumption 2 | n we have $\nu_1 \leq \pi(x) - 1$, hence the left hand side is less than or equal to

$$n \cdot 2n \cdot \ldots \cdot (x - \nu_1)n < (m + n)(m + 2n) \ldots (m + (x - \nu_1)n)$$

and by Lemma 1 we obtain (2) for all $x \ge 14$. For x < 14 it is enough to prove (2) for x prime, i.e., for x = 2, 3, 5, 7, 11, 13. In each case by Lemma 1 it is enough to check even n in the interval

$$\frac{x+2}{3} \le n < \left(\frac{x!}{(x-\pi(x)+1)!}\right)^{1/(\pi(x)-1)}$$

and by Lemma 2 it is enough to check m < x. A finite computation completes the proof.

Proof of Theorem 1. It is enough to assume that (m, n) = 1, m > 1, x > 0. Consider first n odd. Then there is at least one even number in the

sequence

Let 2^{μ} be the highest power of 2 which divides any number of the sequence (3), and let further m + kn be the first number of the sequence (3) which is divisible by 2^{μ} . Then

$$m + kn = 2^{\mu}(2h + 1).$$

The next number of the form m + tn that is divisible by 2^{μ} is

$$m + (k + 2^{\mu})n = 2^{\mu}(2h + n + 1).$$

Since *n* is odd, this number is divisible by $2^{\mu+1}$, hence it does not belong to the sequence (3). Therefore in the sum S_1 there exists only one term with denominator divisible by 2^{μ} , namely $\frac{\varepsilon_k}{m+kn}$. We obtain

$$\frac{1}{2}(m+kn)S_1 = \frac{a}{b} \pm \frac{1}{2}$$

where b is odd. It follows that S_1 is not an integer, thus Theorem 1 is proved for n odd.

Now consider n even, thus m is odd ≥ 3 .

Let q be a prime factor of m + kn, where $0 \le k \le x$. If no other term of the sequence (3) is divisible by q, then we obtain

$$\frac{1}{q}(m+kn)S_1 = \frac{a}{c} \pm \frac{1}{q},$$

where $q \nmid c$. Hence S_1 is not an integer. In order that S_1 be an integer at least two terms of the sequence (3) should be divisible by q, thus $q \leq x$. Taking $q = P((m+n)(m+2n)\dots(m+xn))$, by Lemma 2 we obtain x > m and, by Lemma 5, $x \geq 3n - 1$.

By Chebyshev's theorem there exists a prime q such that

(4)
$$\frac{1}{2}(x+3) < q \le x+1.$$

Then there is a term of the sequence (3) divisible by q, since we have

(5)
$$q > \frac{1}{2}(x+3) \ge 3\frac{n}{2} + 1 > n,$$

and the numbers of the sequence (3) represent all residues modulo q.

Let m + kn be the least term of the sequence (3) divisible by q. Then

(6)
$$m + kn = qT,$$

where k < q.

According to a previous remark, also the number m + (k+q)n =: m + ln occurs in the sequence (3), thus

(7)
$$m + ln = q(T+n).$$

The number m + (k + 2q)n does not occur in (3), since by (4) we have $k + 2q \ge 2q > x$. Therefore, the numbers (6) and (7) are the only terms of the sequence (3) divisible by q. We have

$$\frac{\varepsilon_k}{m+kn} + \frac{\varepsilon_l}{m+ln} = \frac{\varepsilon_k}{qT(T+n)} \cdot \begin{cases} 2T+n & \text{if } \varepsilon_l = \varepsilon_k, \\ n & \text{if } \varepsilon_l = -\varepsilon_k, \end{cases}$$
$$T(T+n)S_1 = \frac{a}{b} \pm \begin{cases} \frac{2T+n}{q} & \text{if } \varepsilon_l = \varepsilon_k, \\ \frac{n}{q} & \text{if } \varepsilon_l = -\varepsilon_k, \end{cases}$$

where $q \nmid b$. If S_1 is an integer, we have $q \mid 2T + n$ or $q \mid n$. The latter is impossible by (5), and the former, since n is even, gives $q \mid T + n/2$. However, since x > m, q > k and $q > \frac{1}{2}(x+3)$ we obtain

$$T = \frac{m+kn}{q} < \frac{2x}{x+3} + n < 2+n, \quad \text{i.e.} \quad T \le n+1,$$

and by (5),

$$T + \frac{n}{2} \le 3\frac{n}{2} + 1 < q.$$

The contradiction obtained proves Theorem 1. \blacksquare

Proof of Theorem 2. The proof follows in general the proof of Theorem 1. However, the first part of that proof now fails, thus it is not possible to assume a even. Hence instead of T + a/2 we have to deal with 2T + a and instead of the inequality $x \ge 3a - 1$ we have to assume $x \ge 6a + 1$. Moreover, $\nu_1 \le \pi(x)$ instead of $\nu_1 \le \pi(x) - 1$. Therefore, instead of Lemma 3 we use the inequality $\pi(x) \le \frac{3}{8}x$ for $x \ge 24$ and in order to apply the assertion of Lemma 5 we have to use, instead of the inequality

$$\left(\frac{x+1}{3}\right)^5 > \left(\frac{13}{16}x + \frac{1}{2}\right)^3$$

valid for $x \ge 14$, the inequality

$$\left(\frac{x}{6}\right)^5 > \left(\frac{13}{16}x\right)^3$$

valid for $x \ge 65$. Thus the proof of Theorem 1 works for

 $x \ge \max\{65, 2c - 3\}.$

The desired finitely many x consist of

$$x < \max\{65, 2c - 3\}$$
.

Proof of Theorem 3. Let x_0 be the least positive solution of the congruence

(8)
$$ax^2 + b \equiv 0 \pmod{p},$$

where p is an odd prime, not a divisor of ab, thus $0 < x_0 < \frac{1}{2}p$. Then the next positive solution of (8) is $p - x_0$, hence $> \frac{1}{2}p$. Now, Nagell's theorem [2, §1] implies that for all sufficiently large x,

$$P_x = P\left(\prod_{k=1}^x (ak^2 + b)\right) > 2x.$$

Therefore, if x is large enough only one of the numbers $ak^2 + b$ $(1 \le k \le x)$ is divisible by P_x . Let it be $ax_0^2 + b$. Then $P_x | c_{x_0}x_0 + d_{x_0}$ implies $P_x | ad_{x_0}^2 + bc_{x_0}^2$. By the assumptions $ad_{x_0}^2 + bc_{x_0}^2 \ne 0$, hence $2x \le |ad_{x_0}^2 + bc_{x_0}^2| \le ad^2 + |b|c^2$. If $2x > ad^2 + |b|c^2$, then we obtain

$$\frac{1}{P_x}(ax_0^2 + b)S_3 = \frac{c_{x_0}x_0 + d_{x_0}}{P_x} + \frac{T}{N}$$

where $P_x \nmid (c_{x_0}x_0 + d_{x_0})N$. Thus S_3 cannot be an integer.

References

- [1] L. E. Dickson, *History of the Theory of Numbers*, Vol. 1, reprint, Chelsea, 1952.
- T. Nagell, Zur Arithmetik der Polynome, Abh. Math. Sem. Hamburg 1 (1922), 179– 194; also: Collected Papers of Trygve Nagell, Queen's Univ., Kingston, 2002, 211–228.
- [3] T. Nagell, Eine Eigenschaft gewisser Summen, in: Zahlentheoretische Notizen III, Vid.-selsk. Kristiania Skrifter, Matem.-Naturv. Kl. (1923), no. 13, 10–15; also: Collected Papers of Trygve Nagell, Queen's Univ., Kingston, 2002, 358–363.
- [4] J. J. Sylvester, On arithmetical series, Messenger Math. 21 (1891–2), 1–19; also: The Collected Papers of James Joseph Sylvester, Vol. 4 (1882–1897), Cambridge, at the Univ. Press, 1912, 687–703.

A. Schinzel Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-956 Warszawa, Poland E-mail: schinzel@impan.pl

> Received July 19, 2013; received in final form October 17, 2013 (7945)