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FUNCTIONS OF A COMPLEX VARIABLE
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Summary. We consider two characteristic exponents of a rational function f : Ĉ→ Ĉ of
degree d ≥ 2. The exponent χa(f) is the average of log ‖f ′‖ with respect to the measure
of maximal entropy. The exponent χm(f) can be defined as the maximal characteristic
exponent over all periodic orbits of f . We prove that χa(f) = χm(f) if and only if f(z) is
conformally conjugate to z 7→ z±d.

1. Introduction and statement of results. Let f : Ĉ → Ĉ be a
rational function of degree d ≥ 2. In [BE], M. Barrett and A. Eremenko
considered the value K(f) = maxĈ ‖f

′‖. Here and below, ‖f ′‖ always de-
notes the derivative with respect to the spherical metric,

‖f ′(z)‖ = |f ′(z)| · 1 + |z|2

1 + |f ′(z)|2
.

Among other issues, the authors of [BE] studied the behaviour of the
value K(·) under iterations of a given function. More precisely, denote by
fn the nth iterate of f , and define

k∞(f) = lim
n→∞

1

n
logK(fn).

A slightly different maximum characteristic exponent is defined as

(1) χm(f) = sup
z

lim sup
n→∞

1

n
log ‖(fn)′(z)‖.

Clearly,

χm(f) ≤ k∞(f).
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According to a result of Przytycki [P] (reproved in [GPRR]), k∞(f) = χm(f)
and one can replace supz∈Ĉ in (1) by the supremum over all periodic points:

(2) χm(f) = sup
z∈Per(f)

lim
n→∞

1

n
log ‖(fn)′(z)‖.

Finally, let

(3) χa(f) =
�
log ‖f ′‖ dµ

be the average of log ‖f ′‖ with respect to the unique measure of maximal
entropy. Denoting α = dimH(µ) we can thus write

(4) χa(f) =
log d

α
≥ log d

2
.

So, we have the following inequalities:

(5)
1

2
log d ≤ χa(f) ≤ χm(f) ≤ logK(f).

In the first inequality of (5) equality holds only for Lattès maps (see [Z]). The
authors of [BE] characterize the maps for which the third inequality becomes
an equality: χm(f) = logK(f) iff the set M = {z : ‖f ′(z)‖ = K(f)}
contains a periodic orbit of f . They remark that, according to a suggestion
of F. Przytycki, the method of my paper [Z] could probably be used to
prove that the equality χa(f) = χm(f) holds if and only if f is conformally
conjugate to z 7→ z±d.

The aim of this note is to provide the proof of this fact. We have the
following

Theorem 1. Let f : Ĉ → Ĉ be a rational function of degree d ≥ 2.
Then χm(f) = χa(f) if and only if f is conformally conjugate to one of the
functions: z 7→ zd, z 7→ z−d.

2. The proof of Theorem 1. The proof is based on the corresponding
arguments in [Z]. We shall refer to several auxiliary facts proved in [Z].

As above, denote

α = dimH(µ) =
log d

χa(f)
.

Set

(6) φ = α log ‖f ′‖ − log d.

Then |φ|p is µ-integrable for all p > 0 (see e.g. [PUZ, Lemma 5]). Clearly,�
φdµ = 0.

Definition 2. With the notation above, we say that ψ ∈ L2(µ) is coho-
mologous to zero in L2(µ) if there exists u ∈ L2(µ) such that ψ = u ◦ f − u.
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Following [Z] we shall distinguish two cases, depending on whether φ is
cohomologous to 0 or not.

Definition 3. A rational function f is called exceptional if φ is coho-
mologous to zero in L2(µ).

The exceptional maps have been classified in [Z]. It turns out that for
an exceptional map we have α = 1 or α = 2 and the map is critically finite,
with parabolic orbifold (see [Z] for details). The only exceptional maps with
α = 1 are (up to a conjugacy by a Möbius transformation): f(z) = z±d and
f(z) = ± Chebyshev polynomial. For ± Chebyshev polynomial of degree d
it is easy to see that χm(f) = 2 log d > χa(f) = log d. Obviously, we have
χa(f) = χm(f) for f(z) = z±d.

The case α = 2 corresponds to so-called Lattès examples. It has been
treated in [BE]. In this case, 1

2 log d = χa(f) < χm(f) = log d.
Thus, the rest of the proof of Theorem 1 relies on the following.

Proposition 4. If a rational function f of degree d ≥ 2 is not excep-
tional then χa(f) < χm(f).

Proof. We recall the notation and some facts from [Z]. First, J = J(f)
denotes the Julia set of the map f . It can be defined as the topological
support of the measure µ of maximal entropy. As in [Z], we work in the
natural extension (J̃ , µ̃, f̃). See e.g. [PU] for the definition of the natural ex-
tension and its properties. The set J̃ consists of two-sided infinite sequences
(trajectories)

(. . . , x−k, x−(k−1), . . . , x0, x1, . . . , xk, . . . )

such that f(xj) = xj+1 for all j ∈ Z. The invertible map f̃ : J̃ → J̃ is the

left shift. Let π : J̃ → J be the projection onto the 0th coordinate. The
measure µ̃ is invariant for the automorphism f̃ and π∗µ̃ = µ.

Let B = B(p, r) be a ball in Ĉ. We denote by 2B the ball B(p, 2r).
Let f−nν be a branch of f−n. We say that this branch is (K, δ,B)-good if

f−nν is well-defined in 2B and diam(f−nν (B)) < K exp(−nδ).
We recall, in a more convenient form, the Basic Lemma from [Z].

Lemma 5 (Basic Lemma). Let f be a rational function of degree d ≥ 2.
There exist δ > 0 such that for every ε̃ > 0 there exist M ∈ Z+ and
K > 0 such that the following holds. If B is a ball in Ĉ and there are
no critical values of fM in 2B then there is a subset K̃B ⊂ B̃ = π−1(B)
of µ̃-measure greater than (1− ε̃)µ(B) such that, for every k ∈ Z+ and for
every (. . . , x−k, x−k+1, . . . , x0, x1, . . . ) ∈ K̃B, we have

x−k = f−kν (x0)

for some (K, δ,B)-good branch of f−k.
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To every ε̃ > 0 one can associate a family B of balls in the following
way: Choose some ε̃ > 0 and let M be the value assigned to ε̃ in the Basic
Lemma. Let p1, . . . , ps be the critical values of fM , and let B1, . . . , Bs be
the balls centred at pi’s with some radius r. Let B be a cover of Ĉ \

⋃s
i=1Bi

with balls of radius r/4. Clearly, we can assume that for every B ∈ B,

(7) 2B ∩ {p1, . . . , ps} = ∅,
so that for each B ∈ B Lemma 5 applies. Moreover, since the measure µ is
atomless, we can require that r is small enough, so that

(8) µ̃
( ⋃
B∈B

K̃B

)
> 1− 2ε̃.

Note that the family B, the radius r and the set
⋃
B∈B K̃B depend on ε̃.

Recall that the function φ is given by (6). Since φ is not cohomologous to 0
in L2(µ), we know that the sequence φ, φ ◦ f, φ ◦ f2, . . . satisfies the Central
Limit Theorem. This means that if we set Snφ := φ+ φ ◦ f + · · ·+ φ ◦ fn−1,
the sequence of random variables defined in the measure space (Ĉ,B(Ĉ), µ) by

Xn =
Snφ

σ
√
n

tends to N(0, 1) in distribution. Here, σ2 6= 0 is the so-called asymptotic
variance. See e.g. [PUZ, Section 4] for the proof of the Almost Sure Invariance
Principle in this context, or [DPU] for the proof of CLT relying on Gordin’s
method, or [Du] for a higher dimensional generalisation.

It follows that for every A > 0,

µ({x̃ ∈ J̃ : Snφ(x̃) > Aσ
√
n} → 1− Ψ(A) > 0

where Ψ is the distribution function of the normal distribution N(0, 1).
Now, we fix some positive A. Next, we fix ε̃ satisfying 1 − Ψ(A) > 4ε̃.

Let B be the family of balls assigned to ε̃ as described above. Using (8) and
the invariance of the measure µ we see that there exists a ball B ∈ B such
that the inequality

µ̃({x̃ ∈ J̃ : Snφ(x̃) > Aσ
√
n and f̃n(x̃) ∈ K̃B}) > β > 0

holds with some fixed β > 0 and for infinitely many n’s.
We now fix such a ball B. By the topological exactness of the map

f : J → J we have f l(14B) ⊃ J for some l ∈ N. Let q1, . . . , qm be the critical

values of f l, and put Di = B(qi, ρ) for i = 1, . . . ,m. Choose ρ small enough
to have

(9) µ̃
({
x̃ ∈ J̃ : π(x̃) /∈

m⋃
i=1

Di, Sn−lφ(x̃)>Aσ
√
n− l, f̃n−l(x̃) ∈ K̃B

})
>β′

for some positive β′ and infinitely many n’s.
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Let n ∈ N be such that (9) holds. Note that since (9) is satisfied for
infinitely many n’s, we can require n to be as large as we wish. So we
assume additionally that n is so large that

(10) K exp(−(n− l)δ) < ρ

2

where the constants δ, K come from Lemma 5. More conditions on n will
appear below.

For every x̃ = (. . . , x−n, x−(n−1), . . . , x−1, x0, x1, . . . , xn, . . . ) satisfying

(9) one can choose a preimage of x0 = π(x̃) under f l, lying in 1
4B. We denote

this preimage by xl. We claim that there is a branch f−nν , well defined in B,

such that f−n(xn−l) = xl. Indeed, let f
−(n−l)
τ be the (K, δ,M)-good branch

sending xn−l = π(f̃n−l(x̃)) to x0 = π(x̃). By definition of a good branch and
by (10) we have

diam(f−(n−l)(B)) < K exp(−(n− l)δ)) < ρ

2
.

Since x0 /∈
⋃
Di,

B

(
x0,

1

2
ρ

)
∩
⋃ 1

2
Di = ∅.

Consequently,

(11) x0 ∈ f−(n−l)τ (B) ⊂ B
(
x0,

1

2
ρ

)
⊂ Ĉ \

⋃ 1

2
Di.

Therefore, branches of f−l are well defined in f
−(n−l)
τ (B). Let f−lη be the

branch mapping x0 to xl. The required branch f−nν is the composition f−lη ◦
f
−(n−l)
τ .

Set

S = sup
z: f l(z)/∈

⋃ 1
2
Di

1

‖f l)′(z)‖
<∞.

Then ‖(f−lη )′‖ ≤ S, and using (11) we get

diam f−nν (B) ≤ S · diam f−(n−l)τ (B) ≤ SK exp(−(n− l)δ))(12)

<
1

16
r =

1

4
· radius(B)

if n has been chosen large enough.

Since xl ∈ f−nη (B)∩ 1
4B we conclude from (12) that f−nν (B) ⊂ 1

2B. This

implies that there exists a fixed point of fn, i.e. a periodic point of f , in 1
2B.

Denote it by y.
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We shall estimate the derivative ‖(fn)′(y)‖ from below:

‖(fn)′(y)‖ = ‖(f l)′(y)‖ · ‖(fn−l)′(f l(y))‖(13)

≥ 1

S
inf

w∈f−(n−l)
τ (B)

‖(fn−l)′(w)‖ ≥ 1

S

1

D
‖(fn−l)′(x0)‖

Here, D stands for the distortion estimate, in the ball B, of a spherical

derivative of the good branch f
−(n−l)
τ ; recall that this branch is defined on

the twice larger ball 2B. See e.g. [BKZ] or [PU] for a precise formulation of
the Spherical Koebe Distortion Theorem.

Consequently, we have

log ‖(fn)′(y)‖ ≥ − log(SD) + log ‖(fn−l)′(x0)‖(14)

≥ − log(SD) +
Aσ
√
n− l
α

+
(n− l) log d

α
and

1

n
log ‖(fn)′(y)‖ ≥ − 1

n
log(SD) +

Aσ
√
n− l
nα

+
n− l
n
· log d

α
(15)

>
log d

α
if n was chosen large enough. Applying (2) we see that

χm(f) ≥ 1

n
log ‖(fn)′(y)‖ > log d

α
= χa(f).

This ends the proof of Proposition 4.
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