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Summary. Let G be a group acting on {2 and .# a G-invariant algebra of subsets of (2.
A full conditional probability on .# is a function P : . x (ZF\{0}) — [0,1] satisfying
the obvious axioms (with only finite additivity). It is weakly G-invariant provided that
P(gA|gB) = P(A|B) for all g € G and A, B € %, and strongly G-invariant provided
that P(gA|B) = P(A|B) whenever g € G and AU gA C B. Armstrong (1989) claimed
that weak and strong invariance are equivalent, but we shall show that this is false and
that weak G-invariance implies strong G-invariance for every {2, # and P as above if
and only if G has no non-trivial left-orderable quotient. In particular, G = Z provides a
counterexample to Armstrong’s claim.

A full conditional (finitely additive) probability on an algebra .# of subsets
of 2 is a function P : % x (#\{0}) — [0,1] such that:

(a) P(—|B) is a finitely additive probability on .# with P(B|B) =1
for each fixed B € .Z#\{0}, and

(b) P(A|B)P(B|C) = P(A|C) whenever A C B C C' € .¥ with B
non-empty.

See [1I, 2, 5] [7] for some existence results.

Now suppose G is a group acting on {2, and .# is invariant under G (i.e.,
gA € F whenever g € G and A € .7). Then there are two ways to define
the concept of G-invariance of P. We say P is weakly G-invariant provided
that P(gA|gB) = P(A|B) for all g € G and A, B € .# with B # (). We say
P is strongly G-invariant provided that P(¢9A|B) = P(A|B) for all g € G
and A, B € . with AUgA C B and B # 0.
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In [T, Prop. 1.3|, it is claimed that weak and strong G-invariance are
equivalent, but the proof is clearly incomplete. It is indeed easy to see that
strong G-invariance implies weak G-invariance (see below), but our purpose
here is to show that the converse is in general false.

It is worth noting that the proof in [I] of the very interesting fact that a
strongly G-invariant probability exists on the G-invariant algebra .%# when-
ever GG is supramenable (i.e., when for every subset A of G there is a G-
invariant finitely additive probability p on the powerset of G with u(A) = 1)
fortunately does not depend on the faulty claim.

In fact, we can give a complete characterization of those groups G for
which strong G-invariance implies weak G-invariance. As usual, a group G is
left-orderable provided that there is a linear order < on G such that if x <y,
then gz < gy for g € G. (For more work on orders and preorders on groups,
see [4].) A quotient of a group is non-trivial provided that it has at least two
elements. We shall assume the Axiom of Choice.

THEOREM 1. For any group G, the following statements are equivalent:

(a) Whenever G acts on {2 and F is a G-invariant algebra of subsets
of 12, every weakly G-invariant full conditional probability on F is
strongly G-invariant.

(b) G has no non-trivial left-orderable quotient.

In particular, every Abelian group with an element of infinite order pro-
vides a counterexample to the implication from weak to strong G-invariance.
On the other hand, since no group generated by elements of finite order
(say, a Euclidean isometry group, which is generated by reflections) has a
left-orderable quotient, we have:

COROLLARY 1. If G is generated by elements of finite order, then weak
G-invariance of full conditional probability implies strong G-invariance.

I am also grateful to a referee for the following application. If G is a
finite-index subgroup of SL(n,Z), n > 3, then G is not left-orderable [9].
Moreover, all the non-trivial quotients of G are either finite or have finite
index [6, Chapter IV], and hence in either case are not left-orderable. Thus:

COROLLARY 2. If G is a finite-index subgroup of SL(n,Z), n > 3, then
weak G-invariance of full conditional probability implies strong G-invariance.

For the proof of Theorem[T] it is easier to work with probability exchange
rates, introduced in [2], though we simplify their definition. A probability ez-
change rate on an algebra .Z of subsets of (2 is a function r : # x (Z\{0}) —
[0, 00] such that:

(a) r(—,A) is a finitely additive measure with (A, A) = 1, and
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(b) r(A,B)r(B,C) = r(A,C) whenever A, B,C € % with B and C
non-empty and r(A, B)r(B, C) well-defined.

Here, ab for a,b € [0, 00] is well-defined provided that it is not the case that
one of a, b is zero and the other is infinity.

It is easy to check (cf. [2]) that every full conditional probability P has an
associated exchange rate defined by rp(A, B) = P(A|AUB)/P(B|AUB)
(where a/0 = oo for a > 0), and every exchange rate r is associated with
a conditional probability defined by P.(A|B) = r(A N B, B). Moreover,
rp, = r for any exchange rate r and P,, = P for any full conditional
probability P.

If G acts on {2 and % is G-invariant, we say that an exchange rate r
is weakly G-invariant provided that r(gA,gB) = r(A,B) for all A,B € %
with A # 0, and is strongly G-invariant provided that r(gA, B) = r(A, B)
for all A, B € % with B # (). Observe that r(A, B) = 1/r(B, A) whenever
A and B are non-empty, and hence strong G-invariance is equivalent to the
condition that r(A,gB) = r(A, B), and thus strong G-invariance implies
weak G-invariance.

It is easy to check that a full conditional probability is weakly (respec-
tively, strongly) G-invariant if and only if the associated exchange rate is
weakly (respectively, strongly) G-invariant. It follows that, as claimed earlier,
weak invariance implies strong invariance for full conditional probabilities.

Proof of Theorem . Assume (b) is false. Let < be a linear order on a
non-trivial quotient H = G/N with < compatible with left multiplication.
Then G acts on H by left multiplication.

Write a < b provided a < b but b £ a. Let .% be the algebra on H
generated by sets of the form [a,b] = {h € H : a < h < b}. Every member
of % is a finite union of <-intervals.

Write A < b for A C H provided that a < b for all a € A, and use similar
notation for other comparisons. Set

P(A|B):{O if there exists b € B with AN B < b,

1 otherwise.
This is a full conditional probability. Clearly P(B|B) = 1. Suppose A;
and Ay are disjoint. Suppose first that P(A;|B) = P(Az|B) = 0. Then
A1 N B < by and Ay < bg for by, by € B, and so A; U Ay < max(by, be) and
P(A1UA2| B) = 0. Next, suppose exactly one of P(A; | B) is 1 and the other
is zero. Clearly, then P(A; U Ay | B) = 1. The remaining case to dispose of is
where P(A; | B) = P(A2| B) = 1. Then A; N B and A2 N B are finite unions
of intervals. Let I; be a subinterval of A; N B such that for all a € A; N B
there is a b € I; with a <b. Since P(A; | B) = 1, for every b € B there is an
a € A; N B with b < a. Thus, for every member b of I; there is a member «a
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of I with b < a and for every member b of I5 there is a member a of I; with
b < a. But this is impossible for disjoint intervals I; and I5. Thus, condition
(a) of full conditional probability is satisfied.

Now suppose A C B C C with B non-empty. If P(A|B) = 0, then A
has a strict upper bound in B, and hence in C O B, so P(A|C) = 0. If
P(B|C) =0, then B has a strict upper bound in C, and hence A C B does
as well, so P(A|C) = 0. In both cases P(A|B)P(B|C) =0 = P(A|C).
The remaining case is where P(A|B) = P(B|C) = 1. To obtain a contra-
diction, suppose P(A|C) = 0. Then there is a ¢ € C such that A < ¢. If
¢ € B, then P(A|B) = 0 and we have a contradiction. So ¢ ¢ B. Suppose
thereisab e B withe <b. Thenc <basc¢ B,and A <b,so P(A|B) =0,
a contradiction. So there is no such b and hence B < ¢ by totality of <. Thus,
P(B|C) =0, a contradiction. Thus, we must have P(A|C) = 1 and hence
P(A|B)P(B|C) =1= P(A|C). Hence, P is a full conditional probabil-
ity.

It is obvious that P is weakly G-invariant. Now choose a,b € H with
a < b. Let h € G be such that hb = a. Then P({b}|{a,b}) = 1 but
P(h{b}|{a,b}) = P({a}|{a,b}) = 0 and so strong invariance fails.

Now for the converse, suppose (a) is false. By the correspondence between
exchange rates and full conditional probabilities, there is a space {2 acted
on by G and an exchange rate r on a G-invariant algebra .# of subsets of
{2 where r is weakly but not strongly G-invariant. Since r is not strongly
G-invariant, there are A, B € .% and go € G such that r(goA, B) # r(A, B).
It follows that r(goA,A) # 1, since if r(goA, A) = 1 then r(goA,B) =
r(goA, A)r(A, B) = r(A, B).

Write f < g for f,g in G if and only if r(fA,gA) < 1. This is a total,
reflexive and transitive relation, i.e., a total preorder. Write f ~ g if and
only if f < g and g < f. Observe that gg ~ e.

The rest of the proof is an argument from [3] which we give in detail for
the reader’s convenience. By the Axiom of Choice, let < be any well-order on
G (no need for compatibility with multiplication). Write f = ¢ if and only
if fh ~ ghforall h € G. If f # g, write h(f,g) = minz{h € G : fh = gh}.
Define f < g for f,g € G if and only if either (a) f = g or (b) f # g and
fh(f,9) S gh(f.9).

Observe that < is a total preorder. Reflexivity is immediate, and totality
follows from the fact that if f # g, then f < g or g < f depending whether
Th(f.9) S gh(f.9) or gh(fg) S fh(f.g), respectively. Only transitivity
remains. It is easy to see that if f = ¢g and g < k then f < k and that if
f<gand g=Fkthen f < k. Suppose f Zg, g%k, f <gand g <k. Let
hi1 = h(f,g) and he = h(g, k). Then fh; < ghy and ghs < kha.

Let h = min(hy, he). We then have fh < gh since h < hy and gh < kh
since h < hy. So fh < kh. Moreover, fh' ~ gh’ ~ kh' for all h’ < h. Suppose
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fh ~ kh. Since fh < gh < kh we then have fh ~ gh and gh ~ kh, which is
impossible by choice of h, hy, ha. So fh ~ kh and hence f < k.

It is clear that < is invariant under left multiplication. Observe also that
the conjunction f < gand g < fholdsifandonlyif f =g. Let N ={f € G :
f = e}. This is a normal subgroup of G. For fix f € N and h € G. Then
for any g € G we have fhg ~ hg since f = e, and so by left invariance of <
we have h™'fhg ~ h™*hg = g. Thus h"'fh = e, so h"'fh € N, and so N
is normal. (This is the crucial point. If we had {f € G : f ~ e} normal, we
could have worked more simply with < instead of <.)

Observe that go ¢ N, since gy » e. Thus N is a proper subgroup of G.
Observe that if a € N and f € G, then ah ~ h for all h € G, and so
fah ~ fh. Thus, if a € N, we have fa = f.

Next define fN < gN if and only if f < g. Then < is a well-defined total
order on G/N. For suppose fa = f’ and gb = ¢’ for a,b € N and f,g € G.
Then f = f' and f = ¢/, and so f < g if and only if f/ < ¢/, and we have
well-definition. The totality, reflexivity and transitivity of < on G/N follows
from that of < on G. And if fN < gN and gN < fN, then f = g, and so
g 'f=eand hence g~'f € N and fN =gN. u

Theorem [1] shows that if G has a non-trivial left-orderable quotient then
there is a space {2 acted on by G and a G-invariant algebra .% on {2 that pro-
vides a counterexample to the weak-to-strong G-invariance implication for
full conditional probabilities. The counterexample crucially used an algebra
% of finite unions of intervals.

It is also interesting whether the weak-to-strong implication holds in the
special case where % is the powerset algebra P{2. The answer to this is
negative.

EXAMPLE 1. Let G = Z. It isknown [7] that there is a strongly Z-invariant
full conditional probability Py on PZ (indeed, on PR). For A, B € PZ with
B # () set

0 if supANB < sup B < oo,
P(A|B)=«1 if supANB =supB < oo,
Py(ANZT|BNZ') ifsupB = cc.
This is a full conditional probability. For clearly P(— | B) is a finitely additive
probability with P(B|B) = 1. Note that by strong Z-invariance and finite
additivity Py(A|B) = 0 whenever A is finite and B is infinite.

Suppose A C B C C with B non-empty. Suppose first that sup B < co.
If supC = oo, then C N Z" is infinite while both B N ZT and A N Z*
are finite, and so P(A|B)P(B|C) = 0 = P(A|C). If supC < oo, then
P(A|B)P(B|C)=1=P(A|C)ifsupA =supC, and P(A|B)P(B|C) =
0=P(A|C)if supA <supC.
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Suppose sup B = co. Then
P(A|B)P(B|C) = Py(ANZ"|BNZPy(BNZ"|CNZ")
=P(ANZT|CNZ')=P(A|C).

Since P({0}]{0,1}) = 0 and P({1}]{0,1}) = 1, we do not have strong
Z-invariance. But we do have weak Z-invariance. All we need to show is
that P(14+ A|1+ B) = P(A|B). If sup B < oo this is obvious. Suppose
sup B = oo. Then

P14+ A|1+B)=P((1+(ANZ")UA|(1+ (BNZ"))UBy)

where Ag and By have at most one element each. But B N Z7 is infinite, so
Po(AO ’ (1+(BOZ+))UB()) =0 and P0(1+(BQZ+) | (1+(BOZ+))UB()) =1,
SO

Po(14+ (ANZT)UAg| (1 +(BNZY))U By)
=P(1+(ANZN)|1+(BNZ))
=Py(ANZ"|BNZ") = P(A|B),

by strong, and hence weak, Z-invariance of F.
We end with two interesting questions.

QUESTION 1. For what groups G is there a weakly G-invariant proba-
bility P on a powerset algebra where P is not strongly G-invariant?

QUESTION 2. Isthere a group G and a space (£2,.%) that admits a weakly
G-invariant probability but no strongly G-invariant probability? What if
F =P

As a special case, because of the Sierpiriski-Mazurkiewicz Paradox [8],
p. 9], there is no full conditional probability on PR? that is strongly invariant
under rigid motions (since there is no rigid-motion invariant finitely additive
probability on the Sierpinski-Mazurkiewicz set), but it is not known whether
there is a weakly invariant one (though of course there is none that is weakly
invariant under all isometries, by Corollary .
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