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Extensions of Three Theorems of Nagell
by

A. SCHINZEL

Summary. Three theorems of Nagell of 1923 concerning integer values of certain sums
of fractions are extended.

Nagell [3] has proved the following theorems.

1. If m,n and x are integers, m > 0, n > 0, x ≥ 0, then except for
m = 1, x = 0, the sum

∑x
k=0

1
m+kn is never an integer.

2. Let a, b, c be integers. Then the sum
∑x

k=0
c

b+ka is an integer only for
finitely many integers x.

3. Let a, b, c and d be integers, a > 0, c2 + d2 > 0 and −ab be not a
perfect square. Then the sum

x∑
k=1

ck + d

ak2 + b

is an integer for only finitely many integers x.

In statement 2 it was probably meant that a, b, c, x are positive integers.
Otherwise, the statement is not true, e.g. for c = 0 or b = −xa/2 (x odd).

The aim of this paper is to extend the above theorems as follows.

Theorem 1. If m, n and x are integers, m > 0, n > 0, x ≥ 0, εk ∈
{−1, 1} (0 ≤ k ≤ x), then except for m = 1, x = 0 the sum

S1 =
x∑
k=0

εk
m+ kn

is never an integer.
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Theorem 2. Let c be a positive integer. Then the sum

S2 =
x∑
k=0

ck
b+ ka

,

where a, b are positive integers, ck are integers satisfying 0 < |ck| ≤ c
(k = 0, 1, . . . , x), is an integer only for finitely many positive integers x
and possibly infinitely many pairs (a, b).

The following example shows that for c = 2 the sum S2 can be an integer
for x = 1 and for infinitely many pairs (a, b): c0 = 1, c1 = −2, a = b.

Theorem 3. Let a, b, c, d be integers, a > 0, c2 + d2 > 0, and −ab be
not a perfect square. Then the sum

S3 =
x∑
k=1

ckx+ dk
ak2 + b

is an integer for only finitely many positive integers x, where ck and dk are
integers satisfying |ck| ≤ c, |dk| ≤ d, c2k + d2k > 0 (1 ≤ k ≤ x).

The proofs follow Nagell’s arguments supplemented by the following lem-
mas, in which P (N) denotes the greatest prime factor of N , and π(x) is the
number of primes ≤ x.

Lemma 1. If x > 0, (m,n) = 1, and

(1) (m+ n)(m+ 2n) . . . (m+ (x− ν1)n) > x!,

where ν1 is the number of primes not exceeding x and not dividing n, then

(2) P
(
(m+ n)(m+ 2n) . . . (m+ xn)

)
> x.

Proof. See Sylvester [4, p. 688]; we have changed Sylvester’s i to n and
n to x to be in agreement with Nagell’s notation.

Lemma 2. If (m,n) = 1, m ≥ x > 0, then (2) holds.

Proof. This is Sylvester’s theorem [4, p. 703] quoted also by Dickson [1,
p. 437].

Lemma 3. For x ≥ 14 we have π(x) < 3
8x+ 1.

Proof. The primes are 2, 3 or 6k±1 (k > 0). The number of such numbers
up to x does not exceed x−1

3 + 2. Now
x− 1

3
+ 2 <

3

8
x+ 1 for x > 16.

For x = 14, 15, 16 the lemma is verified directly.

Lemma 4. For x ≥ 14 the function
(
x+1
3

(
x − t

2 + 1
))t−1 is a strictly

increasing function of t ≤ 3
8x+ 1.

Proof. By differentiation.
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Lemma 5. If 3n ≥ x+ 2, 2 |n and (m,n) = 1, then (2) holds.

Proof. By Descartes’s rule of signs the polynomial(
x+ 1

3

)5

−
(
13

16
x+

1

2

)3

has only one positive zero. Hence the inequality(
14 + 1

3

)5

>

(
13

16
· 14 + 1

2

)3

implies (
x+ 1

3

)5

>

(
13

16
x+

1

2

)3

for all x ≥ 14. Hence(
x+ 1

3

)x
>

(
x+ 1

3

(
13

16
x+

1

2

)) 3
8
x

.

By Lemmas 3 and 4 the right-hand side is greater than(
x+ 1

3

(
x− π(x)

2
+ 1

))π(x)−1

,

thus we obtain (
x+ 1

3

)x−π(x)+1

>

(
x− π(x)

2
+ 1

)π(x)−1

.

By the assumption the left hand side is less than nx−π(x)+1, on the other
hand by the inequality of the arithmetic and geometric mean the right hand
side is no smaller than x!

(x−π(x)+1)! =
∏π(x)−2
i=0 (x− i). Thus we obtain

nx−π(x)+1(x− π(x) + 1)! > x!.

However, by the assumption 2 |n we have ν1 ≤ π(x)− 1, hence the left hand
side is less than or equal to

n · 2n · . . . · (x− ν1)n < (m+ n)(m+ 2n) . . . (m+ (x− ν1)n)
and by Lemma 1 we obtain (2) for all x ≥ 14. For x < 14 it is enough to
prove (2) for x prime, i.e., for x = 2, 3, 5, 7, 11, 13. In each case by Lemma 1
it is enough to check even n in the interval

x+ 2

3
≤ n <

(
x!

(x− π(x) + 1)!

)1/(π(x)−1)

,

and by Lemma 2 it is enough to checkm < x. A finite computation completes
the proof.

Proof of Theorem 1. It is enough to assume that (m,n) = 1, m > 1,
x > 0. Consider first n odd. Then there is at least one even number in the
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sequence

(3) m,m+ n, . . . ,m+ xn.

Let 2µ be the highest power of 2 which divides any number of the se-
quence (3), and let further m + kn be the first number of the sequence (3)
which is divisible by 2µ. Then

m+ kn = 2µ(2h+ 1).

The next number of the form m+ tn that is divisible by 2µ is

m+ (k + 2µ)n = 2µ(2h+ n+ 1).

Since n is odd, this number is divisible by 2µ+1, hence it does not belong to
the sequence (3). Therefore in the sum S1 there exists only one term with
denominator divisible by 2µ, namely εk

m+kn . We obtain

1

2
(m+ kn)S1 =

a

b
± 1

2
,

where b is odd. It follows that S1 is not an integer, thus Theorem 1 is proved
for n odd.

Now consider n even, thus m is odd ≥ 3.
Let q be a prime factor of m+ kn, where 0 ≤ k ≤ x. If no other term of

the sequence (3) is divisible by q, then we obtain
1

q
(m+ kn)S1 =

a

c
± 1

q
,

where q - c. Hence S1 is not an integer. In order that S1 be an integer at least
two terms of the sequence (3) should be divisible by q, thus q ≤ x. Taking
q = P

(
(m + n)(m + 2n) . . . (m + xn)

)
, by Lemma 2 we obtain x > m and,

by Lemma 5, x ≥ 3n− 1.
By Chebyshev’s theorem there exists a prime q such that

(4)
1

2
(x+ 3) < q ≤ x+ 1.

Then there is a term of the sequence (3) divisible by q, since we have

(5) q >
1

2
(x+ 3) ≥ 3

n

2
+ 1 > n,

and the numbers of the sequence (3) represent all residues modulo q.
Let m+ kn be the least term of the sequence (3) divisible by q. Then

(6) m+ kn = qT,

where k < q.
According to a previous remark, also the number m+(k+ q)n =: m+ ln

occurs in the sequence (3), thus

(7) m+ ln = q(T + n).
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The number m + (k + 2q)n does not occur in (3), since by (4) we have
k + 2q ≥ 2q > x. Therefore, the numbers (6) and (7) are the only terms of
the sequence (3) divisible by q. We have

εk
m+ kn

+
εl

m+ ln
=

εk
qT (T + n)

·
{
2T + n if εl = εk,
n if εl = −εk,

T (T + n)S1 =
a

b
±

{
2T+n
q if εl = εk,

n
q if εl = −εk,

where q - b. If S1 is an integer, we have q | 2T + n or q |n. The latter is
impossible by (5), and the former, since n is even, gives q |T +n/2. However,
since x > m, q > k and q > 1

2(x+ 3) we obtain

T =
m+ kn

q
<

2x

x+ 3
+ n < 2 + n, i.e. T ≤ n+ 1,

and by (5),

T +
n

2
≤ 3

n

2
+ 1 < q.

The contradiction obtained proves Theorem 1.

Proof of Theorem 2. The proof follows in general the proof of Theorem 1.
However, the first part of that proof now fails, thus it is not possible to
assume a even. Hence instead of T + a/2 we have to deal with 2T + a and
instead of the inequality x ≥ 3a−1 we have to assume x ≥ 6a+1. Moreover,
ν1 ≤ π(x) instead of ν1 ≤ π(x) − 1. Therefore, instead of Lemma 3 we use
the inequality π(x) ≤ 3

8x for x ≥ 24 and in order to apply the assertion of
Lemma 5 we have to use, instead of the inequality(

x+ 1

3

)5

>

(
13

16
x+

1

2

)3

valid for x ≥ 14, the inequality(
x

6

)5

>

(
13

16
x

)3

valid for x ≥ 65. Thus the proof of Theorem 1 works for

x ≥ max{65, 2c− 3}.

The desired finitely many x consist of

x < max{65, 2c− 3}.

Proof of Theorem 3. Let x0 be the least positive solution of the congru-
ence

(8) ax2 + b ≡ 0 (mod p),
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where p is an odd prime, not a divisor of ab, thus 0 < x0 <
1
2p. Then the

next positive solution of (8) is p − x0, hence > 1
2p. Now, Nagell’s theorem

[2, §1] implies that for all sufficiently large x,

Px = P
( x∏
k=1

(ak2 + b)
)
> 2x.

Therefore, if x is large enough only one of the numbers ak2+b (1 ≤ k ≤ x) is
divisible by Px. Let it be ax20+b. Then Px | cx0x0+dx0 implies Px | ad2x0+bc

2
x0 .

By the assumptions ad2x0 + bc2x0 6= 0, hence 2x ≤ |ad2x0 + bc2x0 | ≤ ad
2 + |b|c2.

If 2x > ad2 + |b|c2, then we obtain
1

Px
(ax20 + b)S3 =

cx0x0 + dx0
Px

+
T

N

where Px - (cx0x0 + dx0)N . Thus S3 cannot be an integer.
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