Two Kinds of Invariance of Full Conditional Probabilities

by
Alexander R. PRUSS
Presented by Stanisław KWAPIEŃ

Summary. Let G be a group acting on Ω and \mathscr{F} a G-invariant algebra of subsets of Ω. A full conditional probability on \mathscr{F} is a function $P: \mathscr{F} \times(\mathscr{F} \backslash\{\emptyset\}) \rightarrow[0,1]$ satisfying the obvious axioms (with only finite additivity). It is weakly G-invariant provided that $P(g A \mid g B)=P(A \mid B)$ for all $g \in G$ and $A, B \in \mathscr{F}$, and strongly G-invariant provided that $P(g A \mid B)=P(A \mid B)$ whenever $g \in G$ and $A \cup g A \subseteq B$. Armstrong (1989) claimed that weak and strong invariance are equivalent, but we shall show that this is false and that weak G-invariance implies strong G-invariance for every Ω, \mathscr{F} and P as above if and only if G has no non-trivial left-orderable quotient. In particular, $G=\mathbb{Z}$ provides a counterexample to Armstrong's claim.

A full conditional (finitely additive) probability on an algebra \mathscr{F} of subsets of Ω is a function $P: \mathscr{F} \times(\mathscr{F} \backslash\{\emptyset\}) \rightarrow[0,1]$ such that:
(a) $P(-\mid B)$ is a finitely additive probability on \mathscr{F} with $P(B \mid B)=1$ for each fixed $B \in \mathscr{F} \backslash\{\emptyset\}$, and
(b) $P(A \mid B) P(B \mid C)=P(A \mid C)$ whenever $A \subseteq B \subseteq C \in \mathscr{F}$ with B non-empty.

See [1, 2, 5, 7] for some existence results.
Now suppose G is a group acting on Ω, and \mathscr{F} is invariant under G (i.e., $g A \in \mathscr{F}$ whenever $g \in G$ and $A \in \mathscr{F})$. Then there are two ways to define the concept of G-invariance of P. We say P is weakly G-invariant provided that $P(g A \mid g B)=P(A \mid B)$ for all $g \in G$ and $A, B \in \mathscr{F}$ with $B \neq \emptyset$. We say P is strongly G-invariant provided that $P(g A \mid B)=P(A \mid B)$ for all $g \in G$ and $A, B \in \mathscr{F}$ with $A \cup g A \subseteq B$ and $B \neq \emptyset$.

[^0]In [1, Prop. 1.3], it is claimed that weak and strong G-invariance are equivalent, but the proof is clearly incomplete. It is indeed easy to see that strong G-invariance implies weak G-invariance (see below), but our purpose here is to show that the converse is in general false.

It is worth noting that the proof in [1] of the very interesting fact that a strongly G-invariant probability exists on the G-invariant algebra \mathscr{F} whenever G is supramenable (i.e., when for every subset A of G there is a G invariant finitely additive probability μ on the powerset of G with $\mu(A)=1$) fortunately does not depend on the faulty claim.

In fact, we can give a complete characterization of those groups G for which strong G-invariance implies weak G-invariance. As usual, a group G is left-orderable provided that there is a linear order \leq on G such that if $x \leq y$, then $g x \leq g y$ for $g \in G$. (For more work on orders and preorders on groups, see [4].) A quotient of a group is non-trivial provided that it has at least two elements. We shall assume the Axiom of Choice.

THEOREM 1. For any group G, the following statements are equivalent:
(a) Whenever G acts on Ω and \mathscr{F} is a G-invariant algebra of subsets of Ω, every weakly G-invariant full conditional probability on \mathscr{F} is strongly G-invariant.
(b) G has no non-trivial left-orderable quotient.

In particular, every Abelian group with an element of infinite order provides a counterexample to the implication from weak to strong G-invariance. On the other hand, since no group generated by elements of finite order (say, a Euclidean isometry group, which is generated by reflections) has a left-orderable quotient, we have:

Corollary 1. If G is generated by elements of finite order, then weak G-invariance of full conditional probability implies strong G-invariance.

I am also grateful to a referee for the following application. If G is a finite-index subgroup of $\operatorname{SL}(n, \mathbb{Z}), n \geq 3$, then G is not left-orderable [9]. Moreover, all the non-trivial quotients of G are either finite or have finite index [6, Chapter IV], and hence in either case are not left-orderable. Thus:

Corollary 2. If G is a finite-index subgroup of $\mathrm{SL}(n, \mathbb{Z})$, $n \geq 3$, then weak G-invariance of full conditional probability implies strong G-invariance.

For the proof of Theorem 1 , it is easier to work with probability exchange rates, introduced in [2], though we simplify their definition. A probability exchange rate on an algebra \mathscr{F} of subsets of Ω is a function $r: \mathscr{F} \times(\mathscr{F} \backslash\{\emptyset\}) \rightarrow$ $[0, \infty]$ such that:
(a) $r(-, A)$ is a finitely additive measure with $r(A, A)=1$, and
(b) $r(A, B) r(B, C)=r(A, C)$ whenever $A, B, C \in \mathscr{F}$ with B and C non-empty and $r(A, B) r(B, C)$ well-defined.

Here, $a b$ for $a, b \in[0, \infty]$ is well-defined provided that it is not the case that one of a, b is zero and the other is infinity.

It is easy to check (cf. [2]) that every full conditional probability P has an associated exchange rate defined by $r_{P}(A, B)=P(A \mid A \cup B) / P(B \mid A \cup B)$ (where $a / 0=\infty$ for $a>0$), and every exchange rate r is associated with a conditional probability defined by $P_{r}(A \mid B)=r(A \cap B, B)$. Moreover, $r_{P_{r}}=r$ for any exchange rate r and $P_{r_{P}}=P$ for any full conditional probability P.

If G acts on Ω and \mathscr{F} is G-invariant, we say that an exchange rate r is weakly G-invariant provided that $r(g A, g B)=r(A, B)$ for all $A, B \in \mathscr{F}$ with $A \neq \emptyset$, and is strongly G-invariant provided that $r(g A, B)=r(A, B)$ for all $A, B \in \mathscr{F}$ with $B \neq \emptyset$. Observe that $r(A, B)=1 / r(B, A)$ whenever A and B are non-empty, and hence strong G-invariance is equivalent to the condition that $r(A, g B)=r(A, B)$, and thus strong G-invariance implies weak G-invariance.

It is easy to check that a full conditional probability is weakly (respectively, strongly) G-invariant if and only if the associated exchange rate is weakly (respectively, strongly) G-invariant. It follows that, as claimed earlier, weak invariance implies strong invariance for full conditional probabilities.

Proof of Theorem 1. Assume (b) is false. Let \leq be a linear order on a non-trivial quotient $H=G / N$ with \leq compatible with left multiplication. Then G acts on H by left multiplication.

Write $a<b$ provided $a \leq b$ but $b \not \leq a$. Let \mathscr{F} be the algebra on H generated by sets of the form $[a, b]=\{h \in H: a \leq h \leq b\}$. Every member of \mathscr{F} is a finite union of \leq-intervals.

Write $A<b$ for $A \subseteq H$ provided that $a<b$ for all $a \in A$, and use similar notation for other comparisons. Set

$$
P(A \mid B)= \begin{cases}0 & \text { if there exists } b \in B \text { with } A \cap B<b \\ 1 & \text { otherwise }\end{cases}
$$

This is a full conditional probability. Clearly $P(B \mid B)=1$. Suppose A_{1} and A_{2} are disjoint. Suppose first that $P\left(A_{1} \mid B\right)=P\left(A_{2} \mid B\right)=0$. Then $A_{1} \cap B<b_{1}$ and $A_{2}<b_{2}$ for $b_{1}, b_{2} \in B$, and so $A_{1} \cup A_{2}<\max \left(b_{1}, b_{2}\right)$ and $P\left(A_{1} \cup A_{2} \mid B\right)=0$. Next, suppose exactly one of $P\left(A_{i} \mid B\right)$ is 1 and the other is zero. Clearly, then $P\left(A_{1} \cup A_{2} \mid B\right)=1$. The remaining case to dispose of is where $P\left(A_{1} \mid B\right)=P\left(A_{2} \mid B\right)=1$. Then $A_{1} \cap B$ and $A_{2} \cap B$ are finite unions of intervals. Let I_{i} be a subinterval of $A_{i} \cap B$ such that for all $a \in A_{i} \cap B$ there is a $b \in I_{i}$ with $a \leq b$. Since $P\left(A_{i} \mid B\right)=1$, for every $b \in B$ there is an $a \in A_{i} \cap B$ with $b \leq a$. Thus, for every member b of I_{1} there is a member a
of I_{2} with $b \leq a$ and for every member b of I_{2} there is a member a of I_{1} with $b \leq a$. But this is impossible for disjoint intervals I_{1} and I_{2}. Thus, condition (a) of full conditional probability is satisfied.

Now suppose $A \subseteq B \subseteq C$ with B non-empty. If $P(A \mid B)=0$, then A has a strict upper bound in B, and hence in $C \supseteq B$, so $P(A \mid C)=0$. If $P(B \mid C)=0$, then B has a strict upper bound in C, and hence $A \subseteq B$ does as well, so $P(A \mid C)=0$. In both cases $P(A \mid B) P(B \mid C)=0=P(A \mid C)$. The remaining case is where $P(A \mid B)=P(B \mid C)=1$. To obtain a contradiction, suppose $P(A \mid C)=0$. Then there is a $c \in C$ such that $A<c$. If $c \in B$, then $P(A \mid B)=0$ and we have a contradiction. So $c \notin B$. Suppose there is a $b \in B$ with $c \leq b$. Then $c<b$ as $c \notin B$, and $A<b$, so $P(A \mid B)=0$, a contradiction. So there is no such b and hence $B<c$ by totality of \leq. Thus, $P(B \mid C)=0$, a contradiction. Thus, we must have $P(A \mid C)=1$ and hence $P(A \mid B) P(B \mid C)=1=P(A \mid C)$. Hence, P is a full conditional probability.

It is obvious that P is weakly G-invariant. Now choose $a, b \in H$ with $a<b$. Let $h \in G$ be such that $h b=a$. Then $P(\{b\} \mid\{a, b\})=1$ but $P(h\{b\} \mid\{a, b\})=P(\{a\} \mid\{a, b\})=0$ and so strong invariance fails.

Now for the converse, suppose (a) is false. By the correspondence between exchange rates and full conditional probabilities, there is a space Ω acted on by G and an exchange rate r on a G-invariant algebra \mathscr{F} of subsets of Ω where r is weakly but not strongly G-invariant. Since r is not strongly G-invariant, there are $A, B \in \mathscr{F}$ and $g_{0} \in G$ such that $r\left(g_{0} A, B\right) \neq r(A, B)$. It follows that $r\left(g_{0} A, A\right) \neq 1$, since if $r\left(g_{0} A, A\right)=1$ then $r\left(g_{0} A, B\right)=$ $r\left(g_{0} A, A\right) r(A, B)=r(A, B)$.

Write $f \lesssim g$ for f, g in G if and only if $r(f A, g A) \leq 1$. This is a total, reflexive and transitive relation, i.e., a total preorder. Write $f \sim g$ if and only if $f \lesssim g$ and $g \lesssim f$. Observe that $g_{0} \nsim e$.

The rest of the proof is an argument from [3] which we give in detail for the reader's convenience. By the Axiom of Choice, let \prec be any well-order on G (no need for compatibility with multiplication). Write $f \equiv g$ if and only if $f h \sim g h$ for all $h \in G$. If $f \not \equiv g$, write $h(f, g)=\min _{\prec}\{h \in G: f h \nsim g h\}$. Define $f \leq g$ for $f, g \in G$ if and only if either (a) $f \equiv g$ or (b) $f \not \equiv g$ and $f h(f, g) \lesssim g h(f, g)$.

Observe that \leq is a total preorder. Reflexivity is immediate, and totality follows from the fact that if $f \not \equiv g$, then $f \leq g$ or $g \leq f$ depending whether $f h(f, g) \lesssim g h(f, g)$ or $g h(f, g) \lesssim f h(f, g)$, respectively. Only transitivity remains. It is easy to see that if $f \equiv g$ and $g \leq k$ then $f \leq k$ and that if $f \leq g$ and $g \equiv k$ then $f \leq k$. Suppose $f \not \equiv g, g \not \equiv k, f \leq g$ and $g \leq k$. Let $h_{1}=h(f, g)$ and $h_{2}=h(g, k)$. Then $f h_{1} \lesssim g h_{1}$ and $g h_{2} \lesssim k h_{2}$.

Let $h=\min _{\prec}\left(h_{1}, h_{2}\right)$. We then have $f h \lesssim g h$ since $h \leq h_{1}$ and $g h \lesssim k h$ since $h \leq h_{2}$. So $f h \lesssim k h$. Moreover, $f h^{\prime} \sim g h^{\prime} \sim k h^{\prime}$ for all $h^{\prime} \prec h$. Suppose
$f h \sim k h$. Since $f h \lesssim g h \lesssim k h$ we then have $f h \sim g h$ and $g h \sim k h$, which is impossible by choice of h, h_{1}, h_{2}. So $f h \nsim k h$ and hence $f \leq k$.

It is clear that \leq is invariant under left multiplication. Observe also that the conjunction $f \leq g$ and $g \leq f$ holds if and only if $f \equiv g$. Let $N=\{f \in G$: $f \equiv e\}$. This is a normal subgroup of G. For fix $f \in N$ and $h \in G$. Then for any $g \in G$ we have $f h g \sim h g$ since $f \equiv e$, and so by left invariance of \lesssim we have $h^{-1} f h g \sim h^{-1} h g=g$. Thus $h^{-1} f h \equiv e$, so $h^{-1} f h \in N$, and so N is normal. (This is the crucial point. If we had $\{f \in G: f \sim e\}$ normal, we could have worked more simply with \lesssim instead of \leq.)

Observe that $g_{0} \notin N$, since $g_{0} \nsim e$. Thus N is a proper subgroup of G. Observe that if $a \in N$ and $f \in G$, then $a h \sim h$ for all $h \in G$, and so $f a h \sim f h$. Thus, if $a \in N$, we have $f a \equiv f$.

Next define $f N \leq g N$ if and only if $f \leq g$. Then \leq is a well-defined total order on G / N. For suppose $f a=f^{\prime}$ and $g b=g^{\prime}$ for $a, b \in N$ and $f, g \in G$. Then $f \equiv f^{\prime}$ and $f \equiv g^{\prime}$, and so $f \leq g$ if and only if $f^{\prime} \leq g^{\prime}$, and we have well-definition. The totality, reflexivity and transitivity of \leq on G / N follows from that of \leq on G. And if $f N \leq g N$ and $g N \leq f N$, then $f \equiv g$, and so $g^{-1} f \equiv e$ and hence $g^{-1} f \in N$ and $f N=g N$.

Theorem 1 shows that if G has a non-trivial left-orderable quotient then there is a space Ω acted on by G and a G-invariant algebra \mathscr{F} on Ω that provides a counterexample to the weak-to-strong G-invariance implication for full conditional probabilities. The counterexample crucially used an algebra \mathscr{F} of finite unions of intervals.

It is also interesting whether the weak-to-strong implication holds in the special case where \mathscr{F} is the powerset algebra $\mathcal{P} \Omega$. The answer to this is negative.

Example 1. Let $G=\mathbb{Z}$. It is known [7] that there is a strongly \mathbb{Z}-invariant full conditional probability P_{0} on $\mathcal{P} \mathbb{Z}$ (indeed, on $\mathcal{P} \mathbb{R}$). For $A, B \in \mathcal{P} Z$ with $B \neq \emptyset$ set

$$
P(A \mid B)= \begin{cases}0 & \text { if } \sup A \cap B<\sup B<\infty \\ 1 & \text { if } \sup A \cap B=\sup B<\infty \\ P_{0}\left(A \cap \mathbb{Z}^{+} \mid B \cap \mathbb{Z}^{+}\right) & \text {if } \sup B=\infty\end{cases}
$$

This is a full conditional probability. For clearly $P(-\mid B)$ is a finitely additive probability with $P(B \mid B)=1$. Note that by strong \mathbb{Z}-invariance and finite additivity $P_{0}(A \mid B)=0$ whenever A is finite and B is infinite.

Suppose $A \subseteq B \subseteq C$ with B non-empty. Suppose first that $\sup B<\infty$. If $\sup C=\infty$, then $C \cap \mathbb{Z}^{+}$is infinite while both $B \cap \mathbb{Z}^{+}$and $A \cap \mathbb{Z}^{+}$ are finite, and so $P(A \mid B) P(B \mid C)=0=P(A \mid C)$. If $\sup C<\infty$, then $P(A \mid B) P(B \mid C)=1=P(A \mid C)$ if $\sup A=\sup C$, and $P(A \mid B) P(B \mid C)=$ $0=P(A \mid C)$ if $\sup A<\sup C$.

Suppose $\sup B=\infty$. Then

$$
\begin{aligned}
P(A \mid B) P(B \mid C) & =P_{0}\left(A \cap \mathbb{Z}^{+} \mid B \cap \mathbb{Z}^{+}\right) P_{0}\left(B \cap \mathbb{Z}^{+} \mid C \cap \mathbb{Z}^{+}\right) \\
& =P_{0}\left(A \cap \mathbb{Z}^{+} \mid C \cap \mathbb{Z}^{+}\right)=P(A \mid C) .
\end{aligned}
$$

Since $P(\{0\} \mid\{0,1\})=0$ and $P(\{1\} \mid\{0,1\})=1$, we do not have strong \mathbb{Z}-invariance. But we do have weak \mathbb{Z}-invariance. All we need to show is that $P(1+A \mid 1+B)=P(A \mid B)$. If $\sup B<\infty$ this is obvious. Suppose $\sup B=\infty$. Then

$$
P(1+A \mid 1+B)=P_{0}\left(\left(1+\left(A \cap \mathbb{Z}^{+}\right)\right) \cup A_{0} \mid\left(1+\left(B \cap \mathbb{Z}^{+}\right)\right) \cup B_{0}\right)
$$

where A_{0} and B_{0} have at most one element each. But $B \cap \mathbb{Z}^{+}$is infinite, so $P_{0}\left(A_{0} \mid\left(1+\left(B \cap \mathbb{Z}^{+}\right)\right) \cup B_{0}\right)=0$ and $P_{0}\left(1+\left(B \cap \mathbb{Z}^{+}\right) \mid\left(1+\left(B \cap \mathbb{Z}^{+}\right)\right) \cup B_{0}\right)=1$, so

$$
\begin{aligned}
P_{0}\left(\left(1+\left(A \cap \mathbb{Z}^{+}\right)\right) \cup A_{0} \mid\right. & \left.\left(1+\left(B \cap \mathbb{Z}^{+}\right)\right) \cup B_{0}\right) \\
& =P_{0}\left(1+\left(A \cap \mathbb{Z}^{+}\right) \mid 1+\left(B \cap \mathbb{Z}^{+}\right)\right) \\
& =P_{0}\left(A \cap \mathbb{Z}^{+} \mid B \cap \mathbb{Z}^{+}\right)=P(A \mid B),
\end{aligned}
$$

by strong, and hence weak, \mathbb{Z}-invariance of P_{0}.
We end with two interesting questions.
Question 1. For what groups G is there a weakly G-invariant probability P on a powerset algebra where P is not strongly G-invariant?

Question 2. Is there a group G and a space (Ω, \mathscr{F}) that admits a weakly G-invariant probability but no strongly G-invariant probability? What if $\mathscr{F}=\mathcal{P} \Omega$?

As a special case, because of the Sierpiński-Mazurkiewicz Paradox [8, p. 9], there is no full conditional probability on $\mathcal{P} \mathbb{R}^{2}$ that is strongly invariant under rigid motions (since there is no rigid-motion invariant finitely additive probability on the Sierpiński-Mazurkiewicz set), but it is not known whether there is a weakly invariant one (though of course there is none that is weakly invariant under all isometries, by Corollary 11).

References

[1] T. E. Armstrong, Invariance of full conditional probabilities under group actions, in: R. D. Mauldin et al. (eds.), Measure and Measurable Dynamics (Rochester, NY, 1987), Contemp. Math. 94, Amer. Math. Soc., Providence, RI, 1989, 1-21.
[2] T. E. Armstrong and W. D. Sudderth, Locally coherent rates of exchange, Ann. Statist. 17 (1989), 1394-1408.
[3] Y. Cornulier, Answer to "Totally right preorderable groups", http://mathoverflow.net/ questions/147141/totally-right-preorderable-groups (2013).
[4] B. Deroin, A. Navas, and C. Rivas, Groups, Orders and Dynamics, manuscript.
[5] P. H. Krauss, Representation of conditional probability measures on Boolean algebras, Acta Math. Acad. Sci. Hungar. 19 (1968), 229-241.
[6] G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer, Berlin, 1991.
[7] R. Parikh and M. Parnes, Conditional probabilities and uniform sets, in: A. Hurd and P. Loeb (eds.), Victoria Symposium on Nonstandard Analysis, Springer, Berlin, 1974, 180-194.
[8] S. Wagon, The Banach-Tarski Paradox, Cambridge Univ. Press, Cambridge, 1994.
[9] D. Witte, Arithmetic groups of higher \mathbb{Q}-rank cannot act on 1-manifolds, Proc. Amer. Math. Soc. 122 (1994), 333-340.

Alexander R. Pruss
Department of Philosophy
Baylor University
One Bear Place \#97273
Waco, TX 76798-7273, U.S.A.
E-mail: alexander_pruss@baylor.edu

Received December 31, 2013;
received in final form February 16, 2014

[^0]: 2010 Mathematics Subject Classification: Primary 60A99, 60B99; Secondary 06F15.
 Key words and phrases: full conditional probability, G-invariance, left-orderable group, probability exchange rate.

