Rational Constants of Generic LV Derivations and of Monomial Derivations

by
Janusz ZIELIŃSKI
Presented by Andrzej SKOWROŃSKI

Abstract

Summary. We describe the fields of rational constants of generic four-variable LotkaVolterra derivations. Thus, we determine all rational first integrals of the corresponding systems of differential equations. Such systems play a role in population biology, laser physics and plasma physics. They are also an important part of derivation theory, since they are factorizable derivations. Moreover, we determine the fields of rational constants of a class of monomial derivations.

1. Introduction. The main result of the paper is Theorem 2, which gives the description of the field of rational constants of a generic fourvariable Lotka-Volterra derivation. Moreover, in Section 4 we describe the fields of rational constants of some class of four-variable monomial derivations (Theorem 5). All our considerations are over an arbitrary field k of characteristic zero.

Let us fix some notation:

- \mathbb{Q}_{+}, the set of positive rationals,
- \mathbb{Q}_{-}, the set of negative rationals,
- \mathbb{N}, the set of nonnegative integers,
- \mathbb{N}_{+}, the set of positive integers,
- n, an integer ≥ 3,
- $k[X]:=k\left[x_{1}, \ldots, x_{n}\right]$, the ring of polynomials in n variables,
- $k(X):=k\left(x_{1}, \ldots, x_{n}\right)$, the field of rational functions in n variables.

[^0]Recall that if R is a commutative k-algebra, then a k-linear mapping $d: R \rightarrow R$ is called a derivation of R if for all $a, b \in R$,

$$
d(a b)=a d(b)+d(a) b
$$

We call $R^{d}=\operatorname{ker} d$ the ring of constants of the derivation d. Then $k \subseteq R^{d}$, and a nontrivial constant of d is an element of the set $R^{d} \backslash k$. If $f_{1}, \ldots, f_{n} \in$ $k[X]$, then there exists exactly one derivation $d: k[X] \rightarrow k[X]$ such that $d\left(x_{1}\right)=f_{1}, \ldots, d\left(x_{n}\right)=f_{n}$. A derivation $d: k[X] \rightarrow k[X]$ is said to be factorizable if $d\left(x_{i}\right)=x_{i} f_{i}$, where the polynomials f_{i} are of degree 1 for $i=$ $1, \ldots, n$. We may associate a factorizable derivation with any given derivation of $k[X]$; that construction helps to obtain new facts on constants, especially rational constants, of the initial derivation (see, for instance, [5], [7]).

There is no general procedure for determining all constants of a derivation. Even for a given derivation the problem may be difficult: see for instance counterexamples to Hilbert's fourteenth problem (all of them are of the form $k[X]^{d}$, but it took more than a half century to find at least one of them; for more details we refer the reader to [6], [4]) or Jouanolou derivations (where the rings and fields of constants are trivial, see [5], 6]).

The main motivations of our study are the following:

- applications of Lotka-Volterra systems in population biology, laser physics and plasma physics (see, for instance, [1], [2], [3]);
- Lagutinskii's procedure of associating a factorizable derivation (examples of such derivations are Lotka-Volterra derivations) with any given derivation (see also Section 4);
- relations to invariant theory, mainly to connected algebraic groups (see [6]).

2. Lotka-Volterra derivations and Darboux polynomials. Let $C_{1}, \ldots, C_{n} \in k$. From now on, $d: k[X] \rightarrow k[X]$ is a derivation of the form

$$
d\left(x_{i}\right)=x_{i}\left(x_{i-1}-C_{i} x_{i+1}\right)
$$

for $i=1, \ldots, n$ (we adopt the convention that $x_{n+1}=x_{1}$ and $x_{0}=x_{n}$). We call d a Lotka-Volterra derivation with parameters C_{1}, \ldots, C_{n}.

A polynomial $g \in k[X]$ is said to be strict if it is homogeneous and not divisible by the variables x_{1}, \ldots, x_{n}. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$, we denote by X^{α} the monomial $x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \in k[X]$. Every nonzero homogeneous polynomial $f \in k[X]$ has a unique representation $f=X^{\alpha} g$, where X^{α} is a monomial and g is strict.

We call a nonzero polynomial $f \in k[X]$ a Darboux polynomial of a derivation $\delta: k[X] \rightarrow k[X]$ if $\delta(f)=\Lambda f$ for some $\Lambda \in k[X]$. We will call Λ a cofactor of f. Since d is a homogeneous derivation of degree 1 , the cofactor
of each homogeneous polynomial is a linear form. Denote by $k[X]_{(m)}$ the homogeneous component of $k[X]$ of degree m.

Lemma 1 ([11, 3.2]). Let $n=4$. Let $g \in k[X]_{(m)}$ be a Darboux polynomial of d with the cofactor $\lambda_{1} x_{1}+\cdots+\lambda_{4} x_{4}$. Let $i \in\{1,2,3,4\}$. If g is not divisible by x_{i}, then $\lambda_{i+1} \in \mathbb{N}$. More precisely, if

$$
g\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{4}\right)=x_{i+2}^{\beta_{i+2}} \bar{G} \quad \text { and } \quad x_{i+2} \nmid \bar{G}
$$

then $\lambda_{i+1}=\beta_{i+2}$ and $\lambda_{i+3}=-C_{i+2} \lambda_{i+1}$.
Corollary 1 ([11, 3.3]). Let $n=4$. If $g \in k[X]$ is a strict Darboux polynomial of d, then its cofactor is a linear form with coefficients in \mathbb{N}.

For any derivation $\delta: k[X] \rightarrow k[X]$ there exists exactly one derivation $\bar{\delta}:$ $k(X) \rightarrow k(X)$ such that $\bar{\delta}_{\mid k[X]}=\delta$. By a rational constant of the derivation $\delta: k[X] \rightarrow k[X]$ we mean a constant of the corresponding derivation $\bar{\delta}:$ $k(X) \rightarrow k(X)$. For simplicity, we write δ instead of $\bar{\delta}$. The rational constants of δ form a field. In the remainder of this section we quote some results which will be used in the two main sections.

Proposition 1 ([6, 2.2.2]). Let $\delta: k[X] \rightarrow k[X]$ be a derivation and let f and g be nonzero relatively prime polynomials from $k[X]$. Then $\delta(f / g)=0$ if and only if f and g are Darboux polynomials of δ with the same cofactor.

Proposition 2 ([6, 2.2.3]). Let δ be a homogeneous derivation of $k[X]$ and let $f \in k[X]$ be a Darboux polynomial of δ with cofactor $\Lambda \in k[X]$. Then Λ is homogeneous and each homogeneous component of f is also a Darboux polynomial of δ with the same cofactor Λ.

Proposition 3 ([6, 2.2.1]). Let δ be a derivation of $k[X]$. Then $f \in k[X]$ is a Darboux polynomial of δ if and only if all factors of f are Darboux polynomials of δ. Moreover, if $f=f_{1} f_{2}$ is a Darboux polynomial, then the sum of the cofactors of f_{1} and f_{2} equals the cofactor of f.
3. The field of rational constants of a generic four-variable LV derivation. Throughout this section we assume $n=4$. Lemma 2 is a generalization of Proposition 4.5 from [8].

LEMMA 2. The field $k(X)^{d}$ contains a nontrivial rational monomial constant if and only if at least one of the following two conditions is fulfilled:
(1) $C_{1}, C_{3} \in \mathbb{Q}$ and $C_{1} C_{3}=1$,
(2) $C_{2}, C_{4} \in \mathbb{Q}$ and $C_{2} C_{4}=1$.

Proof. Let $\eta=c x_{1}^{r} x_{2}^{s} x_{3}^{t} x_{4}^{u}$, where $c \in k \backslash\{0\}$ and $r, s, t, u \in \mathbb{Z}$. Then $d(\eta)=c x_{1}^{r} x_{2}^{s} x_{3}^{t} x_{4}^{u}\left(\left(s-u C_{4}\right) x_{1}+\left(t-r C_{1}\right) x_{2}+\left(u-s C_{2}\right) x_{3}+\left(r-t C_{3}\right) x_{4}\right)$.

If $d(\eta)=0$, then we get two systems of linear equations:

$$
\left\{\begin{array}{l}
s-u C_{4}=0 \\
u-s C_{2}=0
\end{array}\right.
$$

and

$$
\left\{\begin{aligned}
t-r C_{1} & =0 \\
r-t C_{3} & =0
\end{aligned}\right.
$$

Clearly $\eta \notin k$ if and only if $(r, s, t, u) \neq(0,0,0,0)$, that is, if and only if at least one of the above systems has a nonzero solution. Equivalently, at least one of the conditions (1) or (2) is fulfilled.

We know the ring of polynomial constants of a generic LV derivation:
Theorem $1([11,5.1])$. Let $C_{1}, \ldots, C_{4} \notin \mathbb{Q}_{+}$. If $C_{1} C_{2} C_{3} C_{4}=1$, then

$$
k[X]^{d}=k\left[x_{1}+C_{1} x_{2}+C_{1} C_{2} x_{3}+C_{1} C_{2} C_{3} x_{4}\right] .
$$

If $C_{1} C_{2} C_{3} C_{4} \neq 1$, then $k[X]^{d}=k$.
Now we describe the field of rational constants of a generic LV derivation.
Theorem 2. Let $C_{1}, \ldots, C_{4} \notin \mathbb{Q}$. If $C_{1} C_{2} C_{3} C_{4}=1$, then

$$
k(X)^{d}=k\left(x_{1}+C_{1} x_{2}+C_{1} C_{2} x_{3}+C_{1} C_{2} C_{3} x_{4}\right) .
$$

If $C_{1} C_{2} C_{3} C_{4} \neq 1$, then $k(X)^{d}=k$.
Proof. Both inclusions \supseteq are straightforward. We show the inclusions \subseteq.
Let $\psi=f / g \in k(X)^{d}$, where $f, g \in k[X] \backslash\{0\}$ and $\operatorname{gcd}(f, g)=1$. By Proposition 1 both f and g are Darboux polynomials of d with common cofactor. Let $d(f)=\Lambda f$ and $d(g)=\Lambda g$ for some $\Lambda \in k[X]$. Let $f=\sum f_{j}$ and $g=\sum g_{j}$, where f_{j} and g_{j} are homogeneous polynomials of degree j. Since d is homogeneous, by Proposition 2 we have $d\left(f_{j}\right)=\Lambda f_{j}$ and $d\left(g_{j}\right)=\Lambda g_{j}$ for all $j \in \mathbb{N}$.

Let $f_{j}=X^{\alpha_{j}} h_{j}$, where $X^{\alpha_{j}}$ is a monomial and h_{j} is strict (analogously we proceed for g_{j}). By Proposition 3 both $X^{\alpha_{j}}$ and h_{j} are Darboux polynomials of d. We describe all strict Darboux polynomials of d. Let

$$
\lambda=\lambda_{1} x_{1}+\cdots+\lambda_{4} x_{4}
$$

be the cofactor of h_{j}. By Lemma 1 we have

$$
\lambda_{i+3}=-C_{i+2} \lambda_{i+1}
$$

for all i in the cyclic sense. However Corollary 1 gives $\lambda_{i} \in \mathbb{N}$ for $i=1, \ldots, 4$. Since $C_{1}, \ldots, C_{4} \notin \mathbb{Q}$, we have $\lambda_{1}=\cdots=\lambda_{4}=0$ and the only strict Darboux polynomials of d are constants of d. In view of Theorem 1 we have $h_{j} \in k\left[x_{1}+C_{1} x_{2}+C_{1} C_{2} x_{3}+C_{1} C_{2} C_{3} x_{4}\right]$ or $h_{j} \in k$, respectively. Furthermore, by Proposition 3, the cofactor of $X^{\alpha_{j}}$ is equal to Λ, since the cofactor of h_{j} equals 0 .

Analogously, $g_{j}=X^{\beta_{j}} l_{j}$, where $l_{j} \in k[X]^{d}$ and $X^{\beta_{j}}$ is a Darboux monomial with the cofactor Λ. Then $X^{\alpha_{j}} / X^{\beta_{i}} \in k(X)^{d}$, by Proposition 1. In view of Lemma 2, $X^{\alpha_{j}} / X^{\beta_{i}} \in k$. Similarly, $X^{\beta_{j}} / X^{\beta_{i}} \in k$. Thus we may express ψ as a rational function, where both the numerator and the denominator are linear combinations of strict polynomials belonging to $k[X]^{d}$. Thus $\psi \in k\left(x_{1}+C_{1} x_{2}+C_{1} C_{2} x_{3}+C_{1} C_{2} C_{3} x_{4}\right)$ or $\psi \in k$, respectively.

Denote by D_{0} the field of fractions of an integral domain D.
Corollary 2. If $C_{1}, \ldots, C_{4} \notin \mathbb{Q}$, then $k(X)^{d}=\left(k[X]^{d}\right)_{0}$.
This is not true for an arbitrary Lotka-Volterra derivation.
Example 1. Let $d: k\left[x_{1}, \ldots, x_{4}\right] \rightarrow k\left[x_{1}, \ldots, x_{4}\right]$ be the derivation defined by

$$
d\left(x_{i}\right)=x_{i}\left(x_{i-1}+x_{i+1}\right)
$$

for $i=1, \ldots, 4$. Then $x_{1} / x_{3} \in k\left(x_{1}, \ldots, x_{4}\right)^{d}$, although neither x_{1} nor x_{3} is in $k\left[x_{1}, \ldots, x_{4}\right]^{d}$, which by Theorem 1 coincides with $k\left[x_{1}-x_{2}+x_{3}-x_{4}\right]$.
4. Monomial derivations. We say that a derivation $\delta: k(X) \rightarrow k(X)$ is monomial if

$$
\delta\left(x_{i}\right)=x_{1}^{\beta_{i 1}} \cdots x_{n}^{\beta_{i n}}
$$

for $i=1, \ldots n$, where each $\beta_{i j}$ is an integer. Let

$$
\omega_{\delta}=\operatorname{det}\left[\begin{array}{cccc}
\beta_{11}-1 & \beta_{12} & \ldots & \beta_{1 n} \\
\beta_{21} & \beta_{22}-1 & \ldots & \beta_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{n 1} & \beta_{n 2} & \ldots & \beta_{n n}-1
\end{array}\right] .
$$

Theorem 3 ($7,4.8]$). Let $\delta_{1}: k(X) \rightarrow k(X)$ be a monomial derivation such that $\omega_{\delta_{1}} \neq 0$, and let $\delta_{2}: k[X] \rightarrow k[X]$ be the factorizable derivation associated with δ_{1}. Then δ_{1} has a nontrivial rational constant if and only if δ_{2} has a nontrivial rational constant.

From now on, $n=4$. For arbitrary $C_{1}, C_{2}, C_{3}, C_{4} \in k$ we may consider the three sentences:
$s_{1}: \quad C_{1} C_{2} C_{3} C_{4}=1$.
$s_{2}: \quad C_{1}, C_{3} \in \mathbb{Q}_{+}$and $C_{1} C_{3}=1$.
$s_{3}: \quad C_{2}, C_{4} \in \mathbb{Q}_{+}$and $C_{2} C_{4}=1$.
In case s_{2} let $C_{1}=p / q$, where $p, q \in \mathbb{N}_{+}$and $\operatorname{gcd}(p, q)=1$. In case s_{3} let $C_{2}=r / t$, where $r, t \in \mathbb{N}_{+}$and $\operatorname{gcd}(r, t)=1$. Denote by $\neg s_{i}$ the negation of the sentence s_{i}. Theorem 4 below is a generalization of Theorem 1

THEOREM $4([10,5.1])$. Let $d: k[X] \rightarrow k[X]$ be a derivation of the form

$$
d=\sum_{i=1}^{4} x_{i}\left(x_{i-1}-C_{i} x_{i+1}\right) \frac{\partial}{\partial x_{i}}
$$

where $C_{1}, C_{2}, C_{3}, C_{4} \in k$. Then the ring of constants of d is always finitely generated over k with at most three generators. In each case it is a polynomial ring, more precisely:
(1) if $s_{1} \wedge \neg s_{2} \wedge \neg s_{3}$, then $k[X]^{d}=k\left[x_{1}+C_{1} x_{2}+C_{1} C_{2} x_{3}+C_{1} C_{2} C_{3} x_{4}\right]$,
(2) if $\neg s_{1} \wedge \neg s_{2} \wedge \neg s_{3}$, then $k[X]^{d}=k$,
(3) if $\neg s_{1} \wedge \neg s_{2} \wedge s_{3}$, then $k[X]^{d}=k\left[x_{2}^{t} x_{4}^{r}\right]$,
(4) if $\neg s_{1} \wedge s_{2} \wedge \neg s_{3}$, then $k[X]^{d}=k\left[x_{1}^{q} x_{3}^{p}\right]$,
(5) if $s_{1} \wedge \neg s_{2} \wedge s_{3}$, then $k[X]^{d}=k\left[x_{1}+C_{1} x_{2}+C_{1} C_{2} x_{3}+C_{1} C_{2} C_{3} x_{4}, x_{2}^{t} x_{4}^{r}\right]$,
(6) if $s_{1} \wedge s_{2} \wedge \neg s_{3}$, then $k[X]^{d}=k\left[x_{1}+C_{1} x_{2}+C_{1} C_{2} x_{3}+C_{1} C_{2} C_{3} x_{4}, x_{1}^{q} x_{3}^{p}\right]$,
(7) if $s_{2} \wedge s_{3}$, then $k[X]^{d}=k\left[x_{1}+C_{1} x_{2}+C_{1} C_{2} x_{3}+C_{1} C_{2} C_{3} x_{4}, x_{1}^{q} x_{3}^{p}, x_{2}^{t} x_{4}^{r}\right]$.

ThEOREM 5. Let $s_{1}, \ldots, s_{4} \in \mathbb{N}_{+}$, where $\left(s_{1}, s_{3}\right) \neq(1,1)$ and $\left(s_{2}, s_{4}\right) \neq$ $(1,1)$. Let $D: k(X) \rightarrow k(X)$ be a derivation of the form

$$
D\left(x_{i}\right)=x_{i-1}^{s_{i-1}+1} x_{i}^{s_{i}+1} x_{i+2}^{s_{i+2}}
$$

for $i=1, \ldots, 4$ (in the cyclic sense). Then $k(X)^{D}=k$.
Proof. Let $D_{2}: k(X) \rightarrow k(X)$ be the derivation defined by

$$
D_{2}=x_{1}^{-s_{1}} x_{2}^{-s_{2}} x_{3}^{-s_{3}} x_{4}^{-s_{4}} D
$$

Clearly $k(X)^{D_{2}}=k(X)^{D}$. Then

$$
D_{2}\left(x_{i}\right)=x_{i-1} x_{i} x_{i+1}^{-s_{i+1}}
$$

for $i=1, \ldots, 4$. We have

$$
\omega_{D_{2}}=\operatorname{det}\left[\begin{array}{cccc}
0 & -s_{2} & 0 & 1 \\
1 & 0 & -s_{3} & 0 \\
0 & 1 & 0 & -s_{4} \\
-s_{1} & 0 & 1 & 0
\end{array}\right]=-1+s_{1} s_{3}+s_{2} s_{4}-s_{1} s_{2} s_{3} s_{4}
$$

Therefore

$$
\omega_{D_{2}}=-\left(1-s_{1} s_{3}\right)\left(1-s_{2} s_{4}\right) \neq 0
$$

Let $\Delta: k\left(y_{1}, \ldots, y_{4}\right) \rightarrow k\left(y_{1}, \ldots, y_{4}\right)$ be the factorizable derivation associated with D_{2}. In view of Theorem 3 we have $k(X)^{D_{2}}=k$ if and only if $k\left(y_{1}, \ldots, y_{4}\right)^{\Delta}=k$. The construction of the factorizable derivation associated with a given derivation is described for instance in [7]. Let $y_{i}=D_{2}\left(x_{i}\right) / x_{i}$ for $i=1, \ldots, 4$. Then

$$
\Delta\left(y_{i}\right)=y_{i}\left(y_{i-1}-s_{i+1} y_{i+1}\right)
$$

for $i=1, \ldots, 4$. Put $C_{i}=s_{i+1}$ for $i=1, \ldots, 4$. Hence

$$
\Delta\left(y_{i}\right)=y_{i}\left(y_{i-1}-C_{i} y_{i+1}\right)
$$

for $i=1, \ldots, 4$. For simplicity of notation, we will write x_{i} instead of y_{i}.
For the derivation Δ we have $C_{1}, \ldots, C_{4} \in \mathbb{N}_{+},\left(C_{1}, C_{3}\right) \neq(1,1)$ and $\left(C_{2}, C_{4}\right) \neq(1,1)$, therefore $\neg s_{1} \wedge \neg s_{2} \wedge \neg s_{3}$. Thus Theorem 4 implies that $k[X]^{\Delta}=k$.

Let $\psi=f / g \in k(X)^{\Delta}$, where $f, g \in k[X] \backslash\{0\}$ and $\operatorname{gcd}(f, g)=1$. By Proposition 1, we have $\Delta(f)=\Lambda f$ and $\Delta(g)=\Lambda g$ for some $\Lambda \in k[X]$. Let $f=\sum f_{j}$ and $g=\sum g_{j}$, where f_{j} and g_{j} are homogeneous forms of degree j. In view of Proposition 2 we have $\Delta\left(f_{j}\right)=\Lambda f_{j}$ and $\Delta\left(g_{j}\right)=\Lambda g_{j}$ for all $j \in \mathbb{N}$.

Let $f_{j}=X^{\alpha_{j}} h_{j}$, where $X^{\alpha_{j}}$ is a monomial and h_{j} is strict. By Proposition 3 both $X^{\alpha_{j}}$ and h_{j} are Darboux polynomials of Δ. Let $\lambda=\lambda_{1} x_{1}+\cdots+\lambda_{4} x_{4}$ be the cofactor of h_{j}. By Lemma 1 we have

$$
\begin{equation*}
\lambda_{i+3}=-C_{i+2} \lambda_{i+1} \tag{4.1}
\end{equation*}
$$

for all i in the cyclic sense. However, by Corollary 1, the left-hand side of (4.1) is nonnegative, whereas the right-hand side of 4.1 is nonpositive. Therefore $\lambda_{1}=\cdots=\lambda_{4}=0$ and the only strict Darboux polynomials of Δ are constants of Δ. Hence $h_{j} \in k$. Moreover, by Proposition 3, the cofactor of $X^{\alpha_{j}}$ is equal to Λ.

Similarly, $g_{j}=X^{\beta_{j}} l_{j}$, where $l_{j} \in k$ and $X^{\beta_{j}}$ is a Darboux monomial with the cofactor Λ. Then $X^{\alpha_{j}} / X^{\beta_{i}} \in k(X)^{\Delta}$. By Lemma 2 we have $X^{\alpha_{j}} / X^{\beta_{i}} \in k$. Analogously, $X^{\beta_{j}} / X^{\beta_{i}} \in k$. Thus we may express ψ as a rational function, where both the numerator and the denominator are linear combinations of elements of k. Thus $\psi \in k$. Therefore, $k(X)^{\Delta}=k$, and consequently $k(X)^{D}=k$.

Note that $k(X)^{\Delta}=k$ does not follow from Theorem 2. Let us also note that the case $C_{1}=C_{2}=C_{3}=C_{4}=1$ was solved in [9]; then $k(X)^{\Delta}$ has three generators, namely $k(X)^{\Delta}=k\left(x_{1}+x_{2}+x_{3}+x_{4}, x_{1} x_{3}, x_{2} x_{4}\right)$.

For a derivation δ of $k(X)$ the set $k(X)^{\delta} \backslash k$ coincides with the set of all rational first integrals of the corresponding system of ordinary differential equations (for more details we refer the reader to [6]). Therefore, we described all rational constants of generic (for $k=\mathbb{R}$ or $k=\mathbb{C}$) four-variable LotkaVolterra derivations and of some monomial derivations and all rational first integrals of the corresponding systems of differential equations.

References

[1] M. A. Almeida, M. E. Magalhães and I. C. Moreira, Lie symmetries and invariants of the Lotka-Volterra system, J. Math. Phys. 36 (1995), 1854-1867.
[2] O. I. Bogoyavlenskiĭ, Algebraic constructions of integrable dynamical systemsextension of the Volterra system, Russian Math. Surveys 46 (1991), no. 3, 1-64.
[3] L. Cairó and J. Llibre, Darboux integrability for 3D Lotka-Volterra systems, J. Phys. A 33 (2000), 2395-2406.
[4] S. Kuroda, Fields defined by locally nilpotent derivations and monomials, J. Algebra 293 (2005), 395-406.
[5] A. J. Maciejewski, J. Moulin Ollagnier, A. Nowicki and J.-M. Strelcyn, Around Jouanolou non-integrability theorem, Indag. Math. (N.S.) 11 (2000), 239-254.
[6] A. Nowicki, Polynomial Derivations and Their Rings of Constants, N. Copernicus Univ. Press, Toruń, 1994.
[7] A. Nowicki and J. Zieliński, Rational constants of monomial derivations, J. Algebra 302 (2006), 387-418.
[8] P. Ossowski and J. Zieliński, Polynomial algebra of constants of the four variable Lotka-Volterra system, Colloq. Math. 120 (2010), 299-309.
[9] J. Zieliński, The field of rational constants of the Volterra derivation, Proc. Est. Acad. Sci. (2014), to appear.
[10] J. Zieliński, Rings of constants of four-variable Lotka-Volterra systems, Cent. Eur. J. Math. 11 (2013), 1923-1931.
[11] J. Zieliński and P. Ossowski, Rings of constants of generic 4D Lotka-Volterra systems, Czechoslovak Math. J. 63 (2013), 529-538.

Janusz Zieliński
Faculty of Mathematics and Computer Science
Nicolas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: ubukrool@mat.uni.torun.pl

Received 20 February 2013;
received in final form 10 March 2014

[^0]: 2010 Mathematics Subject Classification: Primary 13N15; Secondary 12H05, 92D25, 34A34.
 Key words and phrases: Lotka-Volterra derivation, factorizable derivation, monomial derivation, rational constant, rational first integral.

