GENERAL TOPOLOGY

Remarks on Star-Hurewicz Spaces

by

Yan-Kui SONG

Presented by Czesław BESSAGA

Summary. A space X is *star-Hurewicz* if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X there exists a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each n, \mathcal{V}_n is a finite subset of \mathcal{U}_n , and for each $x \in X, x \in \text{St}(\bigcup \mathcal{V}_n, \mathcal{U}_n)$ for all but finitely many n. We investigate the relationship between star-Hurewicz spaces and related spaces, and also study topological properties of star-Hurewicz spaces.

1. Introduction. By a space, we mean a topological space. Let \mathbb{N} denote the set of positive integers. Let X be a space and \mathcal{U} be a collection of subsets of X. For $A \subseteq X$, let

$$\operatorname{St}(A,\mathcal{U}) = \bigcup \{ U \in \mathcal{U} : U \cap A \neq \emptyset \}.$$

As usual, we write $St(x, \mathcal{U})$ instead of $St(\{x\}, \mathcal{U})$.

Let us recall that a space X is *countably compact* if every countable open cover of X has a finite subcover. Van Douwen et al. [5] defined a space X to be *strongly starcompact* if for every open cover \mathcal{U} of X there exists a finite subset F of X such that $St(F,\mathcal{U}) = X$. They proved that every countably compact space is strongly starcompact and every strongly starcompact T_2 space is countably compact; however, the latter does not hold for T_1 -spaces (see [12, Example 2.5]).

Van Douwen et al. [5] defined a space X to be *starcompact* if for every open cover \mathcal{U} of X there exists a finite subset \mathcal{V} of \mathcal{U} such that $\operatorname{St}(\bigcup \mathcal{V}, \mathcal{U}) = X$.

In [7], a strongly starcompact space is called starcompact, and in [11], a starcompact space is called $1\frac{1}{2}$ -starcompact.

²⁰¹⁰ Mathematics Subject Classification: 54D20, 54B05, 54B10.

Key words and phrases: selection principles, strongly starcompact, star-Hurewicz, strongly star-Hurewicz.

In 1925, Hurewicz [8] (see also [9]) introduced the Hurewicz covering property for a space X in the following way:

H: For each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X there exists a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each n, \mathcal{V}_n is a finite subset of \mathcal{U}_n , and for each $x \in X, x \in \bigcup \mathcal{V}_n$ for all but finitely many n.

Cammaroto et al. [3] introduced and investigated a generalization of the Hurewicz covering property. Bonanzinga et al. [1] introduced star selection hypotheses similar to the above (see also [10]):

- SH: A space X has the star-Hurewicz property (or is a star-Hurewicz space) if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X there exists a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each n, \mathcal{V}_n is a finite subset of \mathcal{U}_n , and for each $x \in X, x \in \operatorname{St}(\bigcup \mathcal{V}_n, \mathcal{U}_n)$ for all but finitely many n.
- SSH: A space X has the strongly star-Hurewicz property (or is a Strongly star-Hurewicz space) if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X there exists a sequence $(A_n : n \in \mathbb{N})$ of finite subsets of X such that for each $x \in X$, $x \in \operatorname{St}(A_n, \mathcal{U}_n)$ for all but finitely many n.

From the above definitions, we have the following diagram:

Bonanzinga et al. [1] studied star-Hurewicz and related spaces. The purpose of this paper is to investigate the relationships between star-Hurewicz spaces and related spaces, and also to study topological properties of star-Hurewicz spaces.

Throughout this paper, the extent e(X) of a space X is the smallest infinite cardinal κ such that every discrete closed subset of X has cardinality at most κ . Let ω denote the first infinite cardinal, ω_1 the first uncountable cardinal and \mathfrak{c} the cardinality of the set of all real numbers. For a cardinal κ , let κ^+ be the smallest cardinal greater than κ . For any ordinals α , β with $\alpha < \beta$, we write $[\alpha, \beta)$, (α, β) etc. for the usual ordinal intervals. As usual, a cardinal is an initial ordinal and an ordinal is the set of smaller ordinals. Every cardinal is often viewed as a space with the usual order topology. Other terms and symbols that we do not define follow [6].

2. Main results. First we give some examples showing relationships between strongly star-Hurewicz spaces and related spaces.

EXAMPLE 2.1. There exists a Tychonoff strongly star-Hurewicz (hence star-Hurewicz) space X which is not starcompact (hence not strongly star-compact).

Proof. Consider the subspace

 $X = ([0, \omega] \times [0, \omega]) \setminus \{ \langle \omega, \omega \rangle \}$

of the product space $[0, \omega] \times [0, \omega]$. Clearly, X is a Tychonoff space.

First we show that X is strongly star-Hurewicz. To this end, let $\{\mathcal{U}_n : n \in \mathbb{N}\}$ be a sequence of open covers of X. For each $n \in \mathbb{N}$, let

$$K_n = ([0, \omega] \times [0, n-1]) \cup ([0, n-1] \times [0, \omega]).$$

Then K_n is the union of finite compact subsets of X. We can find a finite subset A_n of K_n such that $K_n \subseteq \operatorname{St}(A_n, \mathcal{U}_n)$. Note that $\bigcup_{n \in \mathbb{N}} K_n = X$. For any $x \in X$, there exists $n_0 \in \mathbb{N}$ such that $x \in K_{n_0}$, thus $x \in \operatorname{St}(A_n, \mathcal{U}_n)$ for each $n > n_0$, which shows that X is strongly star-Hurewicz.

Next we show that X is not starcompact. For each $n \in \omega$, let

$$U_n = \{n\} \times [0, \omega] \text{ and } V_n = (n, \omega] \times \{n\}.$$

Let us consider the open cover

$$\mathcal{U} = \{U_n : n \in \omega\} \cup \{V_n : n \in \omega\}$$

of X. It suffices to show that $\operatorname{St}(\bigcup \mathcal{V}, \mathcal{U}) \neq X$ for any finite subset \mathcal{V} of \mathcal{U} . To see this, let \mathcal{V} be any finite subset of \mathcal{U} . There exist $n_1 \in \omega$ and $n_2 \in \omega$ such that $U_n \notin \mathcal{V}$ for each $n > n_1$ and $V_n \notin \mathcal{V}$ for each $n > n_2$. Pick $n' > \max\{n_1, n_2\}$; then $V_{n'} \cap (\bigcup \mathcal{V}) = \emptyset$, hence $\langle n', \omega \rangle \notin \operatorname{St}(\bigcup \mathcal{V}, \mathcal{U})$, since $V_{n'}$ is the only element of \mathcal{U} containing $\langle n', \omega \rangle$. This shows that X is not starcompact.

EXAMPLE 2.2. There exists a Tychonoff star-Hurewicz space which is not strongly star-Hurewicz.

Proof. Let $D = \{d_{\alpha} : \alpha < \mathfrak{c}\}$ be a discrete space of cardinality \mathfrak{c} and let $D^* = D \cup \{d^*\}$ be one-point compactification of D, where $d^* \notin D$.

Consider the subspace

$$X = (D^* \times [0, \mathfrak{c}^+]) \setminus \{ \langle d^*, \mathfrak{c}^+ \rangle \}$$

of the product space $D^* \times [0, \mathfrak{c}^+]$. Then X is Tychonoff.

To show that X is star-Hurewicz, it suffices to show that X is starcompact, since every starcompact space is star-Hurewicz.

To this end, let \mathcal{U} be an open cover of X. For each $\alpha < \mathfrak{c}$, there exists $U_{\alpha} \in \mathcal{U}$ such that $\langle d_{\alpha}, \mathfrak{c}^+ \rangle \in U_{\alpha}$, hence we can find $\beta_{\alpha} < \mathfrak{c}^+$ such that $\{d_{\alpha}\} \times (\beta_{\alpha}, \mathfrak{c}^+] \subseteq U_{\alpha}$. Let $\beta = \sup\{\beta_{\alpha} : \alpha < \mathfrak{c}\}$. Then $\beta < \mathfrak{c}^+$. Let $K = D^* \times \{\beta\}$. Then K is compact and $U_{\alpha} \cap K \neq \emptyset$ for each $\alpha < \mathfrak{c}$. Since \mathcal{U}

covers K, there exists a finite subset \mathcal{U}' of \mathcal{U} such that $K \subseteq \bigcup \mathcal{U}'$. Thus

$$D \times {\mathfrak{c}^+} \subseteq \operatorname{St}\left(\bigcup \mathcal{U}', \mathcal{U}\right).$$

On the other hand, since $D^* \times [0, \mathfrak{c}^+)$ is countably compact, it is strongly starcompact (see [5, 11]), so we can find a finite subset \mathcal{U}'' of \mathcal{U} such that

$$D^* \times [0, \mathfrak{c}^+) \subseteq \operatorname{St}\left(\bigcup \mathcal{U}'', \mathcal{U}\right)$$

If we put $\mathcal{V} = \mathcal{U}' \cup \mathcal{U}''$, then \mathcal{V} is a finite subset of \mathcal{U} such that $X = \operatorname{St}(\bigcup \mathcal{V}, \mathcal{U})$, which shows that X is starcompact.

Next we show that X is not strongly star-Hurewicz. For each $\alpha < \mathfrak{c}$, let

$$U_{\alpha} = \{d_{\alpha}\} \times [0, \mathfrak{c}^+].$$

For each $n \in \mathbb{N}$, let

$$\mathcal{U}_n = \{ U_\alpha : \alpha < \mathfrak{c} \} \cup \{ D^* \times [0, \mathfrak{c}^+) \}.$$

Then \mathcal{U}_n is an open cover of X. Let $(A_n : n \in \mathbb{N})$ be any sequence of finite subsets of X. It suffices to show that there exists $x \in X$ such that $x \notin \operatorname{St}(A_n, \mathcal{U}_n)$ for all $n \in \mathbb{N}$.

For each $n \in \mathbb{N}$, since A_n is finite, there exists $\alpha_n < \mathfrak{c}$ such that

 $A_n \cap U_\alpha = \emptyset$ for each $\alpha > \alpha_n$.

Let $\beta = \sup\{\alpha_n : n \in \mathbb{N}\}$. Then $\beta < \mathfrak{c}$ and

$$\left(\bigcup_{n\in\mathbb{N}}A_n\right)\cap U_{\alpha}=\emptyset$$
 for each $\alpha>\beta$.

If we pick $\alpha' > \beta$, then $\langle d_{\alpha'}, \mathfrak{c}^+ \rangle \notin \operatorname{St}(A_n, \mathcal{U}_n)$ for each $n \in \mathbb{N}$, since $U_{\alpha'}$ is the only element of \mathcal{U}_n containing $\langle d_{\alpha'}, \mathfrak{c}^+ \rangle$; this shows that X is not strongly star-Hurewicz.

REMARK 2.1. Example 2.2 also shows that there exists a Tychonoff starcompact space that is not strongly starcompact.

Recall that the Alexandorff duplicate A(X) of a space X is constructed in the following way: The underlying set of A(X) is $X \times \{0, 1\}$; each point of $X \times \{1\}$ is isolated and a basic neighborhood of $\langle x, 0 \rangle \in X \times \{0\}$ is of the form $(U \times \{0\}) \cup ((U \times \{1\}) \setminus \{\langle x, 1 \rangle\})$, where U is a neighborhood of x in X.

It is well known that a space X is countably compact if and only if so is A(X). In the following, we give two examples to show that this result cannot be generalized to star-Hurewicz spaces.

EXAMPLE 2.3. There exists a Tychonoff star-Hurewicz space X such that A(X) is not star-Hurewicz.

Proof. Let $X = (D^* \times [0, \mathfrak{c}^+]) \setminus \{\langle d^*, \mathfrak{c}^+ \rangle\}$ be the space of Example 2.2. Then X is a star-Hurewicz space with $e(X) = \mathfrak{c}$. However, A(X) is not star-Hurewicz. In fact, $(D \times \{\mathfrak{c}\}) \times \{1\}$ is an open and closed subset of X with $|(D \times \{\mathfrak{c}\}) \times \{1\}| = \mathfrak{c}$, and each point $\langle \langle d_{\alpha}, \mathfrak{c} \rangle, 1 \rangle$ is isolated for each $\alpha < \mathfrak{c}$. Hence A(X) is not star-Hurewicz, since every open and closed subset of a star-Hurewicz space is star-Hurewicz, and $(D \times \{\mathfrak{c}\})$ $\times \{1\}$ is not star-Hurewicz. \blacksquare

To show the next result, we need a lemma from [4].

LEMMA 2.4. For a T_1 -space X, e(X) = e(A(X)).

From the proof of Example 2.3, it is not difficult to deduce the following result.

THEOREM 2.5. If X is a T_1 -space and A(X) is a star-Hurewicz space, then $e(A(X)) < \omega_1$.

Proof. By Lemma 2.4, we need to show that $e(X) < \omega_1$. Suppose that $e(X) \ge \omega_1$. Then there exists a discrete closed subset B of X such that $|B| \ge \omega_1$. Hence $B \times \{1\}$ is an open and closed subset of A(X) and every point of $B \times \{1\}$ is isolated. Thus A(X) is not star-Hurewicz, since every open and closed subset of a star-Hurewicz space is star-Hurewicz, and $B \times \{1\}$ is not star-Hurewicz.

REMARK 2.2. The author does not know if the Alexandorff duplicate A(X) of a star-Hurewicz T_1 -space X with $e(X) < \omega_1$ is star-Hurewicz.

It is not difficult to prove the following result.

THEOREM 2.6. Every continuous image of a star-Hurewicz space is star-Hurewicz.

Proof. Let $f: X \to Y$ be a continuous mapping from a star-Hurewicz space X onto a space Y. Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of open covers of Y. For each $n \in \mathbb{N}$, let $\mathcal{V}_n = \{f^{-1}(U) : U \in \mathcal{U}_n\}$. It is an open cover of X. Since X is star-Hurewicz, there exists a sequence $(\mathcal{V}'_n : n \in \mathbb{N})$ such that for each n, \mathcal{V}'_n is a finite subset of \mathcal{U}_n , and for each $x \in X, x \in \mathrm{St}(\bigcup \mathcal{V}'_n, \mathcal{U}_n)$ for all but finitely many n. For each $n \in \mathbb{N}$, let $\mathcal{U}'_n = \{f(U) : U \in \mathcal{V}'_n\}$. Then \mathcal{U}'_n is a finite subset of \mathcal{U}_n .

We will show that each $y \in Y$ is in $\operatorname{St}(\bigcup \mathcal{U}'_n, \mathcal{U}_n)$ for all but finitely many n. In fact, let $y \in Y$. Then there is $x \in X$ such that f(x) = y. Hence $x \in \operatorname{St}(\bigcup \mathcal{V}'_n, \mathcal{V}_n)$ for all but finitely many n. Thus $y = f(x) \in \operatorname{St}(\bigcup \{f(U) : U \in \mathcal{V}_n\}) = \operatorname{St}(\bigcup \mathcal{U}'_n, \mathcal{U}_n)$ for all but finitely many n, which shows that Y is star-Hurewicz.

Next we turn to preimages. We show that the preimage of a star-Hurewicz space under a closed 2-to-1 continuous map need not be star-Hurewicz.

EXAMPLE 2.7. There exists a closed 2-to-1 continuous map $f: X \to Y$ such that Y is star-Hurewicz, but X is not.

Proof. Just consider the projection map $A(X) \to X$, where X is the space of Example 2.3.

Now we give a positive result:

THEOREM 2.8. If f is an open perfect continuous map from a space X onto a star-Hurewicz space Y, then X is star-Hurewicz.

Proof. Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of open covers of X and let $y \in Y$. For each $n \in \mathbb{N}$, since $f^{-1}(y)$ is compact, there exists a finite subcollection \mathcal{U}_{n_y} of \mathcal{U}_n such that $f^{-1}(y) \subseteq \bigcup \mathcal{U}_{n_y}$ and $U \cap f^{-1}(y) \neq \emptyset$ for each $U \in \mathcal{U}_{n_y}$. Since f is closed, there exists an open neighborhood V_{n_y} of y in Y such that

$$f^{-1}(V_{n_y}) \subseteq \bigcup \{U : U \in \mathcal{U}_{n_y}\}.$$

Since f is open, we can assume that

(1)
$$V_{n_y} \subseteq \bigcap \{ f(U) : U \in \mathcal{U}_{n_y} \}.$$

Since $\mathcal{V}_n = \{V_{n_y} : y \in Y\}$ is an open cover of Y. Y is star-Hurewicz, there exists a sequence $(\mathcal{V}'_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \mathcal{V}'_n is a finite subset of \mathcal{V}_n , and for each $y \in Y$, $y \in \operatorname{St}(\bigcup \mathcal{V}'_n, \mathcal{V}_n)$ for all but finitely many n. Without loss of generality, we can assume that $\mathcal{V}'_n = \{V_{n_{y_i}} : i < n'\}$. Let $\mathcal{U}'_n = \bigcup_{i < n'} \mathcal{U}_{n_{y_i}}$. Then \mathcal{U}'_n is a finite subset of \mathcal{U}_n and

(2)
$$f^{-1}\left(\bigcup \mathcal{V}'_n\right) \subseteq \bigcup \mathcal{U}'_n.$$

Next we show that each $x \in X$ is in $\operatorname{St}(\bigcup U'_n, U_n)$ for all but finitely many n. Let $x \in X$. Then $y = f(x) \in \operatorname{St}(\bigcup \mathcal{V}'_n, \mathcal{V}_n)$ for all but finitely many n. For $n \in \mathbb{N}$, if $y = f(x) \in \operatorname{St}(\bigcup \mathcal{V}'_n, \mathcal{V}_n)$, then there exist i < n' and $y' \in Y$ such that $V_{n_{y_i}} \cap V_{n_{y'}} \neq \emptyset$ and $y \in V_{n_{y'}}$. Since

$$x \in f^{-1}(V_{n_{y'}}) \subseteq \bigcup \{U : U \in \mathcal{U}_{n_{y'}}\},\$$

we can choose $U \in \mathcal{U}_{n_{y'}}$ with $x \in U$. Then $V_{n_{y'}} \subseteq f(U)$ by (1). Hence $U \cap f^{-1}(\bigcup \mathcal{V}'_n) \neq \emptyset$. Thus $x \in \operatorname{St}(f^{-1}(\bigcup \mathcal{V}'_n), \mathcal{U}_n)$. Therefore $x \in \operatorname{St}(\bigcup \mathcal{U}'_n, \mathcal{U}_n)$ by (2), which shows that each $x \in X$ is in $\operatorname{St}(\bigcup \mathcal{U}'_n, \mathcal{U}_n)$ for all but finitely many n. Consequently, X is star-Hurewicz.

We have the following corollary from Theorem 2.8.

COROLLARY 2.9 ([1]). The product of a star-Hurewicz space and a compact space is star-Hurewicz.

However, the product of two star-Hurewicz spaces need not be star-Hurewicz. In fact, the following well-known example shows that the product of two countably compact (hence star-Hurewicz) spaces need not be star-Hurewicz. We sketch the proof for completeness. EXAMPLE 2.10. There exist two Tychonoff countably compact (hence star-Hurewicz) spaces X and Y such that $X \times Y$ is not star-Hurewicz.

Proof. Let D be a discrete space of cardinality \mathfrak{c} . We define $X = \bigcup_{\alpha < \omega_1} E_{\alpha}$ and $Y = \bigcup_{\alpha < \omega_1} F_{\alpha}$, where E_{α} and F_{α} are subsets of βD which are defined inductively so as to satisfy the following conditions:

- (1) $E_{\alpha} \cap F_{\beta} = D$ if $\alpha \neq \beta$;
- (2) $|E_{\alpha}| \leq \mathfrak{c}$ and $|F_{\beta}| \leq \mathfrak{c};$
- (3) every infinite subset of E_{α} (resp., F_{α}) has an accumulation point in $E_{\alpha+1}$ (resp., $F_{\alpha+1}$).

The sets E_{α} and F_{α} are well-defined since every infinite closed set in βD has cardinality 2^c (see [13]). The diagonal $\{\langle d, d \rangle : d \in D\}$ is an open and closed subset of $X \times Y$ with cardinality **c** and $\{\langle d, d \rangle\}$ is isolated for each $d \in D$. Thus $X \times Y$ is not star-Hurewicz, since open and closed subsets of star-Hurewicz spaces are star-Hurewicz, and the diagonal $\{\langle d, d \rangle : d \in D\}$ is not star-Hurewicz. \blacksquare

In [5, Example 3.3.3], van Douwen et al. gave an example of a countably compact (and hence star-Hurewicz) space X and a Lindelöf space Y such that $X \times Y$ is not strongly star-Lindelöf. Now, we shall show that $X \times Y$ is not star-Hurewicz either. We need the following lemma.

LEMMA 2.11 ([2]). A space X is a star-Hurewicz space iff for every sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X there exists a finite $\mathcal{V}_n \subseteq \mathcal{U}_n$ $(n \in \mathbb{N})$ such that for every $x \in X$, $\operatorname{St}(x, \mathcal{U}_n) \cap (\bigcup \mathcal{V}_n) \neq \emptyset$ for all but finitely many $n \in \mathbb{N}$.

EXAMPLE 2.12. There exist a countably compact (hence star-Hurewicz) space X and a Lindelöf space Y such that $X \times Y$ is not star-Hurewicz.

Proof. Let $X = [0, \omega_1)$ with the usual order topology and $Y = [0, \omega_1]$ with the following topology: each point α with $\alpha < \omega_1$ is isolated and a set U containing ω_1 is open if and only if $Y \setminus U$ is countable. Then X is countably compact and Y is Lindelöf.

Now, we show that $X \times Y$ is not star-Hurewicz. For each $\alpha < \omega_1$, let

$$U_{\alpha} = [0, \alpha] \times [\alpha, \omega_1]$$
 and $V_{\alpha} = (\alpha, \omega_1) \times \{\alpha\}.$

Then

 $U_{\alpha} \cap V_{\alpha'} = \emptyset$ for any $\alpha < \omega_1$ and $\alpha' < \omega_1$,

and

$$V_{\alpha} \cap V_{\alpha'} = \emptyset$$
 if $\alpha \neq \alpha'$.

For each $n \in \mathbb{N}$, let

$$\mathcal{U}_n = \{U_\alpha : \alpha < \omega_1\} \cup \{V_\alpha : \alpha < \omega_1\}.$$

Then \mathcal{U}_n is an open cover of $X \times Y$. By Lemma 2.11 it suffices to show that for any sequence $(\mathcal{V}_n : n \in \mathbb{N})$ of finite sets such that $\mathcal{V}_n \subseteq \mathcal{U}_n$ for each $n \in \mathbb{N}$, there exists a point $a \in X \times Y$ such that $\mathrm{St}(a, \mathcal{U}_n) \cap (\bigcup \mathcal{V}_n) = \emptyset$ for all $n \in \mathbb{N}$.

Let $(\mathcal{V}_n : n \in \mathbb{N})$ be any sequence such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathcal{U}_n . For each $n \in \mathbb{N}$, since \mathcal{V}_n is finite, there exists $\alpha_n < \omega_1$ such that

 $V_{\alpha} \notin \mathcal{V}_n$ for each $\alpha > \alpha_n$.

Let $\beta = \sup\{\alpha_n : n \in \mathbb{N}\}$. Clearly, $\beta < \omega_1$. Thus we have

 $V_{\alpha} \notin \mathcal{V}_n$ for each $\alpha > \beta$ and $n \in \mathbb{N}$.

Pick $\alpha > \beta$. Since V_{α} is the only element of \mathcal{U}_n containing the point $\langle \alpha+1, \alpha \rangle$, and $V_{\alpha} \cap V = \emptyset$ for each $V \in \mathcal{V}_n$ and $n \in \mathbb{N}$, it follows that $\operatorname{St}(\langle \alpha+1, \alpha \rangle, \mathcal{U}_n) = V_{\alpha}$ and $V_{\alpha} \cap (\bigcup \mathcal{V}_n) = \emptyset$ for $n \in \mathbb{N}$.

Next we give a condition under which paraLindelöfness implies Lindelöfness. Recall that a space X is *paraLindelöf* if every open cover \mathcal{U} of X has a locally countable open refinement.

THEOREM 2.13. Every paraLindelöf star-Hurewicz space is Lindelöf.

Proof. Let X be a paraLindelöf star-Hurewicz space and \mathcal{U} be an open cover of X. Then there exists a locally countable open refinement \mathcal{V} of \mathcal{U} . For each $x \in X$, there exists an open neighborhood V_x of x such that $V_x \subseteq V$ for some $V \in \mathcal{V}$ and $\{V \in \mathcal{V} : V_x \cap V \neq \emptyset\}$ is countable. Let $\mathcal{V}' = \{V_x : x \in X\}$. Then \mathcal{V}' is an open refinement of \mathcal{V} . Since X is star-Hurewicz, there exists a sequence $(\mathcal{V}'_n : n \in \mathbb{N})$ such that for each n, \mathcal{V}'_n is a finite subset of \mathcal{V}' , and for each $x \in X, x \in \operatorname{St}(\bigcup \mathcal{V}'_n, \mathcal{V}')$ for all but finitely many n.

For each $n \in \mathbb{N}$, let

 $\mathcal{V}_n = \{ V \in \mathcal{V} : \text{there exists some } V' \in \mathcal{V}'_n \text{ such that } V \cap V' \neq \emptyset \}.$

Then \mathcal{V}_n is a countable subset of \mathcal{V} . Let $\mathcal{W} = \bigcup_{n \in \mathbb{N}} \mathcal{V}_n$. Then \mathcal{W} is a countable open cover of X. For each $V \in \mathcal{W}$, choose $U_V \in \mathcal{U}$ such that $V \subseteq U_V$. Then $\{U_V : V \in \mathcal{W}\}$ is a countable subcover of \mathcal{U} , which shows that X is Lindelöf. \blacksquare

Since every paracompact space is paraLindelöf, the following corollary follows from Theorem 2.13.

COROLLARY 2.14. A paracompact star-Hurewicz space X is Lindelöf.

Acknowledgments. The author acknowledges the support from the National Natural Science Foundation of China (grant 11271036).

References

- M. Bonanzinga, F. Cammaroto and Lj. D. R. Kočinac, Star-Hurewicz and related spaces, Appl. Gen. Topology 5 (2004), 79–89.
- [2] M. Bonanzinga, F. Cammaroto, Lj. D. R. Kočinac and M. V. Matveev, On weaker forms of Menger, Rothberger and Hurewicz properties, Mat. Vesnik 61 (2009), 13–23.
- [3] F. Cammaroto, Lj. D. R. Kočinac and G. Nordo, *F-Hurewicz spaces*, Questions Answers Gen. Topology 22 (2004), 23–32.
- [4] J.-L. Cao and Y.-K. Song, Aquaro number versus absolute star-Lindelöf number, Houston J. Math. 29 (2003), 925–936.
- [5] E van Douwen, G. K. Reed, A. W. Roscoe and I. J. Tree, *Star covering properties*, Topology Appl. 39 (1991), 71–103.
- [6] R. Engelking, *General Topology*, Heldermann, Berlin, 1989.
- [7] W. M. Fleischman, A new extension of countable compactness, Fund. Math. 67 (1971), 1–7.
- W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), 401–421.
- [9] W. Hurewicz, Über Folgen stetiger Funktionen, Fund. Math. 8 (1927), 193–204.
- [10] Lj. D. R. Kočinac, Selected results on selection principles, in: Proceedings of the 3rd Seminar on Geometry and Topology, Sh. Rezapour (ed.), Tabriz, 2004, 71–104.
- [11] M. V. Matveev, A survey on star-covering properties, Topology Atlas, preprint no. 330, 1998.
- Y.-K. Song, On countable star-covering spaces, Appl. Gen. Topology 8 (2007), 249– 258.
- [13] R. C. Walker, The Stone-Čech Compactification, Springer, Berlin, 1974.

Yan-Kui Song Institute of Mathematics School of Mathematical Sciences Nanjing Normal University

Nanjing 210023, P.R. China

E-mail: songyankui@njnu.edu.cn

Received January 5, 2013

(7915)