Extensions of Three Theorems of Nagell
 by

A. SCHINZEL

Summary. Three theorems of Nagell of 1923 concerning integer values of certain sums of fractions are extended.

Nagell [3] has proved the following theorems.

1. If m, n and x are integers, $m>0, n>0, x \geq 0$, then except for $m=1, x=0$, the sum $\sum_{k=0}^{x} \frac{1}{m+k n}$ is never an integer.
2. Let a, b, c be integers. Then the sum $\sum_{k=0}^{x} \frac{c}{b+k a}$ is an integer only for finitely many integers x.
3. Let a, b, c and d be integers, $a>0, c^{2}+d^{2}>0$ and $-a b$ be not a perfect square. Then the sum

$$
\sum_{k=1}^{x} \frac{c k+d}{a k^{2}+b}
$$

is an integer for only finitely many integers x.
In statement 2 it was probably meant that a, b, c, x are positive integers. Otherwise, the statement is not true, e.g. for $c=0$ or $b=-x a / 2$ (x odd).

The aim of this paper is to extend the above theorems as follows.
Theorem 1. If m, n and x are integers, $m>0, n>0, x \geq 0, \varepsilon_{k} \in$ $\{-1,1\}(0 \leq k \leq x)$, then except for $m=1, x=0$ the sum

$$
S_{1}=\sum_{k=0}^{x} \frac{\varepsilon_{k}}{m+k n}
$$

is never an integer.
2010 Mathematics Subject Classification: Primary 11D68.
Key words and phrases: algebraic sum, arithmetic progression.

Theorem 2. Let c be a positive integer. Then the sum

$$
S_{2}=\sum_{k=0}^{x} \frac{c_{k}}{b+k a},
$$

where a, b are positive integers, c_{k} are integers satisfying $0<\left|c_{k}\right| \leq c$ $(k=0,1, \ldots, x)$, is an integer only for finitely many positive integers x and possibly infinitely many pairs (a, b).

The following example shows that for $c=2$ the sum S_{2} can be an integer for $x=1$ and for infinitely many pairs $(a, b): c_{0}=1, c_{1}=-2, a=b$.

Theorem 3. Let a, b, c, d be integers, $a>0, c^{2}+d^{2}>0$, and $-a b$ be not a perfect square. Then the sum

$$
S_{3}=\sum_{k=1}^{x} \frac{c_{k} x+d_{k}}{a k^{2}+b}
$$

is an integer for only finitely many positive integers x, where c_{k} and d_{k} are integers satisfying $\left|c_{k}\right| \leq c,\left|d_{k}\right| \leq d, c_{k}^{2}+d_{k}^{2}>0(1 \leq k \leq x)$.

The proofs follow Nagell's arguments supplemented by the following lemmas, in which $P(N)$ denotes the greatest prime factor of N, and $\pi(x)$ is the number of primes $\leq x$.

Lemma 1. If $x>0,(m, n)=1$, and

$$
\begin{equation*}
(m+n)(m+2 n) \ldots\left(m+\left(x-\nu_{1}\right) n\right)>x!, \tag{1}
\end{equation*}
$$

where ν_{1} is the number of primes not exceeding x and not dividing n, then

$$
\begin{equation*}
P((m+n)(m+2 n) \ldots(m+x n))>x . \tag{2}
\end{equation*}
$$

Proof. See Sylvester [4, p. 688]; we have changed Sylvester's i to n and n to x to be in agreement with Nagell's notation.

Lemma 2. If $(m, n)=1, m \geq x>0$, then (2) holds.
Proof. This is Sylvester's theorem [4, p. 703] quoted also by Dickson [1, p. 437].

Lemma 3. For $x \geq 14$ we have $\pi(x)<\frac{3}{8} x+1$.
Proof. The primes are 2,3 or $6 k \pm 1(k>0)$. The number of such numbers up to x does not exceed $\frac{x-1}{3}+2$. Now

$$
\frac{x-1}{3}+2<\frac{3}{8} x+1 \quad \text { for } x>16 .
$$

For $x=14,15,16$ the lemma is verified directly.
Lemma 4. For $x \geq 14$ the function $\left(\frac{x+1}{3}\left(x-\frac{t}{2}+1\right)\right)^{t-1}$ is a strictly increasing function of $t \leq \frac{3}{8} x+1$.

Proof. By differentiation.

Lemma 5. If $3 n \geq x+2,2 \mid n$ and $(m, n)=1$, then (2) holds.
Proof. By Descartes's rule of signs the polynomial

$$
\left(\frac{x+1}{3}\right)^{5}-\left(\frac{13}{16} x+\frac{1}{2}\right)^{3}
$$

has only one positive zero. Hence the inequality

$$
\left(\frac{14+1}{3}\right)^{5}>\left(\frac{13}{16} \cdot 14+\frac{1}{2}\right)^{3}
$$

implies

$$
\left(\frac{x+1}{3}\right)^{5}>\left(\frac{13}{16} x+\frac{1}{2}\right)^{3}
$$

for all $x \geq 14$. Hence

$$
\left(\frac{x+1}{3}\right)^{x}>\left(\frac{x+1}{3}\left(\frac{13}{16} x+\frac{1}{2}\right)\right)^{\frac{3}{8} x}
$$

By Lemmas 3 and 4 the right-hand side is greater than

$$
\left(\frac{x+1}{3}\left(x-\frac{\pi(x)}{2}+1\right)\right)^{\pi(x)-1}
$$

thus we obtain

$$
\left(\frac{x+1}{3}\right)^{x-\pi(x)+1}>\left(x-\frac{\pi(x)}{2}+1\right)^{\pi(x)-1}
$$

By the assumption the left hand side is less than $n^{x-\pi(x)+1}$, on the other hand by the inequality of the arithmetic and geometric mean the right hand side is no smaller than $\frac{x!}{(x-\pi(x)+1)!}=\prod_{i=0}^{\pi(x)-2}(x-i)$. Thus we obtain

$$
n^{x-\pi(x)+1}(x-\pi(x)+1)!>x!
$$

However, by the assumption $2 \mid n$ we have $\nu_{1} \leq \pi(x)-1$, hence the left hand side is less than or equal to

$$
n \cdot 2 n \cdot \ldots \cdot\left(x-\nu_{1}\right) n<(m+n)(m+2 n) \ldots\left(m+\left(x-\nu_{1}\right) n\right)
$$

and by Lemma 1 we obtain (2) for all $x \geq 14$. For $x<14$ it is enough to prove (2) for x prime, i.e., for $x=2,3,5,7,11,13$. In each case by Lemma 1 it is enough to check even n in the interval

$$
\frac{x+2}{3} \leq n<\left(\frac{x!}{(x-\pi(x)+1)!}\right)^{1 /(\pi(x)-1)}
$$

and by Lemma 2 it is enough to check $m<x$. A finite computation completes the proof.

Proof of Theorem 1. It is enough to assume that $(m, n)=1, m>1$, $x>0$. Consider first n odd. Then there is at least one even number in the
sequence

$$
\begin{equation*}
m, m+n, \ldots, m+x n . \tag{3}
\end{equation*}
$$

Let 2^{μ} be the highest power of 2 which divides any number of the sequence (3), and let further $m+k n$ be the first number of the sequence (3) which is divisible by 2^{μ}. Then

$$
m+k n=2^{\mu}(2 h+1)
$$

The next number of the form $m+t n$ that is divisible by 2^{μ} is

$$
m+\left(k+2^{\mu}\right) n=2^{\mu}(2 h+n+1)
$$

Since n is odd, this number is divisible by $2^{\mu+1}$, hence it does not belong to the sequence (3). Therefore in the sum S_{1} there exists only one term with denominator divisible by 2^{μ}, namely $\frac{\varepsilon_{k}}{m+k n}$. We obtain

$$
\frac{1}{2}(m+k n) S_{1}=\frac{a}{b} \pm \frac{1}{2}
$$

where b is odd. It follows that S_{1} is not an integer, thus Theorem 1 is proved for n odd.

Now consider n even, thus m is odd ≥ 3.
Let q be a prime factor of $m+k n$, where $0 \leq k \leq x$. If no other term of the sequence (3) is divisible by q, then we obtain

$$
\frac{1}{q}(m+k n) S_{1}=\frac{a}{c} \pm \frac{1}{q}
$$

where $q \nmid c$. Hence S_{1} is not an integer. In order that S_{1} be an integer at least two terms of the sequence (3) should be divisible by q, thus $q \leq x$. Taking $q=P((m+n)(m+2 n) \ldots(m+x n))$, by Lemma 2 we obtain $x>m$ and, by Lemma 5, $x \geq 3 n-1$.

By Chebyshev's theorem there exists a prime q such that

$$
\begin{equation*}
\frac{1}{2}(x+3)<q \leq x+1 \tag{4}
\end{equation*}
$$

Then there is a term of the sequence (3) divisible by q, since we have

$$
\begin{equation*}
q>\frac{1}{2}(x+3) \geq 3 \frac{n}{2}+1>n \tag{5}
\end{equation*}
$$

and the numbers of the sequence (3) represent all residues modulo q.
Let $m+k n$ be the least term of the sequence (3) divisible by q. Then

$$
\begin{equation*}
m+k n=q T \tag{6}
\end{equation*}
$$

where $k<q$.
According to a previous remark, also the number $m+(k+q) n=: m+l n$ occurs in the sequence (3), thus

$$
\begin{equation*}
m+\ln =q(T+n) \tag{7}
\end{equation*}
$$

The number $m+(k+2 q) n$ does not occur in (3), since by (4) we have $k+2 q \geq 2 q>x$. Therefore, the numbers (6) and (7) are the only terms of the sequence (3) divisible by q. We have

$$
\begin{gathered}
\frac{\varepsilon_{k}}{m+k n}+\frac{\varepsilon_{l}}{m+\ln }=\frac{\varepsilon_{k}}{q T(T+n)} \cdot \begin{cases}2 T+n & \text { if } \varepsilon_{l}=\varepsilon_{k} \\
n & \text { if } \varepsilon_{l}=-\varepsilon_{k}\end{cases} \\
T(T+n) S_{1}=\frac{a}{b} \pm \begin{cases}\frac{2 T+n}{q} & \text { if } \varepsilon_{l}=\varepsilon_{k} \\
\frac{n}{q} & \text { if } \varepsilon_{l}=-\varepsilon_{k}\end{cases}
\end{gathered}
$$

where $q \nmid b$. If S_{1} is an integer, we have $q \mid 2 T+n$ or $q \mid n$. The latter is impossible by (5), and the former, since n is even, gives $q \mid T+n / 2$. However, since $x>m, q>k$ and $q>\frac{1}{2}(x+3)$ we obtain

$$
T=\frac{m+k n}{q}<\frac{2 x}{x+3}+n<2+n, \quad \text { i.e. } \quad T \leq n+1
$$

and by (5),

$$
T+\frac{n}{2} \leq 3 \frac{n}{2}+1<q
$$

The contradiction obtained proves Theorem 1 .
Proof of Theorem 2. The proof follows in general the proof of Theorem 1. However, the first part of that proof now fails, thus it is not possible to assume a even. Hence instead of $T+a / 2$ we have to deal with $2 T+a$ and instead of the inequality $x \geq 3 a-1$ we have to assume $x \geq 6 a+1$. Moreover, $\nu_{1} \leq \pi(x)$ instead of $\nu_{1} \leq \pi(x)-1$. Therefore, instead of Lemma 3 we use the inequality $\pi(x) \leq \frac{3}{8} x$ for $x \geq 24$ and in order to apply the assertion of Lemma 5 we have to use, instead of the inequality

$$
\left(\frac{x+1}{3}\right)^{5}>\left(\frac{13}{16} x+\frac{1}{2}\right)^{3}
$$

valid for $x \geq 14$, the inequality

$$
\left(\frac{x}{6}\right)^{5}>\left(\frac{13}{16} x\right)^{3}
$$

valid for $x \geq 65$. Thus the proof of Theorem 1 works for

$$
x \geq \max \{65,2 c-3\}
$$

The desired finitely many x consist of

$$
x<\max \{65,2 c-3\}
$$

Proof of Theorem 3. Let x_{0} be the least positive solution of the congruence

$$
\begin{equation*}
a x^{2}+b \equiv 0(\bmod p) \tag{8}
\end{equation*}
$$

where p is an odd prime, not a divisor of $a b$, thus $0<x_{0}<\frac{1}{2} p$. Then the next positive solution of (8) is $p-x_{0}$, hence $>\frac{1}{2} p$. Now, Nagell's theorem [2, §1] implies that for all sufficiently large x,

$$
P_{x}=P\left(\prod_{k=1}^{x}\left(a k^{2}+b\right)\right)>2 x
$$

Therefore, if x is large enough only one of the numbers $a k^{2}+b(1 \leq k \leq x)$ is divisible by P_{x}. Let it be $a x_{0}^{2}+b$. Then $P_{x} \mid c_{x_{0}} x_{0}+d_{x_{0}}$ implies $P_{x} \mid a d_{x_{0}}^{2}+b c_{x_{0}}^{2}$. By the assumptions $a d_{x_{0}}^{2}+b c_{x_{0}}^{2} \neq 0$, hence $2 x \leq\left|a d_{x_{0}}^{2}+b c_{x_{0}}^{2}\right| \leq a d^{2}+|b| c^{2}$. If $2 x>a d^{2}+|b| c^{2}$, then we obtain

$$
\frac{1}{P_{x}}\left(a x_{0}^{2}+b\right) S_{3}=\frac{c_{x_{0}} x_{0}+d_{x_{0}}}{P_{x}}+\frac{T}{N}
$$

where $P_{x} \nmid\left(c_{x_{0}} x_{0}+d_{x_{0}}\right) N$. Thus S_{3} cannot be an integer.

References

[1] L. E. Dickson, History of the Theory of Numbers, Vol. 1, reprint, Chelsea, 1952.
[2] T. Nagell, Zur Arithmetik der Polynome, Abh. Math. Sem. Hamburg 1 (1922), 179194; also: Collected Papers of Trygve Nagell, Queen's Univ., Kingston, 2002, 211-228.
[3] T. Nagell, Eine Eigenschaft gewisser Summen, in: Zahlentheoretische Notizen III, Vid.-selsk. Kristiania Skrifter, Matem.-Naturv. Kl. (1923), no. 13, 10-15; also: Collected Papers of Trygve Nagell, Queen's Univ., Kingston, 2002, 358-363.
[4] J. J. Sylvester, On arithmetical series, Messenger Math. 21 (1891-2), 1-19; also: The Collected Papers of James Joseph Sylvester, Vol. 4 (1882-1897), Cambridge, at the Univ. Press, 1912, 687-703.
A. Schinzel

Institute of Mathematics
Polish Academy of Sciences
Sniadeckich 8
00-956 Warszawa, Poland
E-mail: schinzel@impan.pl

