Characteristic Exponents of Rational Functions

by
Anna ZDUNIK
Presented by Feliks PRZYTYCKI

Summary. We consider two characteristic exponents of a rational function $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ of degree $d \geq 2$. The exponent $\chi_{a}(f)$ is the average of $\log \left\|f^{\prime}\right\|$ with respect to the measure of maximal entropy. The exponent $\chi_{m}(f)$ can be defined as the maximal characteristic exponent over all periodic orbits of f. We prove that $\chi_{a}(f)=\chi_{m}(f)$ if and only if $f(z)$ is conformally conjugate to $z \mapsto z^{ \pm d}$.

1. Introduction and statement of results. Let $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ be a rational function of degree $d \geq 2$. In $[\mathrm{BE}$, M. Barrett and A. Eremenko considered the value $K(f)=\max _{\hat{\mathbb{C}}}\left\|f^{\prime}\right\|$. Here and below, $\left\|f^{\prime}\right\|$ always denotes the derivative with respect to the spherical metric,

$$
\left\|f^{\prime}(z)\right\|=\left|f^{\prime}(z)\right| \cdot \frac{1+|z|^{2}}{1+\left|f^{\prime}(z)\right|^{2}}
$$

Among other issues, the authors of [BE] studied the behaviour of the value $K(\cdot)$ under iterations of a given function. More precisely, denote by f^{n} the nth iterate of f, and define

$$
k_{\infty}(f)=\lim _{n \rightarrow \infty} \frac{1}{n} \log K\left(f^{n}\right)
$$

A slightly different maximum characteristic exponent is defined as

$$
\begin{equation*}
\chi_{m}(f)=\sup _{z} \limsup _{n \rightarrow \infty} \frac{1}{n} \log \left\|\left(f^{n}\right)^{\prime}(z)\right\| . \tag{1}
\end{equation*}
$$

Clearly,

$$
\chi_{m}(f) \leq k_{\infty}(f)
$$

[^0]According to a result of Przytycki [P] (reproved in GPRR]), $k_{\infty}(f)=\chi_{m}(f)$ and one can replace $\sup _{z \in \hat{\mathbb{C}}}$ in (1) by the supremum over all periodic points:

$$
\begin{equation*}
\chi_{m}(f)=\sup _{z \in \operatorname{Per}(f)} \lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\left(f^{n}\right)^{\prime}(z)\right\| \tag{2}
\end{equation*}
$$

Finally, let

$$
\begin{equation*}
\chi_{a}(f)=\int \log \left\|f^{\prime}\right\| d \mu \tag{3}
\end{equation*}
$$

be the average of $\log \left\|f^{\prime}\right\|$ with respect to the unique measure of maximal entropy. Denoting $\alpha=\operatorname{dim}_{H}(\mu)$ we can thus write

$$
\begin{equation*}
\chi_{a}(f)=\frac{\log d}{\alpha} \geq \frac{\log d}{2} \tag{4}
\end{equation*}
$$

So, we have the following inequalities:

$$
\begin{equation*}
\frac{1}{2} \log d \leq \chi_{a}(f) \leq \chi_{m}(f) \leq \log K(f) \tag{5}
\end{equation*}
$$

In the first inequality of (5) equality holds only for Lattès maps (see [Z]). The authors of [BE] characterize the maps for which the third inequality becomes an equality: $\chi_{m}(f)=\log K(f)$ iff the set $M=\left\{z:\left\|f^{\prime}(z)\right\|=K(f)\right\}$ contains a periodic orbit of f. They remark that, according to a suggestion of F. Przytycki, the method of my paper [Z] could probably be used to prove that the equality $\chi_{a}(f)=\chi_{m}(f)$ holds if and only if f is conformally conjugate to $z \mapsto z^{ \pm d}$.

The aim of this note is to provide the proof of this fact. We have the following

THEOREM 1. Let $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ be a rational function of degree $d \geq 2$. Then $\chi_{m}(f)=\chi_{a}(f)$ if and only if f is conformally conjugate to one of the functions: $z \mapsto z^{d}, z \mapsto z^{-d}$.
2. The proof of Theorem 1. The proof is based on the corresponding arguments in [Z]. We shall refer to several auxiliary facts proved in [Z].

As above, denote

$$
\alpha=\operatorname{dim}_{\mathrm{H}}(\mu)=\frac{\log d}{\chi_{a}(f)}
$$

Set

$$
\begin{equation*}
\phi=\alpha \log \left\|f^{\prime}\right\|-\log d \tag{6}
\end{equation*}
$$

Then $|\phi|^{p}$ is μ-integrable for all $p>0$ (see e.g. [PUZ, Lemma 5]). Clearly,

$$
\int \phi d \mu=0
$$

Definition 2. With the notation above, we say that $\psi \in L^{2}(\mu)$ is cohomologous to zero in $L^{2}(\mu)$ if there exists $u \in L^{2}(\mu)$ such that $\psi=u \circ f-u$.

Following [Z] we shall distinguish two cases, depending on whether ϕ is cohomologous to 0 or not.

Definition 3. A rational function f is called exceptional if ϕ is cohomologous to zero in $L^{2}(\mu)$.

The exceptional maps have been classified in (Z). It turns out that for an exceptional map we have $\alpha=1$ or $\alpha=2$ and the map is critically finite, with parabolic orbifold (see \mathbb{Z} for details). The only exceptional maps with $\alpha=1$ are (up to a conjugacy by a Möbius transformation): $f(z)=z^{ \pm d}$ and $f(z)= \pm$ Chebyshev polynomial. For \pm Chebyshev polynomial of degree d it is easy to see that $\chi_{m}(f)=2 \log d>\chi_{a}(f)=\log d$. Obviously, we have $\chi_{a}(f)=\chi_{m}(f)$ for $f(z)=z^{ \pm d}$.

The case $\alpha=2$ corresponds to so-called Lattès examples. It has been treated in [BE]. In this case, $\frac{1}{2} \log d=\chi_{a}(f)<\chi_{m}(f)=\log d$.

Thus, the rest of the proof of Theorem 1 relies on the following.
Proposition 4. If a rational function f of degree $d \geq 2$ is not exceptional then $\chi_{a}(f)<\chi_{m}(f)$.

Proof. We recall the notation and some facts from [Z]. First, $J=J(f)$ denotes the Julia set of the map f. It can be defined as the topological support of the measure μ of maximal entropy. As in Z, we work in the natural extension $(\tilde{J}, \tilde{\mu}, \tilde{f})$. See e.g. PU for the definition of the natural extension and its properties. The set \vec{J} consists of two-sided infinite sequences (trajectories)

$$
\left(\ldots, x_{-k}, x_{-(k-1)}, \ldots, x_{0}, x_{1}, \ldots, x_{k}, \ldots\right)
$$

such that $f\left(x_{j}\right)=x_{j+1}$ for all $j \in \mathbb{Z}$. The invertible map $\tilde{f}: \tilde{J} \rightarrow \tilde{J}$ is the left shift. Let $\pi: \tilde{J} \rightarrow J$ be the projection onto the 0th coordinate. The measure $\tilde{\mu}$ is invariant for the automorphism \tilde{f} and $\pi_{*} \tilde{\mu}=\mu$.

Let $B=B(p, r)$ be a ball in $\hat{\mathbb{C}}$. We denote by $2 B$ the ball $B(p, 2 r)$.
Let f_{ν}^{-n} be a branch of f^{-n}. We say that this branch is (K, δ, B)-good if f_{ν}^{-n} is well-defined in $2 B$ and $\operatorname{diam}\left(f_{\nu}^{-n}(B)\right)<K \exp (-n \delta)$.

We recall, in a more convenient form, the Basic Lemma from [Z].
Lemma 5 (Basic Lemma). Let f be a rational function of degree $d \geq 2$. There exist $\delta>0$ such that for every $\tilde{\varepsilon}>0$ there exist $M \in \mathbb{Z}_{+}$and $K>0$ such that the following holds. If B is a ball in $\hat{\mathbb{C}}$ and there are no critical values of f^{M} in $2 B$ then there is a subset $\tilde{K}_{B} \subset \tilde{B}=\pi^{-1}(B)$ of $\tilde{\mu}$-measure greater than $(1-\tilde{\varepsilon}) \mu(B)$ such that, for every $k \in \mathbb{Z}_{+}$and for every $\left(\ldots, x_{-k}, x_{-k+1}, \ldots, x_{0}, x_{1}, \ldots\right) \in \tilde{K}_{B}$, we have

$$
x_{-k}=f_{\nu}^{-k}\left(x_{0}\right)
$$

for some (K, δ, B)-good branch of f^{-k}.

To every $\tilde{\varepsilon}>0$ one can associate a family \mathcal{B} of balls in the following way: Choose some $\tilde{\varepsilon}>0$ and let M be the value assigned to $\tilde{\varepsilon}$ in the Basic Lemma. Let p_{1}, \ldots, p_{s} be the critical values of f^{M}, and let B_{1}, \ldots, B_{s} be the balls centred at p_{i} 's with some radius r. Let \mathcal{B} be a cover of $\hat{\mathbb{C}} \backslash \bigcup_{i=1}^{s} B_{i}$ with balls of radius $r / 4$. Clearly, we can assume that for every $B \in \mathcal{B}$,

$$
\begin{equation*}
2 B \cap\left\{p_{1}, \ldots, p_{s}\right\}=\emptyset \tag{7}
\end{equation*}
$$

so that for each $B \in \mathcal{B}$ Lemma 5 applies. Moreover, since the measure μ is atomless, we can require that r is small enough, so that

$$
\begin{equation*}
\tilde{\mu}\left(\bigcup_{B \in \mathcal{B}} \tilde{K}_{B}\right)>1-2 \tilde{\varepsilon} \tag{8}
\end{equation*}
$$

Note that the family \mathcal{B}, the radius r and the set $\bigcup_{B \in \mathcal{B}} \tilde{K}_{B}$ depend on $\tilde{\varepsilon}$.
Recall that the function ϕ is given by (6). Since ϕ is not cohomologous to 0 in $L^{2}(\mu)$, we know that the sequence $\phi, \phi \circ f, \phi \circ f^{2}, \ldots$ satisfies the Central Limit Theorem. This means that if we set $S_{n} \phi:=\phi+\phi \circ f+\cdots+\phi \circ f^{n-1}$, the sequence of random variables defined in the measure space $(\hat{\mathbb{C}}, \mathcal{B}(\hat{\mathbb{C}}), \mu)$ by

$$
X_{n}=\frac{S_{n} \phi}{\sigma \sqrt{n}}
$$

tends to $N(0,1)$ in distribution. Here, $\sigma^{2} \neq 0$ is the so-called asymptotic variance. See e.g. [PUZ], Section 4] for the proof of the Almost Sure Invariance Principle in this context, or [DPU] for the proof of CLT relying on Gordin's method, or [Du for a higher dimensional generalisation.

It follows that for every $A>0$,

$$
\mu\left(\left\{\tilde{x} \in \tilde{J}: S_{n} \phi(\tilde{x})>A \sigma \sqrt{n}\right\} \rightarrow 1-\Psi(A)>0\right.
$$

where Ψ is the distribution function of the normal distribution $N(0,1)$.
Now, we fix some positive A. Next, we fix $\tilde{\varepsilon}$ satisfying $1-\Psi(A)>4 \tilde{\varepsilon}$. Let \mathcal{B} be the family of balls assigned to $\tilde{\varepsilon}$ as described above. Using (8) and the invariance of the measure μ we see that there exists a ball $B \in \mathcal{B}$ such that the inequality

$$
\tilde{\mu}\left(\left\{\tilde{x} \in \tilde{J}: S_{n} \phi(\tilde{x})>A \sigma \sqrt{n} \text { and } \tilde{f}^{n}(\tilde{x}) \in \tilde{K}_{B}\right\}\right)>\beta>0
$$

holds with some fixed $\beta>0$ and for infinitely many n 's.
We now fix such a ball B. By the topological exactness of the map $f: J \rightarrow J$ we have $f^{l}\left(\frac{1}{4} B\right) \supset J$ for some $l \in \mathbb{N}$. Let q_{1}, \ldots, q_{m} be the critical values of f^{l}, and put $D_{i}=B\left(q_{i}, \rho\right)$ for $i=1, \ldots, m$. Choose ρ small enough to have

$$
\begin{equation*}
\tilde{\mu}\left(\left\{\tilde{x} \in \tilde{J}: \pi(\tilde{x}) \notin \bigcup_{i=1}^{m} D_{i}, S_{n-l} \phi(\tilde{x})>A \sigma \sqrt{n-l}, \tilde{f}^{n-l}(\tilde{x}) \in \tilde{K}_{B}\right\}\right)>\beta^{\prime} \tag{9}
\end{equation*}
$$

for some positive β^{\prime} and infinitely many n 's.

Let $n \in \mathbb{N}$ be such that (9) holds. Note that since (9) is satisfied for infinitely many n 's, we can require n to be as large as we wish. So we assume additionally that n is so large that

$$
\begin{equation*}
K \exp (-(n-l) \delta)<\frac{\rho}{2} \tag{10}
\end{equation*}
$$

where the constants δ, K come from Lemma 5. More conditions on n will appear below.

For every $\tilde{x}=\left(\ldots, x_{-n}, x_{-(n-1)}, \ldots, x_{-1}, x_{0}, x_{1}, \ldots, x_{n}, \ldots\right)$ satisfying (9) one can choose a preimage of $x_{0}=\pi(\tilde{x})$ under f^{l}, lying in $\frac{1}{4} B$. We denote this preimage by x^{l}. We claim that there is a branch f_{ν}^{-n}, well defined in B, such that $f^{-n}\left(x_{n-l}\right)=x^{l}$. Indeed, let $f_{\tau}^{-(n-l)}$ be the (K, δ, M)-good branch sending $x_{n-l}=\pi\left(\tilde{f}^{n-l}(\tilde{x})\right)$ to $x_{0}=\pi(\tilde{x})$. By definition of a good branch and by (10) we have

$$
\left.\operatorname{diam}\left(f^{-(n-l)}(B)\right)<K \exp (-(n-l) \delta)\right)<\frac{\rho}{2}
$$

Since $x_{0} \notin \bigcup D_{i}$,

$$
B\left(x_{0}, \frac{1}{2} \rho\right) \cap \bigcup \frac{1}{2} D_{i}=\emptyset
$$

Consequently,

$$
\begin{equation*}
x_{0} \in f_{\tau}^{-(n-l)}(B) \subset B\left(x_{0}, \frac{1}{2} \rho\right) \subset \hat{\mathbb{C}} \backslash \bigcup \frac{1}{2} D_{i} . \tag{11}
\end{equation*}
$$

Therefore, branches of f^{-l} are well defined in $f_{\tau}^{-(n-l)}(B)$. Let f_{η}^{-l} be the branch mapping x_{0} to x^{l}. The required branch f_{ν}^{-n} is the composition $f_{\eta}^{-l} \circ$ $f_{\tau}^{-(n-l)}$.

Set

$$
S=\sup _{z: f^{l}(z) \notin \cup \frac{1}{2} D_{i}} \frac{1}{\left.\| f^{l}\right)^{\prime}(z) \|}<\infty .
$$

Then $\left\|\left(f_{\eta}^{-l}\right)^{\prime}\right\| \leq S$, and using (11) we get

$$
\begin{align*}
\operatorname{diam} f_{\nu}^{-n}(B) & \left.\leq S \cdot \operatorname{diam} f_{\tau}^{-(n-l)}(B) \leq S K \exp (-(n-l) \delta)\right) \tag{12}\\
& <\frac{1}{16} r=\frac{1}{4} \cdot \operatorname{radius}(B)
\end{align*}
$$

if n has been chosen large enough.
Since $x^{l} \in f_{\eta}^{-n}(B) \cap \frac{1}{4} B$ we conclude from (12) that $f_{\nu}^{-n}(B) \subset \frac{1}{2} B$. This implies that there exists a fixed point of f^{n}, i.e. a periodic point of f, in $\frac{1}{2} B$. Denote it by y.

We shall estimate the derivative $\left\|\left(f^{n}\right)^{\prime}(y)\right\|$ from below:

$$
\begin{align*}
\left\|\left(f^{n}\right)^{\prime}(y)\right\| & =\left\|\left(f^{l}\right)^{\prime}(y)\right\| \cdot\left\|\left(f^{n-l}\right)^{\prime}\left(f^{l}(y)\right)\right\| \tag{13}\\
& \geq \frac{1}{S_{w \in f_{\tau}} \inf _{(n-l)}(B)}\left\|\left(f^{n-l}\right)^{\prime}(w)\right\| \geq \frac{1}{S} \frac{1}{D}\left\|\left(f^{n-l}\right)^{\prime}\left(x_{0}\right)\right\|
\end{align*}
$$

Here, D stands for the distortion estimate, in the ball B, of a spherical derivative of the good branch $f_{\tau}^{-(n-l)}$; recall that this branch is defined on the twice larger ball $2 B$. See e.g. BKZ or PU for a precise formulation of the Spherical Koebe Distortion Theorem.

Consequently, we have

$$
\begin{align*}
\log \left\|\left(f^{n}\right)^{\prime}(y)\right\| & \geq-\log (S D)+\log \left\|\left(f^{n-l}\right)^{\prime}\left(x_{0}\right)\right\| \tag{14}\\
& \geq-\log (S D)+\frac{A \sigma \sqrt{n-l}}{\alpha}+\frac{(n-l) \log d}{\alpha}
\end{align*}
$$

and

$$
\begin{align*}
\frac{1}{n} \log \left\|\left(f^{n}\right)^{\prime}(y)\right\| & \geq-\frac{1}{n} \log (S D)+\frac{A \sigma \sqrt{n-l}}{n \alpha}+\frac{n-l}{n} \cdot \frac{\log d}{\alpha} \tag{15}\\
& >\frac{\log d}{\alpha}
\end{align*}
$$

if n was chosen large enough. Applying (2) we see that

$$
\chi_{m}(f) \geq \frac{1}{n} \log \left\|\left(f^{n}\right)^{\prime}(y)\right\|>\frac{\log d}{\alpha}=\chi_{a}(f) .
$$

This ends the proof of Proposition 4.
Acknowledgments. This research was partially supported by the Polish NCN grant NN 201607940.

References

[BKZ] K. Barański, B. Karpińska and A. Zdunik, Bowen's formula for meromorphic functions, Ergodic Theory Dynam. Systems 32 (2012), 1165-1189.
[BE] M. Barrett and A. Eremenko, On the spherical derivative of a rational function, Anal. Math. Phys. 4 (2014), 73-81.
[DPU] M. Denker, F. Przytycki and M. Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16 (1996), 255-266.
[Du] Ch. Dupont, Bernoulli coding map and almost sure invariance principle for endomorphisms of \mathbb{P}^{k}, Probab. Theory Related Fields 146 (2010), 337-359.
[GPRR] K. Gelfert, F. Przytycki, M. Rams and J. Rivera-Letelier, Lyapunov spectrum for exceptional rational maps, Ann. Acad. Sci. Fenn. Math. 38 (2013), 631-656.
[P] F. Przytycki, Letter to A. Eremenko, http://www.impan.pl/~feliksp/ experem.pdf (1994).
[PU] F. Przytycki and M. Urbański, Conformal Fractals: Ergodic Theory Methods, London Math. Soc. Lecture Note Ser. 371, Cambridge Univ. Press, 2010.
[PUZ] F. Przytycki, M. Urbański and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, Ann. of Math. 130 (1989), 1-40.
[Z] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), 627-649.

Anna Zdunik
Institute of Mathematics
University of Warsaw
Banacha 2
02-097 Warszawa, Poland
E-mail: A.Zdunik@mimuw.edu.pl

Received September 24, 2014; received in final form October 26, 2014

[^0]: 2010 Mathematics Subject Classification: 30D99, 37F10.
 Key words and phrases: rational maps, characteristic exponents.

