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Summary. Assume that u, v are conjugate harmonic functions on the unit disc of C,
normalized so that u(0) = v(0) = 0. Let u∗, |v|∗ stand for the one- and two-sided Brownian
maxima of u and v, respectively. The paper contains the proof of the sharp weak-type
estimate
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Eu∗.

Actually, this estimate is shown to be true in the more general setting of differentially
subordinate harmonic functions defined on Euclidean domains. The proof exploits a novel
estimate for orthogonal martingales satisfying differential subordination.

1. Introduction. Suppose that N is a fixed positive integer and D is
an open connected subset of RN , and let u and v be real-valued harmonic
functions on D. Following Burkholder [Bu2], we say that v is differentially
subordinate to u if for all x ∈ D we have

(1.1) |∇v(x)| ≤ |∇u(x)|.
The functions u, v are said to be orthogonal if

(1.2) ∇u · ∇v = 0 on D,

where the dot · stands for the standard scalar product in RN . A classical
example for which the conditions (1.1) and (1.2) hold is when N = 2, D is
the unit disc of R2 and u, v satisfy the Cauchy–Riemann equations.

Fix a point ξ ∈ D and let D0 be a bounded connected subdomain of D
satisfying ξ ∈ D0 ⊂ D0 ∪ ∂D0 ⊂ D. Let us impose the additional normaliza-
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tion requirement on u, v, given by

(1.3) v(ξ) = u(ξ) = 0.

The conditions (1.1)–(1.3) imply many interesting estimates involving u

and v. Denote by µξD0
the harmonic measure on ∂D0 with respect to ξ. For

any 0 < p <∞, define the pth (quasi-)norm and the weak pth (quasi-)norm
of u by

‖u‖p =
[
sup
D0

�

∂D0

|u(x)|p dµξD0
(x)
]1/p

and

‖u‖p,∞ = sup
λ>0

λ
[
sup
D0

µξD0
({x ∈ ∂D0 : |u(x)| ≥ λ})

]1/p
,

where the inner supremum is taken over all D0 as above. If D is the unit disc
of R2, ξ = (0, 0) and v is assumed to be the harmonic conjugate of u with
v(ξ) = u(ξ), the problem of comparing the pth norms of u and v goes back
to the classical work of M. Riesz [R], who showed that for some universal cp,
1 < p <∞, we have

(1.4) ‖v‖p ≤ cp‖u‖p.

The optimal choice for cp was identified 50 years later by Pichorides [Pi] and,
independently, by Cole (see Gamelin [G]): the value is cot(π/2p∗), where
p∗ = max{p, p/(p − 1)}. Bañuelos and Wang [BW] extended this result to
the above general setting: namely, if u, v are given on a domain D and
satisfy (1.1)–(1.3), then (1.4) holds true, with cp equal to the Pichorides–Cole
constant.

In the limit case p = 1, the Lp estimate does not hold with any finite
constant, but one can establish a related weak-type (1, 1) estimate. Let us
start with the setting of conjugate harmonic functions on the unit disc. Then,
as proved by Kolmogorov [K], we have the following result: for some universal
c1,∞ <∞,

(1.5) ‖v‖1,∞ ≤ c1,∞‖u‖1,

Davis [D] proved that the optimal choice for c1,∞ is

(1.6) C =
1 + 1

32
+ 1

52
+ 1

72
+ . . .

1− 1
32

+ 1
52
− 1

72
+ . . .

and Choi [C] extended this to the more general setting described above.
Namely, we have the following.

Theorem 1.1. If u, v satisfy (1.1)–(1.3), then the inequality (1.5) is
valid, with c1,∞ equal to Davis’ constant.
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The purpose of this paper is to study the appropriate maximal version
of Choi’s theorem. Suppose that B is an N -dimensional Brownian motion
starting from ξ, defined on a certain probability space (Ω,F ,P). Let τ =
inf{t : Bt /∈ D} be the first exit-time of B from D, where, as usual, we set
the infimum of an empty set to be infinity. For a given harmonic function u
on D, we define the associated one-sided and two-sided Brownian maximal
function of u by the formulas

u∗ = sup
0≤t≤τ

u(Bt) and |u|∗ = sup
0≤t≤τ

|u(Bt)|,

respectively. Note that both u∗ and |u|∗ are random variables.
One of the main results of this paper is to establish the following state-

ment. Let C be Davis’ constant, given by (1.6) above.

Theorem 1.2. Suppose that u, v are harmonic functions on D with the
properties (1.1)–(1.3). Then for any λ > 0 we have

(1.7) λP(|v|∗ ≥ λ) ≤ CEu∗,
and the constant C is the best possible.

This statement can be generalized a little. Suppose that u, v satisfy (1.1)
and (1.2), and assume that v(ξ) = 0 (with no conditions on u(ξ)). Then,
applying the above estimate to the pair u − u(ξ) and v, we get the sharp
estimate

λP(|v|∗ ≥ λ) + Cu(ξ) ≤ CEu∗ for all λ > 0.

This complements the aforementioned weak-type bounds as well as the re-
sults of Burkholder [Bu1], Burkholder, Gundy and Silverstein [BGS] and
Petersen [Pe].

A few words about our approach and the organization of paper are in
order. The proof of Theorem 1.2 will heavily depend on probabilistic ar-
guments. More precisely, it will rest on Burkholder’s method: the estimate
(1.7) will be deduced from the existence of a certain special function on the
plane, with appropriate majorization and harmonicity properties. See e.g.
[O] for a more detailed description of this technique. The special function is
introduced and studied in the next section. Section 3 is devoted to the proof
of Theorem 1.2.

2. An auxiliary function and its properties. As we have announced
above, the key element of the proof is a certain special function on R2. A
similar construction appears in the work [C] of Choi, and the underlying
ideas go back to the work of Baernstein [Ba] and Davis [D]. To introduce
this object, we need some additional notation.

Let H = {(x, y) : y > 0} denote the upper half-plane and let S =
R × [−1, 1] stand for the horizontal strip in R2. Define W : H → R by the
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Poisson integral

(2.1) W(α, β) =
2

π2

∞�

−∞

β(log |t|)+
(α− t)2 + β2

dt =
2

π2

�

A

β log |t|
(α− t)2 + β2

dt,

where A = (−∞,−1]∪ [1,∞). By well-known properties of Poisson integrals
(see e.g. Stein [S] or Grafakos [Gr]), this function is harmonic on H and
satisfies the identity

(2.2) lim
(α,β)→(t,0)

W(α, β) =
2

π
(log |t|)+, t 6= 0.

Consider the conformal mapping ϕ : S → H given by ϕ(z) = ieπz/2, or, in
real coordinates,

(2.3) ϕ(x, y) =

(
−eπx/2 sin πy

2
, eπx/2 cos

πy

2

)
.

We are ready to introduce the main special function. Let W : R2 → R be
given by

W (x, y) =

{W(ϕ(x, y)) if |y| < 1,

x+ if |y| ≥ 1.

By virtue of (2.2), this function is continuous; furthermore, it is harmonic
in the interior of S, being the composition of a harmonic function and a
conformal mapping. Plugging (2.3) into (2.1), we easily check that if (x, y)
lies in the interior of S, then

(2.4) W (x, y) =
2

π2

∞�

−∞

cos(πy/2)(log |s|+ πx/2)+
s2 + 2 sin(πy/2)s+ 1

ds

(just substitute t = seπx/2). In what follows, we will need some further prop-
erties of W , gathered in the lemma below. Recall that C is Davis’ constant,
given in (1.6).

Lemma 2.1. The function W satisfies the following conditions:

(i) W (x, y) =W (x,−y) for all x, y ∈ R.
(ii) If (x, y) belongs to the interior of S, then

Wxx(x, y) ≥ 0 and Wyy(x, y) ≤ 0.

(iii) For any x ≤ 0 and y ∈ R, we have

(2.5) W (x, y) ≤W (0, 0) = (2C)−1.

(iv) If |y| < 1, then Wx(0, y) = 1/2.

Proof. (i) This is an immediate consequence of the following property
of W: for all α ∈ R and β > 0, W(α, β) = W(−α, β). The latter statement
can be established by substituting t := −t in (2.1).
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(ii) The convexity with respect to the first variable is a consequence of
(2.4) and the fact that for any nonzero s, the function x 7→ (log |s|+πx/2)+
is convex. Now the inequalityWyy(x, y) ≤ 0 follows at once from harmonicity
of W inside the strip.

(iii) Let us first establish the formula for W (0, 0). We have

W (0, 0) =W(0, 1) =
2

π2

∞�

−∞

(log |t|)+
t2 + 1

dt =
4

π2

∞�

1

log t

t2 + 1
dt(2.6)

=
4

π2

∞�

0

ses

e2s + 1
ds =

4

π2

∞�

0

se−s
∞∑
k=0

(−e−2s)k ds

=
4

π2

∞∑
k=0

(−1)k

(2k + 1)2
=

1

2
·
1− 1

32
+ 1

52
− 1

72
+ . . .

1 + 1
32

+ 1
52

+ 1
72

+ . . .
,

when in the last passage we have used the identity π2/8 =
∑∞

k=0(2k+1)−2.
Therefore, the above chain of identities yields W (0, 0) = (2C)−1.

Now, let us turn to the majorization in (2.5). If x ≤ 0 and |y| ≥ 1, the
bound is obvious, since W (x, y) vanishes. To deal with the remaining x, y,
note that for each fixed x, the function y 7→ W (x, y) is even and concave;
this follows from the properties (i) and (ii) we have already proved above.
Consequently, it is enough to show (2.5) under the additional assumption
y = 0. However, in this special case, the majorization follows from

lim
x→−∞

W (x, 0) = lim
x→−∞

2

π2

∞�

−∞

(log |s|+ πx/2)+
s2 + 1

ds = 0

and the inequality

Wx(x, 0) =
d

dx

(
2

π2

−e−πx/2�

−∞

log(−s) + πx/2

s2 + 1
ds+

∞�

e−πx/2

log s+ πx/2

s2 + 1
ds

)
= 1− 2

π
arctan(e−πx/2) ≥ 0

for x ≤ 0.
(iv) A similar computation shows that

Wx(0, y) =
1

π

( −1�
−∞

cos(πy/2)

s2 + 2 sin(πy/2)s+ 1
ds+

∞�

1

cos(πy/2)

s2 + 2 sin(πy/2)s+ 1
ds

)
=

1

π

[
π + arctan

(
tan(πy/2)− 1

cos(πy/2)

)
− arctan

(
tan(πy/2) +

1

cos(πy/2)

)]
= 1/2.
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Here in the last line we have used the identity(
tan(πy/2)− 1

cos(πy/2)

)(
tan(πy/2) +

1

cos(πy/2)

)
= −1

and the fact that arctan a− arctan b = π/2 when ab = −1 and a > 0.
This completes the proof.

3. Proof of Theorem 1.2. Our reasoning will depend heavily on the
theory of continuous-time martingales, and we begin with a brief introduc-
tion of the necessary notions. Assume that (Ω,F ,P) is a complete probability
space, equipped with a nondecreasing family (Ft)t≥0 of sub-σ-fields of F such
that F0 contains all the events of probability 0.

Let X, Y be two adapted, real-valued continuous-path martingales. Then
X∗ = supt≥0Xt and |X|∗ = supt≥0 |Xt| denote the one-sided and two-sided
maximal functions of X; we will also use the notation X∗t = sup0≤s≤tXs

and |X|∗t = sup0≤s≤t |Xt| for the corresponding truncated maximal func-
tions. The symbols [X,X] and [Y, Y ] will stand for the square brackets of
X and Y , respectively; see e.g. Dellacherie and Meyer [DM] for the defini-
tion.

Following Bañuelos and Wang [BW] and Wang [W], we say that Y is
differentially subordinate to X if the process ([X,X]t− [Y, Y ]t)t≥0 is nonneg-
ative and nondecreasing as a function of t. Furthermore, X and Y are said
to be orthogonal if their bracket [X,Y ] (defined by the polarization formula
[X,Y ] = ([X + Y,X + Y ]− [X − Y,X − Y ])/4) is constant.

We are ready to establish an auxiliary estimate, which can be regarded
as a probabilistic version of Theorem 1.2. The statement is of independent
interest; for related results, see e.g. Bañuelos and Wang [BW], Burkholder
[Bu3], Janakiraman [J], Osękowski [O] and Wang [W]. In the statement
below, C stands for Davis’ constant defined in (1.6).

Theorem 3.1. Suppose that X, Y are orthogonal martingales such that
X0 = Y0 = 0 and Y is differentially subordinate to X. Then

(3.1) P(|Y |∗ ≥ 1) ≤ CEX∗

and the inequality is sharp.

Proof. It is convenient to split the reasoning into three parts.

Step 1. Let us start with some reductions. First, we may and do assume
that the martingale Y takes values in the interval [−1, 1]. Indeed, if it is
not the case, we replace it with the stopped martingale Y τ = (Yτ∧t)t≥0,
where τ = inf{t : |Yt| ≥ 1}, which has the boundedness property (note that
the orthogonality and the differential subordination to X is preserved under
stopping).
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Next, observe that it is enough to show that

(3.2) P(|Yt| ≥ 1) ≤ CEX∗ for all t ≥ 0.

Indeed, having done this, we fix ε ∈ (0, 1) and apply the estimate to the
stopped martingales Xσ = (Xσ∧t)t≥0, Y σ = (Yσ∧t)t≥0, where σ = inf{t ≥ 0 :
|Yt| ≥ ε}. This is allowed, since orthogonality and differential subordination
hold for this new pair as well. Note that {|Y |∗ ≥ 1} ⊆ {|Yt| ≥ ε for some
t ≥ 0} and hence

P(|Y |∗ ≥ 1) ≤ lim
t→∞

P(|Yσ∧t| ≥ ε) ≤ CE(Xσ)∗/ε ≤ CEX∗/ε.

Therefore, letting ε ↑ 1 yields (3.1).

Step 2. So, we must prove (3.2) for Y bounded in absolute value by 1.
Introduce the process Z = ((Xt, Yt, X

∗
t ))t≥0 and let t ≥ 0 be a fixed time

parameter. Consider the continuous function U : R3 → R given by

U(x, y, z) = 1− 2CW (x− z, y)− Cz,
where W comes from the preceding section. The function W is of class C∞
in the interior of the strip S = R × [−1, 1] and hence U is of class C∞ on
R× (−1, 1)×R. Therefore, by the assumed boundedness of Y , we can apply
Itô’s formula to obtain

(3.3) U(Zt) = I0 + I1 + I2 +
1

2
I3 + I4,

where
I0 = U(Z0),

I1 =

t�

0+

Ux(Zs) dXs +

t�

0+

Uy(Zs) dYs,

I2 =

t�

0+

Uz(Zs) dX
∗
s ,

I3 =

t�

0+

Uxy(Zs) d[X,Y ]s,

I4 =

t�

0+

Uxx(Zs) d[X,X]s +

t�

0+

Uyy(Zs) d[Y, Y ]s.

Let us take a look at each term above separately. By Lemma 2.1(iii), we
see that

U(Z0) = U(0, 0, 0) = 1− 2CW (0, 0) = 0.

The term I1 has zero expectation, by the properties of stochastic integrals. To
deal with I2 = 0, we apply the following argument. By the continuity of the
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trajectories of X, the times at which X∗t (ω) increases satisfy Xt(ω) = X∗t (ω).
However, the integrand then vanishes: indeed, by Lemma 2.1(iv), we have
Uz(z, y, z) = 2CWx(0, y) − C = 0; consequently, I2 = 0. Next, we see that
the term I3 also vanishes, in view of the orthogonality of X and Y . Finally,
differential subordination combined with Lemma 2.1(ii) imply

I4 ≤
t�

0

Uxx(Zs) d[X,X]s +

t�

0

Uyy(Zs) d[X,X]s = 0,

since Uxx(x, y, z) + Uyy(x, y, z) = 0 for |y| < 1. Putting all the above facts
together and integrating both sides of (3.3) gives

EU(Zt) = EU(Xt, Yt, X
∗
t ) ≤ 0.

Step 3. Now we will deduce (3.2) from the latter bound. Observe that
for any x ≤ z and any y ∈ R we have

(3.4) U(x, y, z) ≥ 1{|y|≥1} − Cz.

Indeed, if |y| ≥ 1, then U(x, y, z) = 1 − 2CW (x − z, y) − Cz = 1 − Cz; on
the other hand, if |y| < 1, Lemma 2.1(iii) gives

U(x, y, z) = 1− 2CW (x− z, y)− Cz ≥ −Cz.

Thus, the inequality (3.4) is valid, and hence the bound EU(Xt, Yt, X
∗
t ) ≤ 0,

proved in the previous step, yields

P(|Yt| ≥ 1)− CEX∗t ≤ 0.

This of course implies (3.2) and completes the proof of (3.1). Sharpness will
follow at once from the optimality of C in (1.7); see the proof below.

Finally, we are ready to proceed with Theorem 1.2.

Proof of (1.7). Let u, v be harmonic functions as in the statement of
the theorem and let B be a Brownian motion starting from ξ. Let τ be the
corresponding exit-time defined in Section 1. By homogeneity, we will be
done if we establish the estimate in the particular case λ = 1. Introduce the
processes

X = (Xt)t≥0 = (u(Bτ∧t))t≥0, Y = (Yt)t≥0 = (v(Bτ∧t))t≥0.

As compositions of harmonic functions with Brownian motion, these pro-
cesses are martingales. Furthermore, Y is orthogonal and differentially sub-
ordinate to X, as follows immediately from the identities

[X,X]t = u(ξ)2 +

τ∧t�

0

|∇u(Bs)|2 ds,
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[Y, Y ]t = v(ξ)2 +

τ∧t�

0

|∇v(Bs)|2 ds,

[X,Y ]t = u(ξ)v(ξ) +

τ∧t�

0

∇u(Bs) · ∇v(Bs) ds

and the assumptions (1.1)–(1.3). Consequently, by the previous theorem, we
get

P(|v|∗ ≥ 1) = P(|Y |∗ ≥ 1) ≤ CEX∗ ≤ CEu∗,
which is (1.7).

To see that the estimate is sharp, we may again restrict ourselves to the
case λ = 1. Take D to be the strip R × [−1, 1], let ξ = 0 and consider
the harmonic functions u(x, y) = x, v(x, y) = y. Clearly, these functions
satisfy the Cauchy–Riemann equations and the normalization requirement
u(0) = v(0) = 0. Observe that the exit-time τ satisfies

(3.5) τ = inf{t ≥ 0 : |B(2)
t | = 1}

with probability 1 (whereB(2) denotes the second coordinate of the Brownian
motion B). Hence |v|∗ = |B(2)

t |∗ is equal to 1 almost surely and thus the
left-hand side of (1.7) is 1. Furthermore, by (3.5), the stopping time τ is
independent of B(1), the first coordinate of B. Consequently,

Eu∗ = E(B(1)
τ )∗ = E[E((B(1)

τ )∗ | τ)] = E[E|B(1)
τ | | τ ] = E|B(1)

τ |,
where in the third equality we have used the above independence and the
well-known fact that for any t, the variables (B(1)

t )∗ and |B(1)
t | have the same

distribution. Now, we exploit the function W of Section 2: by Itô’s formula,
we obtain

E|B(1)
τ | = 2E[W (Bτ )−B(1)

τ ] = 2EW (Bτ ) = 2EW (0, 0) =
1

C
.

Consequently, the two sides of (1.7) are equal and the proof of the theorem
is complete. Finally, let us mention that this immediately implies that the
estimate (3.1) is sharp: indeed, if the constant C could be decreased there,
this would lead to the corresponding improvement of (1.7).
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