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Summary. In the important paper on impulsive systems [K1] several notions are intro-
duced and several properties of these systems are shown. In particular, the function φ
which describes “the time of reaching impulse points” is considered; this function has
many important applications. In [K1] the continuity of this function is investigated. How-
ever, contrary to the theorem stated there, the function φ need not be continuous under
the assumptions given in the theorem. Suitable examples are shown in this paper. We
characterize the function φ from the point of view of its semicontinuity. Also, we show the
analogous properties for impulsive systems given by semidynamical systems. In the last
section we investigate the continuity properties of the escape time function in impulsive
systems.

1. Preliminaries. Let X be a metric space. A pair (X,π) is a dynamical
system (or a flow) if π : R×X → X is a continuous function with π(0, x) = x
and π(t, π(s, x)) = π(t+ s, x) for every t, s, x; replacing R by R+ we get the
definition of a semidynamical system (or a semiflow). For the elementary
properties of dynamical and semidynamical systems, see [BH], [BS], [NS],
[P1], [P2], [V]. We define the positive trajectory of x as π+(x) = π([0,+∞)
× {x}).

In a semidynamical system, for t ≥ 0 and y ∈ X by F (t, y) we mean
{z ∈ X : π(t, z) = y}. Analogously we define F (∆,D) for ∆ ⊂ [0,+∞) and
D ⊂ X. A point x ∈ X is said to be a start point if F (t, x) = ∅ for t > 0.

An impulsive system (X,π,M, I) consists of a semidynamical system
(X,π) (which may be a dynamical system) together with a nonempty closed
subset M of X and a continuous function I : M → X. We assume that for
each x ∈ M there is an εx > 0 such that π((−εx, 0), x) ∩ M = ∅ and
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π((0, εx), x) ∩M = ∅ (for dynamical systems) or F ((0, εx), x) ∩M = ∅ and
π((0, εx), x) ∩M = ∅ (for semidynamical systems). These conditions mean
that the points of M are isolated on every trajectory of the system (X,π).
We call M the impulse set and I the impulse function.

By M+(x) we mean the set (π+(x) ∩M) \ {x}.
1.1. Definition. We define a function φ : X → (0,+∞] by

φ(x) =
{
s if π(s, x) ∈M and π(t, x) 6∈M for t ∈ (0, s),

+∞ if M+(x) = ∅
(i.e. φ(x) is the smallest positive time for which the positive trajectory of x
meets M).

1.2. Definition. For x ∈ M we call the point π(φ(x), x) the impulse
point of x.

1.3. Definition. The trajectory π̃+(x) of a point x is defined as follows.
We start from x. If M+(x) = ∅ then we put π̃(s, x) = π(s, x) for any
s ≥ 0. If M+(x) 6= ∅ then we put π̃(s, x) = π(s, x) for s < φ(x) and
π̃(φ(x), x) = I(π(φ(x), x)). Then we continue the above procedure starting
at π̃(s, x) and so on.

1.4. Notation. For x ∈ X, we denote by x1 the point π(φ(x), x) and by
x1+ the point π̃(φ(x), x) = I(π(φ(x), x)) = I(x1). By x2 we denote the point
π(φ(x1+), x1+) and by x2+ the point π̃(φ(x1+), x1+) = I(π(φ(x1+), x1+)) =
I(x2) and so on.

Thus, for any point x ∈ X exactly one of the following three conditions
holds:

(i) M+(x) = ∅,
(ii) for some n ≥ 1: xk+ is defined for k = 1, . . . , n and M+(xn+) = ∅,
(iii) for any k ≥ 1: xk+ is defined and M+(xk+) 6= ∅.
1.5. Definition. For any x ∈ X we define the escape time ω̃(x) of x as

sup{s : π̃(s, x) is defined}.
Clearly, if x satisfies (i) or (ii) then ω̃(x) = +∞. If x satisfies (iii) then

either ω̃(x) = +∞ or ω̃(x) ∈ (0,+∞).

2. The continuity of the function φ in the case of systems gen-
erated by dynamical systems

2.1. Definition. For a dynamical system (X,R, π) a set S contain-
ing x is called a section (a λ-section) through x (λ > 0) if the set US =
π((−λ, λ), S) is a neighbourhood (not necessarily open) of x and for every
y ∈ U there are a unique z ∈ S and a unique t ∈ (−λ, λ) with π(t, z) = y
(see for instance [BS], [NS], [C1]). The set US is then called a tube (given by
the section S) through x.
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For the following conditions, we assume that an impulse system with
impulse set M is given.

2.2. Definition. A tube US given by a section S through x such that
S ⊂M ∩US will be called a TC-tube through x. We will say that a point x ∈
M satisfies (TC) (Tube Condition) if there exists a TC-tube US through x.

2.3. Definition. A tube US given by a section S through x such that
S = M ∩US will be called an STC-tube through x. We will say that a point
x ∈M satisfies (STC) (Strong Tube Condition) if there exists an STC-tube
US through x.

2.4. Remark. The condition described in Definition 2.2 was introduced
in [K1]. In that paper, a set M such that each x ∈M satisfies (TC) is said to
be well placed in X. It turns out that the stronger condition (STC) applied
to the impulsive set M of an impulsive system has important applications,
frequently more important than the original condition (TC).

2.5. Example. Consider the system on R2 given by π(t, (x, y)) =
(x + t, y) and M = {(x, y) : x= 0} ∪ {(x, y) : x= y, x≥ 0} (see Figure 1).
It is easy to see that (0, 0) satisfies (TC) but not (STC).

M M

(0,0)

Fig. 1

Theorem 4 in [K1] is devoted to the continuity of the function x 7→ φ(x).
The theorem says that if in an impulsive system each x ∈M satisfies (TC)
then φ is continuous on X. Upper semicontinuity of this function is proved
and it is stated that lower semicontinuity also holds. However, φ need not
be lower semicontinuous, which can be seen from the following example.

2.6. Example. Let (X,π,M, I) be an impulsive system with M = N,
π(t, x) = t + x, I(n) = n + 1/2. Then φ(x) = −x for x < 0 and φ(x) =
1 + E(x) − x, where E(x) is the integer part of x, for x ≥ 0. The function
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φ is not lower semicontinuous at any x ∈ N. Of course, each x ∈M satisfies
the condition (TC) (as well as (STC)).

However, we have

2.7. Theorem. Assume that (X,π,M, I) is an impulsive system given
by a dynamical system (X,π). Then for any x 6∈M the function φ is lower
semicontinuous at x.

Proof. Let x 6∈ M and φ(x) = c ∈ (0,+∞). The function φ is lower
semicontinuous at x if and only if for any sequence xn → x with φ(xn)→ t
we have t ≥ c. Suppose to the contrary that there exists a sequence pn → x
with φ(pn) → t < c. For n large enough we have pn 6∈ M as M is closed.
Thus π(φ(pn), pn) ∈ M = M ; on the other hand, π(φ(pn), pn)→ π(t, x), so
π(t, x) ∈M , which means that φ(x) ≤ x < c and finishes the proof.

Thus lower semicontinuity may not hold only at points in M .
In fact, we have the following

2.8. Proposition. Assume that (X,π,M, I) is an impulsive system
given by a dynamical system (X,π). Then φ is not lower semicontinuous
at x for any x ∈M .

Proof. Take ε > 0 and y ∈ X such that π(ε, y) = x and π([0, ε), y) ∩M
= ∅ (this can be done as the points of M are isolated on the trajectory).
Let (εn) be an increasing sequence with εn → 0. Then π(εn, y) → x and
φ(π(εn, y)) = ε − εn → 0. For a lower semicontinuous function φ we would
have φ(x) ≤ 0, however, φ(x) ∈ (0,+∞].

Even φ|M need not be lower semicontinuous. Consider the following

2.9. Example. Take a system (R, π) and A = M as in Example 2.5.
Let I(x, y) = (|x|/2, y). As was noted above, each x ∈M satisfies (TC).

We see that for any y > 0 we have φ((0, y)) = y; on the other hand,
φ((0, 0)) = +∞. Thus φ|M is not lower semicontinuous.

However, the following theorem holds.

2.10. Theorem. If in an impulsive system (X,π,M, I) given by a dyna-
mical system (X,π) each x contained in the impulse set M satisfies (STC),
then φ|M is lower semicontinuous.

This theorem is a simpler case of Theorem 3.7 which will be proved in
the next section.

To summarize the results on semicontinuity on φ, using the upper semi-
continuity proved in [K1] we have:

2.11. Theorem. Assume that (X,π,M, I) is an impulsive system given
by a dynamical system (X,π). Then:
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(1) if each element of M satisfies (TC), then φ is continuous at x if and
only if x 6∈M,

(2) φ is not lower semicontinuous at x if and only if x ∈M,
(3) if each element of M satisfies (STC) then φ|M is lower semicontin-

uous.

3. The continuity of the function φ in the case of systems gener-
ated by semidynamical systems. The concept of section is of fundamen-
tal importance in the theory of dynamical systems. For the semidynamical
systems, the definition of sections which generalizes the definition from the
case of dynamical systems was presented in [C1]. Also, an existence theo-
rem was proved. Such sections give an opportunity of local presentation of
semidynamical systems in a parallelizable way.

Recall

3.1. Definition. A closed set S containing x is called a section (a λ-
section) through x if there exists a closed set L such that:

(a) F (λ,L) = S,
(b) F ([0, 2λ], L) is a neighbourhood of x,
(c) F (µ,L) ∩ F (ν, L) = ∅ for 0 ≤ µ < ν ≤ 2λ.

We will call the set F ([0, 2λ], L) a tube (a λ-tube), and the set L a bar.

3.2. Definition. We define the conditions (TC) and (STC) for semidy-
namical systems in an analogous way as for dynamical systems.

We need

3.3. Lemma. Assume that in a semidynamical system a point x satisfies
the condition (TC) (or (STC)) and a TC-tube (resp. an STC-tube) Uλ is
given by a λ-section S. Then for any η < λ the set S also gives an η-section
with a TC-tube (resp. an STC-tube).

The proof is an immediate consequence of the definitions and Lemma
1.9 in [C1].

The following results, similar to that for dynamical systems, hold.

3.4. Theorem. If in an impulsive system (X,π,M, I) given by a semi-
dynamical system (X,π) each point contained in the impulse set M satisfies
(TC), then φ is upper semicontinuous.

Proof. It is enough to prove upper semicontinuity at a point x where
φ(x) = u ∈ (0,+∞). We have π(u, x) = y ∈ M , π((0, u), x) ∩M = ∅. Take
an ε < u such that U = F ([0, 2ε], L) is a TC-tube with an ε-section through
y equal to F (ε, L) (this can be done with the use of Lemma 3.3). There is
a neighbourhood V of x such that π(u, V ) ⊂ U . Thus π(u, z) ∈ F ([0, 2ε], L)
for any z ∈ V . Therefore for any z ∈ V there exists an ηz ∈ [0, 2ε] such
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that π(u + ηz, z) ∈ L. Hence π(u + ηz − ε, z) ∈ F (ε, L) = S ⊂ M , as
u+ ηz − ε > 0. We have shown that φ(z) ≤ u+ ηz − ε < u+ ε. This proves
the upper semicontinuity of φ at x.

3.5. Theorem. Assume that (X,π,M, I) is an impulsive system given
by a semidynamical system (X,π). For any x 6∈ M the function φ is lower
semicontinuous at x.

The proof is analogous to that of Theorem 2.7.

3.6. Proposition. Assume that (X,π,M, I) is an impulsive system
given by a dynamical system (X,π). Assume that x ∈ M and x is not a
start point. Then φ is not lower semicontinuous at x.

The proof is analogous to the proof of Proposition 2.8. The only difference
is that in the case of semidynamical systems the set F (t, x) may be empty
for t > 0. However, x is not a start point, so there are ε > 0 and y ∈ X such
that π(ε, y) = x and π([0, ε), y) ∩M = ∅.

3.7. Theorem. If in an impulsive system (X,π,M, I) given by a semi-
dynamical system (X,π) each element of the impulse set M satisfies (STC),
then φ|M is lower semicontinuous.

Proof. Take an η-section S through x ∈M with STC-tube U such that
S = M ∩ U . Let ε > 0 and s < φ(x). According to Lemma 3.3 we may
assume that η < ε and η < s.

The set π([η/2, s], x) is disjoint from the closed set M , so we can find
an open set V such that π([η/2, s], x) ⊂ V and V ∩M = ∅. Let pn → x.
Then for sufficiently large n we have π([η/2, s], pn) ⊂ V , as π([η/2, s], x) is
compact. According to (STC), π([0, η], pn) ∩M = ∅ for n large enough, so
π([0, s], pn) ∩M = ∅ and φ(pn) ≥ s. We have shown that lim infy→x φ(y) ≥
φ(x), so φ is lower semicontinuous at x.

This proof also applies to Theorem 2.10, as in the case of a dynami-
cal system a section according to Definition 3.1 is a section according to
Definition 2.1 (see [C1]).

Summarizing, we have

3.8. Theorem. Assume that (X,π,M, I) is an impulsive system given
by a semidynamical system (X,π) and no start point of the system belongs
to M . Then:

(1) if each element of M satisfies (TC) then φ is continuous at x if and
only if x 6∈M,

(2) φ is not lower semicontinuous at x if and only if x ∈M,
(3) if each element of M satisfies (STC) then φ|M is lower semicontin-

uous.
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3.9. Remark. The above assumptions are, in particular, fulfilled for
any semidynamical system on a manifold, because it is known (see [BH])
that such systems do not have start points.

3.10. Remark. The results presented in Sections 1 and 2 for the impulse
set M and function φ remain true for the set M in dynamical or semidy-
namical systems without impulsive structure. The definition of φ and the
conditions (TC) and (STC) may be formulated in an analogous way for
the set M which has nothing to do with the function I and impulses. The
reason for our choice of presentation is that our results relate to those of
[K1]. Moreover, the function φ is used for the investigation of limit sets and
systems of characteristic 0 in impulsive systems.

4. The continuity of the function ω̃ and Kamke’s Axiom. In a
local semidynamical system, π(t, x) is defined for t ∈ [0, ω(x)) where ω(x) ∈
(0,+∞]. In the definition of local systems the openness of the domain is
required, i.e. the set dom π̃ =

⋃{[0, ω(x))× {x} : x ∈ X} must be open in
R+×X. This is called Kamke’s Axiom (see [BH]). In impulsive systems, the
domain of the positive impulsive trajectory π̃(x) is also an interval which
need not be equal to [0,+∞). It is natural to ask about the openness of
the domain here, especially because in some cases it is useful to transform
an impulsive system to a classical system (this will be of importance in
particular in [C2]).

4.1. Lemma. The set dom π̃ is open in R+×X if and only if the function
ω̃ : X 3 x 7→ ω̃(x) ∈ (0,+∞] is lower semicontinuous.

The proof is analogous to the proof of the same property for semidy-
namical systems ([P1, Lemma 1.3.1, Remark 1.3.4]; for the necessity, see
also [BH, Lemma 1.8]).

However, the domain of π̃ need not be open. Consider the following
examples:

4.2. Example. Let X = R, M = N1, π(t, x) = t + x and I(n) =
n+ 1− 1/n(n+ 1). For any k ∈ N1 we have

ω̃(p) = k − p+
1
k

if p ∈ (k − 1, k], ω̃(k) = 1 +
1

k + 1
.

We see that ω̃ is not lower semicontinuous at any k ∈ N1.

4.3. Example. Let X = R2 and π(t, x) = t + x. Set M1 = {(n, y) :
y ≤ 0} and Mn = {(n, y) : y ∈ R} for n ∈ N2; M =

⋃{Mn : n ≥ 1}. We
define I(1, y) = (0, y) and

I(n, y) =
(
n+ 1− 1

n(n+ 1)
, y

)
for n ≥ 2

(see Figure 2).
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Note that the point (1, 0) does not satisfy the condition (TC). As in the
previous example, ω̃ is not lower semicontinuous at any (x, y) ∈M .

Let x < 2, y > 0. We have ω̃(x, y) = 2−x+ 1/2. However, for any x < 1
and y ≤ 0 we have ω̃(x, y) = +∞. Thus ω̃ is also not lower semicontinuous
at (x, y) for any (x, y) ∈ L = (−∞, 1]× {0}.

It can be easily checked that for any (x, y) ∈ R2 \ (M ∪ L) the function
ω̃ is lower semicontinuous at (x, y).

M1 2 3 4
I M( 1)

(0,0) (1,0)

M M M

Fig. 2

The examples suggest that the lower semicontinuity of ω̃ may be de-
stroyed by elements of M and the points which meet on their way the points
not fulfilling (TC). Indeed, we have the following

4.4. Theorem. Assume that (X,π,M, I) is an impulsive system given
by a semidynamical system (X,π). Assume also that M ∩ I(M) = ∅. Let
x ∈ X \M be such that any y ∈ M ∩ π̃+(x) fulfills (TC). Then ω̃ is lower
semicontinuous at x.

Proof. As in the proof of 2.7, suppose to the contrary that there exists
a sequence yn → x such that ω̃(yn)→ α0 < ω̃(x). Consider π̃+(x). We will
use the notation introduced in 1.4. There exists an α ∈ (α0, ω̃(x)) such that
π̃(α, x) 6= xi+ for any i ≥ 1. According to 1.3, we can find k ∈ N and β > 0
such that π̃(α, x) = π(β, xk+), i.e. there are only a finite number of impulse
points of the trajectory π̃(x) before reaching π̃(α, x), with xk the last one.
We have π([0, β], xk+)∩M = ∅ and α = φ(x)+φ(x1+)+ . . .+φ(x(k−1)+)+β.

The point x1 satisfies (TC) so we can find a γ1-section M1 with a TC-
tube Uγ1 and bar Lγ1 ; we have U1 = F ([0, 2γ1], Lγ1), F (γ1, Lγ1) = M1 and
M1 ⊂ Uγ ∩M . According to Lemma 3.3, Uγ = F ([0, 2γ], Lγ) (where Lγ =
F (γ1− γ, Lγ)) is a TC-tube with section M1 for any γ < γ1. For any γ < γ1
the tube Uγ is a neighbourhood of x1.

We prove that φ(yn) → φ(x). For any γ ∈ (0, φ(x)) there exists an
Nγ such that π(φ(x), yn) ∈ Uγ for n ≥ Nγ , as π(φ(x), yn) → x1. Thus
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according to the definition of section either π([0, φ(x) + γ), yn) ∩M1 6= ∅
or π((φ(x) − γ, 0], yn) ∩ M1 6= ∅. This shows that φ(yn) ≤ φ(x) + γ for
n ≥ Nγ . The above reasoning is applicable to any γ > 0, so we conclude
that lim supn→∞ φ(yn) ≤ φ(x). On the other hand, according to Theorem
3.5, lim infn→∞ φ(yn) ≥ φ(x) as x 6∈M . We conclude that φ(yn)→ φ(x).

It follows that for n large enough there exists a δ1
n such that φ(yn) =

φ(x) + δ1
n and δ1

n → 0 as n → ∞. We have y1
n = π(φ(yn), yn) ∈ M and

π(φ(yn), yn)→ π(φ(x), x) = x1.
Now we have y1+

n = I(y1
n) → I(x1) = x1+ and y1+

n = π̃(φ(x) + δ1
n, yn).

We apply the above reasoning to the sequence (y1+
n ) instead of (yn) and x1+

instead of x (we may do it according to the assumption that I(M)∩M = ∅, so
x1+ 6∈M). Repeating this procedure finitely many times, we get a sequence
(yk+
n ) such that yk+

n → xk+ and

yk+
n = π̃(φ(x) + δ1

n + φ(x1+) + δ2
n + . . .+ φ(x(k−1)+) + δkn, yn)

for sufficiently large n. There exists an open set V such that π([0, β], xk+) ⊂
V and V ∩M = ∅ as π([0, β], xk+) ∩M = ∅ (β was taken at the beginning
of the proof). For n large enough we have yk+

n ∈ V and π([0, β], yk+
n ) ⊂ V ,

so π([0, β], yk+
n ) ∩M = ∅ and

π(β, yk+
n ) = π̃(φ(x) + δ1

n + φ(x1+) + δ2
n + . . .+ φ(x(k−1)+) + δkn + β, yn)

for those n. Put

un = φ(x) + δ1
n + φ(x1+) + δ2

n + . . .+ φ(x(k−1)+) + δkn + β.

Letting n→∞ yields un → φ(x) +φ(x1+) + . . .+φ(x(k−1)+) +β, as δjn → 0
for all j. On the other hand,

φ(x) + φ(x1+) + . . .+ φ(x(k−1)+) + β = α,

so un → α. There exists an η > 0 such that un > α0 +η for large n, because
α0 < α. We have π(β, yk+

n ) → π(β, xk+) and π(β, yk+
n ) = π̃(un, yn) so

un < ω̃(yn) and, consequently, α0 < α0 +η ≤ ω̃(yn). This is a contradiction,
as we assumed that ω̃(yn)→ α0.

Under the assumption that M∩I(M) = ∅ we may consider the impulsive
system on the space X̂ = X \M with the metric induced from X and the
movement π̂ given by π̃ defined as above (we use points of M to define the
movement on X \M but we do not consider them as points of the space
under investigation).

Then as an immediate corollary from the previous theorem we have

4.5. Theorem. Assume that (X,π,M, I) is an impulsive system given
by a semidynamical system (X,π) and M ∩ I(M) = ∅. If each x ∈M fulfills
(TC) then the domain of π̂ is open in R+ × X̂.
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